
www.asq.org 21

Diagnostic Quality Problem 
Solving: A Conceptual 

Framework and Six Strategies
Jeroen de Mast 

Institute for Business and Industrial Statistics of the University of Amsterdam

© 2013, ASQ

Diagnostic problem solving, which is the task of dis-
covering causal explanations for unwanted effects, is 
an important element of problem solving. This paper 
contributes a conceptual framework for the generic 
process of diagnosis in quality problem solving by 
identifying its activities and how they are related. It 
then presents six strategies that structure the diagnostic 
process by suggesting a certain sequence of actions 
and techniques. The paper analyzes when each of these 
strategies is likely to be effective and how it may help in 
making the diagnostic process more efficient. Finally, 
the paper proposes and motivates a generic sequence of 
stages in diagnosing quality problems. 

The framework offers a scientific basis for studying 
and evaluating problem-solving methodologies such 
as Six Sigma’s DMAIC model, Kepner and Tregoe’s 
problem analysis method, and Shainin’s system. For 
the practitioner, the framework clarifies the ratio-
nale for many problem-solving techniques offered in 
courses and textbooks. The paper also offers indica-
tions and contra-indications when techniques are 
promising, and demonstrates how they fit together in 
a coherent strategy.

Key words: diagnosis, DMAIC, problem solving, root-
cause analysis

INTRODUCTION
Problem solving in the face of quality, reliability, 
and performance problems has been and still is 
an important task in operations management (for 
example, Balakrishnan et al. 1995; Ho and Sculli 
1997; MacDuffie 1997). In recent years, large num-
bers of professionals have been trained in advanced 
problem-solving methodologies, and the Six Sigma 
phenomenon in particular has spurred a flood of 
courses and textbooks on problem solving follow-
ing its define-measure-analyze-improve-control 
(DMAIC) model (Chakravorty 2009; de Mast and 
Lokkerbol 2012). The 1980s and 1990s saw the emer-
gence of problem-solving approaches such as the 
Shainin System (Shainin 1993; Steiner, MacKay and 
Ramberg 2008) and Kepner and Tregoe’s (1997) 
problem analysis method, still widely taught and 
applied in industry. Simpler models, such as the 
plan-do-check-act (PDCA) and eight disciplines (8D) 
models, are also generally applied, as well as tech-
niques such as root cause analysis, brainstorming,  
5 Whys, and the cause-and-effect diagram. 

The discovery of the causes of a problem is called 
diagnosis, and it is an essential element of problem 
solving. This paper contributes a conceptual frame-
work for the diagnosis process in quality problem 
solving. It then presents six strategies that structure 
the diagnostic process using a certain sequence of 
actions and techniques. The paper analyzes when 
each of these strategies is likely to be effective and 
how it may help in making the diagnostic process 
more efficient. The focus is on the diagnosis of 
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CONCEPTUAL MODEL OF 
THE DIAGNOSTIC PROCESS
Definition of the 
Subject of Study
The task of discovering a causal explanation for 
unwanted effects is called diagnostic problem solv-
ing, or diagnosis (Smith 1988). It is one of the 
core tasks in problem solving (Smith 1988), and is 
often the basis for the subsequent design of a solu-
tion. The process is called the “Diagnostic Journey” 
(Juran 1998), and it is the function of the ana-
lyze phase in Six Sigma’s DMAIC method (de Mast 
and Lokkerbol 2012).There is substantial scientific 
literature on diagnosis in fields such as trouble-
shooting of devices (for example, Morris and Rouse 
1985; Davis and Hamscher 1988), medical diagnosis 
(Pople 1982; Norman 2005), artificial intelligence 
(A.I.) (Chittaro and Ranon 2004; Torasso and Torta 
2005), and A.I. in medical diagnosis (Keravnou 
and Washbrook 1989; Lucas 1997). The quality and 
industrial engineering fields have produced many 
accounts in the practitioners’ literature, as well as an 
occasional discussion in the scientific literature (for 
example, Wagner 1993; Smith 1998; de Mast 2011). 
The stance taken in this paper is that one can learn 
a lot from the scientific advances in other fields. The 
author offer a synthesis of strands and fragments of 
research in a variety of disciplines, and translates 
them into a coherent whole for quality engineer-
ing. Characteristics of the diagnostic process vary, 
however, from one context to another, and first he 
develops a solid description of the sort of diagnosis 
in quality problem solving that he aims to study. 

For the diagnosis of routine problems, a list of 
known fault types is given to the diagnostician a 
priori, and diagnosis boils down to selecting from 
this list the most likely cause. This type of diagnosis 
is a classification problem of inferring a predefined 
fault type from observed symptoms. Such tasks 
have been well studied in A.I., troubleshooting, 
and medicine (for example, Custers, Regehr, and 

nonroutine problems, that is, problems that are 
novel to the problem solver. 

The motivation for the author’s study is the 
observation that the scientific underpinning for 
many of the earlier mentioned methods and tech-
niques is weak. Further, practitioners would like 
to identify the causes of quality problems with as 
little effort and as fast as possible. To this end, 
they need a strategy that specifies when and how 
techniques should be applied, what data to gather, 
and in general, what steps to take. Typical books 
aimed at practitioners, including most accounts 
of Six Sigma’s DMAIC method (such as Breyfogle 
2003; Pyzdek 2003), describe a large number of 
techniques and methods for finding the causes of 
problems, but without much coherence or struc-
ture. The little strategic support that is offered 
for controlling the efficiency of the diagnostic 
process often lacks operationality or is tenuous 
(de Mast and Lokkerbol 2012). The systems pro-
moted by Shainin (Steiner, MacKay, and Ramberg 
2008) and Kepner and Tregoe (1997) integrate 
techniques into diagnostic strategies, but do not 
provide a scientific understanding of the principles 
and rationales of problem diagnosis. Moreover, 
these methods are rather strongly tied to a single 
diagnostic strategy (de Mast 2011), referred to as 
branch-and-prune in this paper.

