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Failure mode and effects analysis (FMEA) is a methodology to evaluate a system, design, process or
service for possible ways in which failures (problems, errors, risks and concerns) can occur. It is a group
decision function and cannot be done on an individual basis. The FMEA team often demonstrates different
opinions and knowledge from one team member to another and produces different types of assessment
information such as complete and incomplete, precise and imprecise and known and unknown because
of its cross-functional and multidisciplinary nature. These different types of information are very difficult
to incorporate into the FMEA by the traditional risk priority number (RPN) model and fuzzy rule-based
approximate reasoning methodologies. In this paper we present an FMEA using the evidential reasoning
(ER) approach, a newly developed methodology for multiple attribute decision analysis. The proposed
FMEA is then illustrated with an application to a fishing vessel. As is illustrated by the numerical example,
the proposed FMEA can well capture FMEA team members' diversity opinions and prioritize failure modes
under different types of uncertainties.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Failure mode and effects analysis (FMEA) is an engineering tech-
nique used to define, identify and eliminate known and/or potential
failures, problems, errors and so on from the system, design, process
and/or service before they reach the customer [1–3]. When it is used
for a criticality analysis, it is also referred to as failure mode, effects
and criticality analysis (FMECA). FMEA has gained wide acceptance
and applications in a wide range of industries such as aerospace,
nuclear, chemical andmanufacturing. A good FMEA can help analysts
identify known and potential failure modes and their causes and
effects, help them prioritize the identified failure modes and can also
help them work out corrective actions for the failure modes. The
main objective of FMEA is to allow the analysts to identify and pre-
vent known and potential problems from reaching the customer. To
this end, the risks of each identified failure mode need to be eval-
uated and prioritized so that appropriate corrective actions can be
taken for different failure modes. The priority of a failure mode is
determined through the risk priority number (RPN), which is defined
as the product of the occurrence (O), severity (S) and detection (D)
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of the failure, namely

RPN = O × S × D. (1)

The three factors O, S and D are all evaluated using the ratings (also
called rankings or scores) from 1 to 10, as described in Tables 1–3.
The failures with higher RPNs are assumed to be more important
and should be given higher priorities.

FMEA has been proven to be one of the most important early
preventative initiatives during the design stage of a system, product,
process or service. However, the RPN has been extensively criticized
for various reasons [4,5,7–11]:

• Different sets of O, S and D ratings may produce exactly the same
value of RPN, but their hidden risk implications may be totally
different. For example, two different events with values of 2, 3, 2
and 4, 1, 3 for O, S and D, respectively, will have the same RPN value
of 12. However, the hidden risk implications of the two events may
be very different because of the different severities of the failure
consequence. This may cause a waste of resources and time, or in
some cases, a high-risk event being unnoticed.

• The relative importance among O, S and D is not taken into con-
sideration. The three factors are assumed to have the same im-
portance. This may not be the case when considering a practical
application of FMEA.
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• The mathematical formula for calculating RPN is questionable and
debatable. There is no rationale as to why O, S and D should be
multiplied to produce the RPN.

• The conversion of scores is different for the three factors. For ex-
ample, a linear conversion is used for O, but a nonlinear transfor-
mation is employed for D.

• RPNs are not continuous with many holes and heavily distributed
at the bottom of the scale from 1 to 1000. This causes problems
in interpreting the meaning of the differences between different
RPNs. For example, is the difference between the neighboring RPNs
of 1 and 2 the same or less than the difference between 900 and
1000?

• The RPN considers only three factors mainly in terms of safety.
Other important factors such as economical aspects are ignored.

• Small variations in one rating may lead to vastly different effects
on the RPN, depending on the values of the other factors. For

Table 1
Traditional ratings for occurrence of a failure [4–6].

Rating Probability of occurrence Possible failure rate

10 Very high: failure is almost inevitable !1/2
9 1/3

8 High: repeated failures 1/8
7 1/20

6 Moderate: occasional failures 1/80
5 1/400
4 1/2000

3 Low: relatively few failures 1/15,000
2 1/150,000
1 Remote: failure is unlikely "1/1, 500, 000

Table 2
Traditional ratings for severity of a failure [4–6].