The conceptual framework for problem diagnosis 
provides a strong scientific basis, allowing quality 
engineers to further develop problem-solving methods. 
Also, it facilitates a better understanding and critical 
evaluation of existing methods. For practitioners, the 
analysis offers soundly based support for choosing 
between strategies and techniques. 

In the next section, the author presents his con-
ceptual model of the generic diagnostic process. In 
the subsequent section, he presents six strategies 
for diagnosis and proposes a heuristic guideline for 
choosing among them in practice. In the conclud-
ing section he discusses some ramifications of the 
framework for methodological support for problem 
solving on the shop floor, and suggests directions 
for future research.



Diagnostic Quality Problem Solving: A Conceptual Framework and Six Strategies

www.asq.org 23

of hypotheses and their status. Also from Keravnou 
and Johnson (1989) he takes the idea that operators 
are actions that modify the status of hypotheses, thus 
progressing the search from one state to the next. 

The proposed model is summarized in Figure 1. 
The process of diagnostic problem solving is conceptu-
alized as a search through the field of potential causal 
explanations, until an explanation is found that is 
both accepted as true and sufficiently specific. These 
candidate explanations in the diagnostician’s mind 
are called hypotheses. It is a near universal finding 
that expert diagnosticians use working hypotheses to 
bring focus to data gathering and inquiry (for exam-
ple, Pople 1982; Boreham 1986). During the search, 
the diagnostician generates, rejects, and accepts 
hypotheses on the basis of the available domain 
knowledge and observations. At any moment, there 
will be a particular set of hypotheses under consid-
eration, and sets of hypotheses already rejected or 
accepted. These hypotheses and their status (accepted, 
rejected, or under consideration) define a state in 
the search process. 

The search progresses from one state to the next 
as the diagnostician performs three types of actions: 
hypothesis generation, testing, and evaluation. 
These three operators represent the basic forms 
of diagnostic inference: abductive, deductive, and 
inductive (Keravnou and Johnson 1989), which are 
also prominent in philosophies of discovery (see for 
example Niiniluoto 1999). 

Norman 1996; Venkatasubramaniana et al. 2003a; 
and Torasso and Torta 2005). Solving nonroutine 
problems, to the contrary, often involves the dis-
covery of altogether new fault mechanisms, and the 
set of potential fault types is not given a priori. This 
paper, therefore, studies diagnosis as a discovery 
process, rather than as a classification task. 

The author does not assume that all relevant 
data and domain knowledge are given to the diag-
nostician a priori. He studies the entire iterative 
process including diagnostic reasoning (how to get 
from data to a diagnosis) and data and knowledge 
acquisition (what data to gather). The intended 
result of diagnosis in quality problem solving is a 
causal explanation of problematic behavior that is 
useful for the subsequent design of a solution. This 
differs from troubleshooting or identifying the mal-
functioning component or connection in a device, 
without a full explanation of what has happened and 
what is wrong with the component or connection in 
question (Wagner 1993).

Diagnosis as a Search Process 
Through a Problem Space
The A.I. and troubleshooting fields have produced 
a limited number of problem diagnosis conceptu-
alizations, such as Rasmussen (1981) and Clancey 
(1988), but none of them are directly applicable 
to the diagnosis of nonroutine quality problems as 
desc r ibed  prev ious ly . 
T h e  a u t h o r ’ s  m o d e l 
uses the highly influen-
tial concepts of Newell 
and Simon (1972), who 
characterize problem-
solving processes as a 
search through a state 
space driven by opera-
tors .  From Keravnou 
and Johnson (1989) he 
borrows the idea to char-
acterize the states in the 
diagnostic search in terms 

State space

Domain knowledge and observations

Hypothesis
testing

Hypothesis
generation

Hypothesis
evaluation

Diagnostic strategy
(how, when,

in what order?)

Under consideration: H1 H3 H4 H6

Rejected: H2 H5 H8

Accepted: H7

Figure 1	 Conceptual model of the diagnostic process.
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observations. Conversely, hypothesis testing directs the 
collection of additional knowledge and observations 
on the basis of the hypotheses under consideration. 
Domain knowledge is knowledge about the product 
or process under study: how it works, what parts it is 
composed of, how it has been used, what it behaves 
like normally, and so on. For example, the SIPOC 
model and flowchart technique (Pyzdek 2003) are 
often used for laying down domain knowledge about 
a production process. A particular form of domain 
knowledge concerns problems that have troubled 
the system or comparable systems in the past (fault 
knowledge). Table 1 lists typical elements of domain 
knowledge and observations used for diagnosis. The 
table was composed by the author, based on the types 
of domain knowledge used in A.I. systems for diag-
nosis (Clancey 1988; Keravnou and Washbrook 1989; 
Lucas 1997; Chittaro and Ranon 2004), and translated 
to the context of quality problem solving. 

The domain knowledge and observations needed 
for diagnosis are typically not given a priori in a 
complete and consistent form, but are collected in 
interaction with the generation and evaluation of 
hypotheses. Most diagnostic searches start, however, 
with a first round of domain knowledge and obser-
vations gathering. This initial round is sometimes 
called cue acquisition or the study of symptoms 
(Gryna 1988). Where data and knowledge acquisi-
tion later in the diagnostic process will be greatly 
guided by working hypotheses under consideration 
and the diagnostic strategy in use, the initial cue 
acquisition tends to be quite general.

Practical Example: 
Electrical Instabilities
Since the framework the author develops is fairly 
abstract, he describes a real-life example, which is 
presented in more detail in de Mast (2011). The 
example serves no other purpose than illustration, 
and it will be revisited throughout the remainder of 
the paper. The case took place at a manufacturer 
of electrical devices. Quite suddenly, from week 29 

	 1.	Hypothesis generation: On the basis of domain 
knowledge and observations, the diagnostician 
invents a new candidate explanation and adds 
it to the collection of hypotheses under consid-
eration. Generated hypotheses may range from 
general and broad causal directions (for example, 
“The problem is caused in the soldering process”) 
to specific and detailed causal explanations 
(“The problem is a short circuit, created by 
contaminations with salts, deposited by a newly 
introduced soldering flux.”). Often, a number 
of complementary hypotheses are generated, 
such as the cause is in subsystem A, B, or C. 
(Keravnou and Johnson 1989). 

	 2.	Hypothesis testing: Given the hypotheses under 
consideration, the diagnostician determines 
what observations or knowledge are needed in 
order to evaluate a particular hypothesis. When 
necessary, the diagnostician does new observa-
tions or tests and adds the results to the body of 
domain knowledge and observations. 

	 3.	Hypothesis evaluation: Given the hypotheses 
under consideration, and given the available 
domain knowledge and observations, the diag-
nostician decides to change the status of a 
hypothesis from under consideration to accepted 
or rejected. Accepted and rejected hypotheses are 
added to the domain knowledge as findings. 

The search does not necessarily end when a cer-
tain hypothesis is accepted as true, as this hypothesis 
may be too general and in need of further elabora-
tion. Rather, the goal state of the diagnostic search 
is reached upon the acceptance of a hypothesis that 
offers a sufficiently specific explanation of the mal-
function to enable the design of a solution. Thus, 
after accepting a broad hypothesis (“The problem’s 
cause is in the soldering process”), the diagnostician 
may continue the search by generating, testing, and 
evaluating more specific elaborations of this initial 
explanation (“The cause is in the soldering flux,” 
“The alloy’s temperature is too low,” and so on).

The hypothesis generation and evaluation 
operators are driven by domain knowledge and 
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These findings completely shifted the focus of 
the investigations. The team studied the produc-
tion processes of the TAs and TBs more closely, and 
identified the soldering process as the main differ-
ence between them. Meanwhile, a team member 
did a literature search for known issues with this 
sort of devices, and found a list of four suspects, 
including contamination with salts. Cleaning the 
surfaces of some TAs and analyzing the residues 
demonstrated the presence of sodium chloride 
(“table salt”). Closer examination revealed that 
different soldering fluxes were used for the TAs and 
TBs, and that the flux used for the TAs contained 
sodium chloride. This flux had been introduced 
in the process recently. An engineer measured the 
conductivity of a surface contaminated with this 
flux, and found it sufficient for a short circuit 
given the high voltages the products used. The use 
of the soldering flux containing sodium chloride 
was then discontinued, and four weeks later not a 
single new electrical instability had occurred.

The case is a good example of the sort of diag-
nostic problem solving that is the focus of this 

in 2008 onward, a problem emerged in the assem-
bly of a type of products the author refers to as TA. 
Interestingly, a product named TB that was nearly 
identical in design and production process, was unaf-
fected. The problem was described as an electrical 
instability, and it destroyed about 12 percent of the 
TAs when connected to a power supply. 

The main suspect was the connector linking 
the TAs to the power supply. In brainstorming ses-
sions the engineers and operators generated possible 
causes, mainly related to the connector, and they 
also did some close examinations of the damage’s 
appearance. After three months, these investigations 
still had not identified the problem’s true cause. 
Eventually, the engineers designed a swapping test, 
in which the power supply and connector used for 
the TAs were adjusted such that they could be used 
for the TBs. The test demonstrated that the power 
supply and connector gave no problems when used 
for TBs. The team inferred that the problem’s cause 
must be in the products themselves, including their 
production history, and not in the connector or the 
power supply. 

Table 1	 Forms of domain knowledge and observations used in diagnosis.

Physical structure
A model of the system’s anatomy in the form of a decomposition of the product or process into subsystems, components, stations, and parts.

Functional structure 
A model of how the product or process works, by specifying the function of components (in terms of input and intended output) and 
their linkages. 

Operations context 
Especially for production processes, knowledge about how and when the process has been deployed as a resource in the production 
schedule (for example, for what type of products, in what batch sizes, in which shifts?). 

Normal behavior
Knowledge about normal states and normal behavior of the product or process.

General knowledge
Scientific and professional knowledge of physics, electronics, chemistry, and other relevant fields.

Fault knowledge
Knowledge about problems that have troubled the product or process in the past. Fault knowledge can be in a raw form (recollections 
of past problematic episodes in people’s memory, or as descriptions in logs or on the Internet). Often it is in a compiled form, such 
as fault dictionaries (a list of known fault types with typical symptoms) or taxonomies (tree-type classifications of known fault types, 
providing operational definitions that guide diagnosis). 

Observations
Measurement data collected from the process or products, including data from experiments, and qualitative and less-structured observations 
in the form of findings and anecdotes. ©
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to Gryna 1988; Breyfogle 2003; Pyzdek 2003; George 
et al. 2004; Gitlow and Levine 2004). Further, he 
studied a large number of case-study descriptions 
discussed in journals such as Quality Engineering 
and the Journal for Quality Technology, as well 
as in practitioners’ books such as Bhote (1991). A 
last source of information was the before-mentioned 
scientific literature in A.I. and medical diagnosis. For 
each of the identified approaches, the strategic idea 
was pinpointed, and where possible related to prin-
ciples in the problem-solving literature. Further, for 
each of the identified strategies, the types of domain 
knowledge or observations needed as input were ana-
lyzed, and what strategic value it can bring in the 
diagnostic process. This resulted in a characterization 
of the situations where each strategy is promising, 
thus providing support to practitioners for choosing 
among alternative approaches. The author has also 
associated well-known quality problem-solving tech-
niques to the discussed strategies, thus clarifying their 
rationale and applicability to practitioners.

As a basis for comparison, the author first 
describes the least-efficient approach for diagno-
sis that is realistic: a blind trial-and-error search. 
Suppose the diagnostician is only given a list of 
potential fault types but no further knowledge, nor is 
it possible to acquire further knowledge (except for 
trying out candidate causes). The only option in that 
case is to randomly try fault types until finding the 
one that fixes the observed problem. If even a list of 
potential fault types is absent, the strategy boils down 
to randomly inventing causal explanations and try-
ing them out. Such blind trial-and-error approaches 
represent a limiting case in terms of diagnostic effi-
ciency. In the case of a finite number n of potential 
causes, the expected number of trials for identifying 
the true one is (n+1)/2. In the remainder of this 
section, the author describes six strategies that aim 
to make the search process more efficient.

Lucky Guess Strategy
In a lucky guess strategy, the diagnostician thinks 
he or she recognizes the symptoms of a known 

paper. Diagnosis resulted in an accepted causal 
explanation: the introduction of a new soldering 
flux had resulted in contaminations of the products’ 
surfaces with salt, which in turn created a short cir-
cuit. This destroyed the products when connected to 
a high-voltage power supply. The diagnostic search 
was an iterative process of hypothesis generation, 
testing, and evaluation, alternated with data and 
knowledge acquisition. The search resulted in the 
discovery of a fault mechanism that was novel to the 
people involved.

Early in the search, hypotheses focused on the 
connection of the products to the power supply. 
The turning point in the search was the generation 
and systematic testing of the three complementary 
hypotheses that the cause would be related to the 
product itself, to the power supply, or to the connec-
tor (the swapping test). Upon rejection of the latter 
two, the remainder of the project focused on refining 
the hypothesis that the cause is related to the product 
itself. A literature study, the observation that the 
soldering process is the main difference between the 
TAs and TBs, and some further investigations yielded 
the conclusion that was ultimately accepted as the 
problem’s diagnosis.

SIX DIAGNOSTIC STRATEGIES
A Study of Diagnostic Strategies
The process of diagnosis progresses by hypothesis 
generation, testing, and evaluation (see Figure 1). 
A diagnostic strategy is a structure that prescribes 
how to do these actions in a certain order and in 
certain ways, for example by suggesting what sort 
of hypotheses to generate and in what order to test 
them. The function of a strategy is to make the 
diagnostic process more efficient (that is, it aims to 
reduce the expected amount of effort). 

In the subsequent sections the author presents six 
diagnostic strategies. They were identified by study-
ing approaches recommended in the practitioners’ 
literature, from which he studied a large sample 
(references in the subsequent sections are restricted 
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likely causes. In a symptomatic search the diag-
nostician uses a set of observations representing 
the problematic behavior as a search template to 
find a matching set in a library of known symp-
toms and their likely causes (Venkatasubramanian, 
Rengaswamy, and Kavuri 2003b). These libraries 
may consist of compiled fault knowledge (such as 
fault dictionaries and taxonomies), but the diag-
nostician may also search in knowledge stores of 
a less-structured nature, such as a general search 
engine on the Internet. Alternatively, the diagnosti-
cian may consult the expert literature, or discuss 
the problem with colleagues or experts in a group 
meeting, hoping they recognize the symptoms as 
indicative for a known fault type. 

The name symptomatic search was taken from 
the literature on troubleshooting (Rasmussen 1981; 
Rouse 1983). In the A.I. literature, diagnosing a 
problem by matching observed characteristics to 
those of cases stored in a library, is called case-based 
reasoning (for example, Kolodner, Simpson, and 
Sycara 1985; Portinale et al. 1994).

Symptomatic searches may give a short-cut, and 
rather than discovering the causes of a problem one-
self, the diagnostician reuses knowledge gathered in 
earlier problematic episodes. As with lucky guesses, 
symptomatic searches are driven by fault knowledge, 
as well as by a description of symptoms. For that 
reason, they are unlikely to be effective for novel 
fault types. Indications for attempting a symptomatic 
search include:

•	 Rich fault knowledge is available.

•	 The problem is unlikely to be novel. 

•	 The symptoms are salient and specific.

Branch-and-Prune Strategy 
The next three strategies aim to reduce the exten-
siveness of the search space by ruling out entire 
classes of causal directions (“pruning”). De Mast 
(2011) offers an earlier discussion. The first one, 
the branch-and-prune strategy, seeks to reduce the 
extensiveness of the search space by first splitting 

problem, and first tests this explanation before 
embarking on more systematic diagnostic efforts. 
This sort of reasoning, where a cause is conjectured 
based on experiential association (“it has caused 
similar problems in the past”), is named shallow 
or nonanalytic reasoning in the diagnostic litera-
ture (Milne 1987; Keravnou and Washbrook 1989; 
Eva 2005). It is driven by a diagnostician’s recol-
lection of earlier experiences with similar problems 
(fault knowledge).

If the initial guess is right, a lucky guess strat-
egy is the most efficient approach possible, and 
especially for routine problems, experts’ recog-
nition of familiar symptoms may obviate more 
elaborate searches. The literature on medical diag-
nosis asserts that expert physicians make most 
diagnoses by shallow reasoning, resorting to deeper 
reasoning only in novel or atypical cases (Elstein 
and Schwarz 2002). But lucky guess approaches are 
also fallible and risky; if the first guess is a dead 
end, the strategy may bog down the diagnostician 
to the wrong part of the search space, or the search 
may quickly degenerate into blind trial-and-error. 
According to Wagner (1993), in particular less-
experienced problem solvers tend to fixate early in 
the search on a specific explanation, and study it in 
full detail, instead of switching to a more systematic 
search strategy. 

Lucky guesses are unlikely to be correct for novel 
fault types, as they are driven by past experience 
with similar problems. Indications for attempting a 
lucky guess include:

•	 The problem appears to be routine.

•	 The immediate evidence suggesting the lucky 
guess explanation is very strong. 

•	 The cost and effort in testing the guess are rela-
tively minor. 

Symptomatic Search Strategy
Most computer problems can be solved by entering 
an error message verbatim in an Internet search 
engine, which usually produces an overview of the 
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Chittaro and Ranon 2004). A strategy of eliminating 
broad classes of causes, followed by zooming-in on 
the retained classes, is promoted in the practitioners’ 
literature by Shainin (1993). 

The branching step is based on system structure, 
such as a product or process’s physical or functional 
structure. Also, generic structures such as time and 
space may serve as a basis for branching the search 
tree (de Mast 2011). The pruning step is driven by 
observations collected in a stratified sample, with 
the strata determined by the branches under study. 

A rigorous proof of the general efficiency of 
branch-and-prune strategies is difficult. In simpli-
fied and stylized situations, however, the efficiency 
is easy to demonstrate. Suppose a problem has 
n possible causes. In blind trial-and-error, the 
mean number of causes to test before the right 
one is found is (n + 1)/2. Suppose the system can 
be decomposed into m subsystems of k compo-
nents each (km = n), and suppose it is possible to 
confirm or reject the relevance of each subsystem 
without knowing the details and specifics within the 
subsystem. Suppose further that there are no inter-
dependencies between the causes in one subsystem 
and another. The expected number of tests for pin-
pointing the problem’s cause is now: m + (k + 1)/2 
(assuming one needs to test all m subsystems to 
identify the relevant one, and assuming one applies 
blind trial-and-error to single out the cause from 
the k candidates within the selected subsystem). If, 
for example, n = 1,000, and m = 10, k = 100, this 
amounts to 60.5 instead of 500.5 expected trials. 
Applying multiple branching and pruning steps 
consecutively improves the efficiency even further. 
Note that the gain in efficiency does not only con-
cern the hypothesis testing effort, but also the effort 
of acquiring domain knowledge about a specific 
subsystem. Besides this stylized demonstration of 
the efficiency of branch-and-prune strategies, it is 
also an empirical finding that efficient professional 
problem solvers tend to apply such top-down refine-
ment strategies (for example, Kassirer and Gorry 
1978; Smith et al. 1986; Boreham 1986; Schaafstal, 
Schraagen, and Van Berlo 2000).

the space into broad but complementary hypoth-
eses (the “branch” step). This coarse partitioning 
is done on the basis of the structure of the pro-
cess or product under study, or on the basis of 
generic structures such as time and space. Next, 
tests or observations drive the elimination of entire 
branches (“prune”), and the diagnostician studies 
only the retained branch(es) in more detail.

The breakthrough in the electrical instabilities 
example (de Mast 2011) came from the swapping 
test, where the connector and power supply of the TAs 
were tested on the TBs. The test branched the search 
space into three complementary and broad hypoth-
eses, namely, that the cause is either in the products 
themselves, in the power supply, or in the connector 
(see Figure 2). Based on the test’s results, the latter 
two branches were pruned, and the power supply and 
connector were discarded from the remaining search. 
Instead, the team elaborated the causes-related-to-
the-product branch in more detail. 

Branch-and-prune strategies treat the space of 
potential causal explanations as a hierarchical tree 
structure, with broad and general hypotheses in 
the higher levels, and more specific refinements of 
these as branches in the lower levels. Hypotheses 
in a single layer should be complementary (for 
example, the cause is either in the product, in the 
power supply, or in the connector). The diagnos-
tician works top-down, first pruning most of the 
branches in a level, and only then elaborating the 
retained branches into more detailed and specific 
hypotheses. The idea to use a hierarchy of hypotheses 
on various degrees of abstractness is known in A.I. as 
hierarchical model-based diagnosis (Mozetič 1991; 

Product and
production history

Power
supply Connector

Cause of instabilities

Figure 2	 Branching and pruning in diagnosing 
electrical instabilities.
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1988). Typical multi-vari studies branch the search 
tree in four classes: causes that vary over time, 
between-production streams, within-production 
streams but between products, and causes that vary 
within products. The diagnostician collects a strati-
fied sample of data following the same structure. 
The results are often presented graphically in a 
multi-vari chart (de Mast et al. 2001). The sub-
sequent study focuses on the class that appears to 
contain the dominant source of variation, ignoring 
the other classes. 

Simpler multi-vari studies only compare varia-
tion across production streams: Does the problem 
manifest itself more in some streams than in oth-
ers? Is the main variation within streams or across 
streams? They are driven by simple group comparison 
techniques such as the analysis of means (ANOM), 
boxplots, or the analysis of variance (ANOVA). 

Time series plots allow branching and prun-
ing based on patterns over time. In the electrical 
instabilities example (de Mast 2011), a time series 
plot would have shown that the problem emerged 
quite suddenly in week 29, and remained at a con-
stant level in the weeks thereafter. Explanations not 
involving a change in week 28 or 29, therefore, could 
be pruned from the search space, homing in on 
events and changes occurring around week 29. 

4W2H, defect check sheets, 
concentration diagram

A rather informal way of applying branch-and-prune 
tactics is to acquire cues guided by the generic ques-
tions of who, where, when, what, how, and how much 
(known under the acronym 4W2H). These questions 
have the diagnostician probe the search space in terms 
of spatial or physical structure (where), temporal struc-
ture (when) and functional structure (what), exploring 
whether the search space can be pruned and the search 
focused. Also typical formats for cue acquisition, such 
as the concentration diagram, defect location check 
sheet, defect type check sheet, and process check 
sheet (Pyzdek 2003, 274-276), structure findings in 
physical, spatial, functional, and other structures, 
thus facilitating a branch-and-prune strategy.

Branch-and-prune strategies are promising if 
the system under study (and thus the search space) 
is complex and extensive, and if it suggests a strong 
structure for branching the search space into non-
interdependent classes. Next, the author discusses 
some well-known techniques and variants that he 
claims are based on branch-and-prune tactics.

Sequential structure and bisection

Bisection (Morris and Rouse 1985), also known as the 
half-split strategy or process dissection (Gryna 1988), 
is a branch-and-prune strategy based on sequential 
structure, such as the sequence of steps in a pro-
duction process. The idea is to observe whether the 
problem is manifest halfway in the sequence or pro-
cess, thus establishing whether the cause acts in the 
first or second half. Next, one studies the relevant half 
in more detail, possibly by applying bisection again to 
the selected half, and discarding the other half. 

Branch-and-prune on the basis of physical 
structure: Component swapping

Branches could be defined on the basis of a decomposi-
tion of a process, machine, or product into its physical 
subsystems, components, and parts. Components 
search, or component swapping (Bhote 1991), is a 
practical technique for branching and pruning on the 
basis of such a physical decomposition. The team in 
the electrical instabilities example (de Mast 2011) did 
half a component swapping test by swapping the power 
supply and connector of the problematic TAs with those 
of the unaffected TBs. The observation that the con-
nector of the TAs gave no problems when used for the 
TBs ruled out causes associated to the power supply 
and the connector, and established that the cause 
must be related to the product itself. Note that in a 
full component swapping test, the team would also 
have used the connector and power supply of the TBs 
for the TAs, and would probably have observed that 
this combination did reproduce the problem. 

Multi-vari studies and charts

This approach has been proposed in particular 
for problems related to excessive variation (Gryna 
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or focus the diagnostic effort, as the identification of 
proximate causes (and thus the nature of the causal 
mechanism) may greatly prune the search space. Note 
that the well-known 5 Whys technique (ask “Why?” 
five times) facilitates a proximate causes strategy. 

In the electrical instabilities example (de Mast 
2011), the team did a close inspection of some 
destroyed products, looking whether the damage’s 
position and appearance would provide clues as to 
the immediate cause; these studies were, however, 
fruitless. Later in the project, another occurrence of 
a proximate causes strategy was more successful; the 
detection of sodium chloride on the products’ surfaces 
allowed the team to reason back from the electrical 
instabilities to their immediate causes, producing 
the cause-and-effect chain: salt residue → short 
circuit → electrical instability. As a result, the 
problem description was recast from “What causes 
the electrical instabilities?” to “Where does the salt 
residue come from?” Consequently, the search space 
could be pruned by discarding from further consid-
eration all elements of the process that could not 
plausibly be expected to leave a salt residue.

The proximate causes strategy is known in the 
general problem-solving literature as forward search 
(Norman et al. 2000), a name, somewhat confus-
ing in the context of diagnosis, reflecting that one 
reasons forward from givens toward a goal-state. The 
strategy may be promising early in the diagnostic 
process, when the search space is wide and complex, 
and where the identification of proximate causes may 
yield a better-focused problem definition. Indications 
for attempting a proximate causes strategy include:

•	 The current problem description is unspecific 
and unfocused.

•	 Symptoms give clear cues as to the sort of causal 
mechanism that produced them. 

Pruning on the Basis 
of Syndromes
In a proximate causes strategy the search space is 
pruned by reasoning backward from the problem 
to its immediate causes. In a branch-and-prune 

Branch-and-prune on the basis 
of functional structure

Observing that some subfunctions of a process or 
product are malfunctioning, while others func-
tion normally, allows the diagnostician to focus on 
the components of the product or process related 
to the faulty subfunctions, and ignore the rest 
(Rasmussen 1981; Wagner 1993). Suppose one 
debugs a computer program consisting of a multi-
tude of subroutines, and suppose these subroutines 
are associated to functions and subfunctions of 
the program. Observing or testing which of the 
program’s functions are normal, and which are 
invalid, focuses inquiry to the relevant subroutines.

Branch-and-prune on the basis 
of operations context

Operations context refers to structures induced by the 
production schedule: different production streams, 
product types, shifts, and other structures defining 
strata. As in multi-vari studies, the diagnostician 
establishes whether the problem is present in some, 
but not in other strata. For example, upon observ-
ing that the electrical instabilities (de Mast 2011) 
affected the TAs but not the TBs, the team inferred that 
the cause must be something that distinguishes the 
design or the production process of both products. This 
focused attention on the soldering process, which was 
the main difference. 

Pruning Following a 
Proximate Causes Strategy
In a proximate causes strategy, one achieves a more 
focused problem description by moving upstream 
in the chain of cause and effect. Such a strat-
egy starts with a close examination of symptoms, 
possibly involving a disassembly of malfunctioning 
parts or products (Gryna 1988, refers to such examina-
tions as autopsies). On the basis of these examinations, 
the diagnostician seeks to reconstruct the immedi-
ate causes of the problem, thus moving the problem 
description step by step in anti-causal direction. This 
may either pinpoint the root cause of the problem, 
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numbers of observations and can be quite laborious. 
This in itself may disqualify the strategy in the case 
of a problem that occurs relatively rarely. 

Pairwise comparison

Pairwise comparison is a well-known technique that 
involves the systematic comparison of the problematic 
to the unproblematic by comparing the best-of-the-best 
(BOB) products to the worst-of-the-worst (WOW) prod-
ucts (Steiner, MacKay, and Ramberg 2008). A similar 
approach is Kepner and Tregoe’s (1997) “is versus is 
not analysis,’’ which has the problem solver identify 
what distinguishes objects, behavior, locations, and 
situations where the problem is from those where it 
could be but is not. 

Funneling Strategy 
Funneling strategies seek to test an enumerable list 
of specific candidate causes in an efficient manner. 
By enumerating elements of the process or machines 
as possible causes, or by listing obvious suspects, 
one generates a set of specific and detailed hypoth-
eses. Based on this list, the diagnostician designs an 
efficient testing strategy, for example, involving a 
statistically designed experiment, Shainin’s variable 
search procedure (Dasgupta, Adiga, and Wu 2011), 
or testing candidates one by one after sorting them 
by plausibility. 

Funnel ing s trategies  are  cal led di f feren-
tial diagnosis in medicine (Eva 2004), and are 
often prescribed in accounts of Six Sigma’s DMAIC 
method (for example, George et al. 2004, 12-13; 
Gitlow and Levine 2004, 146ff.), typically using a 
brainstorming session to identify candidate causes, 
and a statistically designed experiment to test them 
efficiently. They work with rather specific hypothe-
ses, and are efficient for trying out candidate causes 
in a compact area of the search space. There are 
dangers when a funneling strategy is tried before the 
search space has been sufficiently narrowed down 
to the right area. The first danger is that the search 
space is so extensive that potential causes are not 
enumerable or otherwise multitudinous, and testing 

strategy, the search tree is pruned on the basis of sys-
tem structure. A third option is pruning on the basis 
of syndromes. In this approach, the diagnostician 
observes a series of occurrences of the problem and 
tries to identify patterns in concomitant symptoms 
(the syndrome). Such patterns may reveal a charac-
teristic of the causal mechanism that helps in ruling 
out options. The pattern is typically contrasted to 
normal or unproblematic behavior. 

De Mast and Trip (2007) discuss an example 
concerning eccentricity of pins on cell-phone 
components. A histogram of 125 eccentricity mea-
surements brought to light that these values had a 
bimodal distribution, and thus, that two homoge-
neous populations could be discerned. This taught 
the engineer an important characteristic of the 
eccentricity’s cause: that it must be a phenomenon 
with two clearly discernable states. As it turned out, 
there were two molds in the process, and one of 
them was worn out. In the same paper, de Mast and 
Trip (2007) describe a problem concerning exces-
sive variation in a cutting process. After much but 
fruitless detective work, the breakthrough in under-
standing the causes of the variation came from a 
time series plot revealing that the deviations have a 
cyclical pattern. Time series analysis indicated that 
the cycles had a period of 40 or 80 products. The 
number of products on one loop of the conveyor belt 
was 80, thus focusing the attention to properties of 
the belt. Subsequent studies demonstrated that the 
belt’s flexibility was a major cause of the variability 
in the dimensions of cut products. 

If large sets of production data are available, in 
which many variables have been recorded, mul-
tivariate statistical techniques such as principal 
components analysis (PCA), cluster analysis, and 
partial least squares (PLS) may be used to identify 
syndromes; Garcia-Muñoz et al. (2003) describe an 
interesting example. In a syndrome-based strategy, 
one focuses on establishing the pattern of symp-
toms rather than finding the cause. Therefore, this 
approach is a primer for other strategies. Since one 
cannot identify a pattern from a single or just a few 
samples, syndrome-driven strategies require larger 
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for enlarging the scope of the causal field under 
consideration. They allow the group to consider 
to which categories candidates belong, and which 
categories aren’t being considered. 

If the set of candidates is large, one needs a way 
of sequencing them for testing and evaluating. The 
affinity diagram and multi-voting technique (George 
et al. 2004) are often suggested for this purpose. 

DISCUSSION AND CONCLUSIONS
A Generic Sequence 
of Strategies
To declare one of these six strategies universally 
best would miss an important point, as their effec-
tiveness and efficiency strongly depend on the 
situation. Rather, diagnosticians are best advised 
to think strategically, but not to follow any par-
ticular strategy rigidly. In each stage of the 
diagnostic search the diagnostician should reassess 
the situation and its tactical consequences, and 
be opportunistic in switching from one strategy 
to another. In the electrical instabilities example, 
the diagnosis was established by a combination of 
branch-and-prune tactics (for example, the swap-
ping test), proximate causes tactics (“Where does 
the salt residue come from?”), and a symptomatic 
search (“What are known issues with this sort of 
device?”). Opportunistic switching between strate-
gies or perspectives is advised or noted by Boreham 
(1986), Davis and Hamscher (1988), Keravnou and 
Washbrook (1989), and Norman (2005). 

Table 2 briefly summarizes the strategies 
described in the previous section. The table also 
suggests a certain order of these strategies that the 
author proposes is a rational sequence of diagnostic 
efforts. Prescribing a certain order rigidly would fail 
to appreciate the uniqueness of problems. However, 
the previous section has shown that each strategy 
has certain prerequisites and a certain strategic 
value, and this allows a characterization of the sort 
of situations where each strategy may be useful. 

all of them, even with an efficient experimental 
design, is too laborious. Mooren, de Mast, and Does 
(2012) present a case about premature wear-out of 
drills that illustrates this problem. The other danger 
is that the diagnostician, faced with an extensive 
search space, only raises candidate causes in a 
narrow area of the space, and thus may get bogged 
down to the wrong part of the search space. 

In the electrical instabilities example (de Mast 
2011), the team first attempted a funneling strategy, 
generating possible explanations in brainstorm-
ing sessions. These early attempts focused on the 
connection of the product to the power supply. The 
team persevered rather long in exploring this part 
of the search space (about three months), and in 
the end, it turned out to be a dead end. It was an 
external consultant who realized that the efforts 
lacked a systematically established focus. This focus 
was achieved by three pruning maneuvers. First, 
a branch-and-prune step, based on the physical 
decomposition of the system into three subsystems, 
focused the search on the product and its produc-
tion history (the swapping test). Next, proximate 
causes tactics focused the search on process ele-
ments that could be expected to leave a salt residue. 
Finally, a branch-and-prune step based on the oper-
ations context focused the search on the difference 
in the production processes of the TAs and TBs: the 
soldering process. These tactics gave sufficient focus 
to identify the soldering flux as the culprit.

Thus, the most important indication for attempt-
ing a funneling strategy is:

•	 The search space is compact and focused. 

Group meetings

Group meetings are popular in shop-floor prob-
lem solving to drive a funneling strategy, with a 
cross-disciplinary group generating a varied set of 
hypotheses for further testing. The identification 
of candidate causes is often guided by categories 
such as materials, machine, method, personnel, 
measurement, and environment (Breyfogle 2003). 
Such systems of standard causes are often helpful 
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diagnostician enumerate detailed candidate causes 
in the focal area of the search space, and design 
an efficient sequence of tests for singling out the 
true cause. 

Conclusions and Suggestions 
for Future Research
As early as the 1950s, Joseph Juran described the 
diagnostic journey as part of the Universal Sequence 
for Breakthrough, and offered a number of tech-
niques for diagnosing quality problems (Juran 
1998). Despite a multitude of books on problem 
solving in the practitioners’ literature, the academic 
literature about quality management has largely 
not followed up this early work and has not sys-
tematically studied diagnostic problem solving. As 
a basis for such research, the author offers a con-
ceptual framework that is firmly grounded in the 
literature of fields such as troubleshooting, medi-
cal diagnosis, and A.I., but modified to the sort of 
problem solving common in quality engineering. He 
shows that the process of problem diagnosis can be 
understood as a search through a space of potential 
explanations (hypotheses). The search progresses 

He thinks the sequence proposed in Table 2 can be 
motivated on the basis of this analysis at least as a 
heuristic advice. 

The rationale for the given sequence is as 
follows. Confronted with a problem, the diagnosti-
cian first figures out whether he or she is facing 
a known problem (lucky guess or symptomatic 
search strategy). If the symptoms are recognized 
as being related to a known problem, reusing 
knowledge from earlier episodes may obviate more 
elaborate problem-solving efforts. If symptoms do 
not give a match in symptomatic searches, the 
diagnostician must discover the causal mecha-
nism him or herself. Especially if the search space 
is large and complex, the second stage is about 
focusing the search by pruning the search space. 
Proximate causes tactics achieve this by working 
backward from the symptoms to their immediate 
causes, thus giving a more focused problem defini-
tion. Branch-and-prune strategies exploit system 
structure and observations to focus the search. And 
syndrome-driven pruning strategies apply prun-
ing on the basis of characteristics of the causal 
mechanism revealed by patterns in the symptoms. 

Once the search space has been pruned to a 
manageable size, a funneling strategy has the 

Table 2	 Six strategies in a rational order.

1. Lucky guess strategy
The diagnostician recognizes the symptoms of a known problem. Known 

problem?2. Symptomatic search strategy
Symptoms are used as a query in a search through a knowledge store of known problems. 

3. Proximate causes strategy
A more focused problem description is achieved by reasoning backward from the problem to its immediate causes. 
5 Whys, autopsy

Achieve focus 
on the relevant 
part of the 
search space 
by pruning

4. Branch-and-prune strategy
The search space is split into high-level classes (“branch”); irrelevant classes are discarded from the search (“prune”), 
and the retained branches are elaborated in more detail. 
Bisection (half-split strategy), component swapping, multi-vari study, 4W2H

5. Syndrome-driven pruning strategy
The search space is pruned by identifying characteristics of the causal mechanism from patterns in observed symptoms.
Pairwise comparison

6. Funneling strategy
An enumerable list of specific hypotheses is tested in an efficient manner.
Group meetings and designed experiments

Efficient testing 
of detailed 
hypotheses ©

20
13

, AS
Q



Diagnostic Quality Problem Solving: A Conceptual Framework and Six Strategies

34 QMJ VOL. 20, no. 4/© 2013, ASQ

framework offers six generic strategies, thereby 
demonstrating that the range of approaches for 
problem diagnosis is much wider than recognized 
in any account in the quality field known to the 
author. This wide range of alternatives is relevant. 
Table 2 shows that the viability of each of these 
strategies depends on the stage in the diagnostic 
process. Also, he has specified indications for the 
viability of each strategy, demonstrating that differ-
ent situations make different strategies promising. 
Most salient to the author is the almost sole reli-
ance on funneling strategies in most accounts of 
Six Sigma’s DMAIC method. As discussed earlier, a 
funneling strategy is typically inefficient without 
first achieving focus to the relevant part of the 
search space. A critical review of popular accounts 
of the DMAIC method (de Mast and Lokkerbol 
2012), such as Breyfogle (2003), Pyzdek (2003), 
Gitlow and Levine (2004), and George et al. (2004), 
reveals that pruning strategies such as branch-and-
prune are mentioned cursorily at best. Hopp and 
Spearman (2008) criticize DMAIC for failing to 
offer a provision for using knowledge about known 
problems (that is, DMAIC does not offer a strategy 
akin to the symptomatic search strategy). Academic 
research to improve this critical part of the DMAIC 
method, and incorporate a wider range of diag-
nostic strategies, is all the more important given 
the prominence of this model in teaching quality 
improvement to practitioners. 

The standard techniques in quality manage-
ment for visualization in group meetings, such 
as cause-and-effect diagrams, are mainly geared 
to funneling and proximate causes strategies. A 
welcome extension would consist of techniques for 
facilitating branch-and-prune and other pruning 
strategies in group meetings. Diagnostic trees, as 
used in Shainin’s method and Steiner and MacKay 
(2005, 119ff.), are a promising option, visualizing 
the successive branching and pruning steps. 

A final suggestion for further research is to try to 
learn about quality problem solving from empiri-
cal research, as is done occasionally in the fields 
of medical diagnosis and troubleshooting (for 

toward a goal state by activities that generate, test, 
or evaluate hypotheses. Diagnostic strategies struc-
ture these activities in a way designed to make the 
process efficient. 

The proposed framework offers a structure that 
researchers can use as a basis to compare and eval-
uate various methodologies such as Six Sigma’s 
DMAIC method, the system proposed by Shainin, 
and Kepner and Tregoe’s problem analysis proce-
dure. Such methodologies are the basis for courses 
in quality improvement taught to large numbers of 
professionals, and this fact underlines the importance 
of a systematic and rigorous scientific appraisal of 
their merits. 

Support given in practitioners’ books for iden-
tifying the causes of quality problems tends to 
lack structure (with the aforementioned work by 
Shainin and Kepner and Tregoe as notable excep-
tions). Popular books such as Breyfogle (2003) 
and Pyzdek (2003) describe isolated techniques, 
but do not integrate them into a diagnostic strategy 
or logical sequence. In recent years, the statistics 
community in the quality field has become aware 
of the dangers of studying techniques merely in 
isolation, and has emphasized the importance of 
integrating techniques into strategies (for example, 
Anderson-Cook et al. 2012; Steiner and MacKay 
2013). The proposed framework offers a basis 
for taking this initiative beyond purely statisti-
cal techniques for problem solving. The linkage 
of well-known problem-solving techniques to the 
generic strategies in which they are useful, clarifies 
their rationale. It indicates to practitioners in which 
situations these techniques are promising, and it 
explains their function in the diagnostic process. 

The presented overview of six strategies allows 
researchers to reveal which strategic ideas are 
underrepresented in existing quality problem- 
solving methodologies. Current methodologies tend 
to be limited to a single or only a few strategies, 
such as the funneling strategies promoted in many 
accounts of Six Sigma (de Mast and Lokkerbol 
2012) and the branch-and-prune strategy in 
Shainin’s method (de Mast 2011). The author’s 
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