Rating Effect Severity of effect

10 Hazardous without warning Very high severity ranking when a potential failure mode affects safe vehicle operation and/or involves
noncompliance with government regulations without warning

9 Hazardous with warning Very high severity ranking when a potential failure mode affects safe vehicle operation and/or involves
noncompliance with government regulations with warning

8 Very high Vehicle/item inoperable, with loss of primary function
7 High Vehicle/item operable, but at reduced level of performance. Customer dissatisfied
6 Moderate Vehicle/item operable, but comfort/convenience item(s) inoperable. Customer experiences discomfort
5 Low Vehicle/item operable, but comfort/convenience item(s) operable at reduced level of performance.

Customer experiences some dissatisfaction
4 Very low Cosmetic defect in finish, fit and finish/squeak or rattle item that does not conform to specifications.

Defect noticed by most customers
3 Minor Cosmetic defect in finish, fit and finish/squeak or rattle item that does not conform to specifications.

Defect noticed by average customer
2 Very minor Cosmetic defect in finish, fit and finish/squeak or rattle item that does not conform to specifications.

Defect noticed by discriminating customers
1 None No effect

Table 3
Traditional ratings for detection [4–6].

Rating Detection Criteria

10 Absolutely impossible Design control will not and/or cannot detect a potential cause/mechanism and subsequent failure mode; or
there is no design control

9 Very remote Very remote chance the design control will detect a potential cause/mechanism and subsequent failure mode
8 Remote Remote chance the design control will detect a potential cause/mechanism and subsequent failure mode
7 Very low Very low chance the design control will detect a potential cause/mechanism and subsequent failure mode
6 Low Low chance the design control will detect a potential cause/mechanism and subsequent failure mode
5 Moderate Moderate chance the design control will detect a potential cause/mechanism and subsequent failure mode
4 Moderately high Moderately high chance the design control will detect a potential cause/mechanism and subsequent failure mode
3 High High chance the design control will detect a potential cause/mechanism and subsequent failure mode
2 Very high Very high chance the design control will detect a potential cause/mechanism and subsequent failure mode
1 Almost certain Design control will almost certainly detect a potential cause/mechanism and subsequent failure mode

example, if O and D are both 10, then a 1-point difference in sever-
ity rating results in a 100-point difference in the RPN; if O and D
are equal to 1, then the same 1-point difference results in only a
1-point difference in the RPN; if O and D are both 4, then a 1-point
difference produces a 16-point difference in the RPN.

• The three factors are difficult to precisely determine. Much infor-
mation in FMEA can be expressed in a linguistic way such as likely,
important or very high and so on.

A number of approaches have been suggested in the literature
to overcome some of the drawbacks mentioned above. For example,
Gilchrist [10] gave a critique of FMEA and proposed an expected cost
model. It was formulated as EC = CnPfPd, where EC is the expected
cost to the customer, C the cost per failure, n the items produced
per batch or per year, Pf the probability of a failure and Pd the
probability of the failure not to be detected. Pf and Pd were assumed
to be independent and their product represents the probability that
the customer receives a faulty product. The nPfPd is the expected
number of failures reaching the customer. The expected cost model
was claimed to be more rigorous yet practical than the RPN model
and to have great benefit of forcing people to think about quality
costs.

Ben-Daya and Raouf [7] argued that the probabilities Pf and Pd
in the expected cost model were not always independent and very
difficult to estimate at the design stage of a product and the sever-
ity was completely ignored by the expected cost model. Based on
these arguments, they proposed an improved FMEA model which
addressed Gilchrist's criticism and gave more importance to the like-
lihood of occurrence over the likelihood of detection by raising the
ratings for the likelihood of occurrence to the power of 2. The im-
proved FMEA model was combined with the expected cost model to
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provide a quality improvement scheme for the production phases of
a product or service in the way that the former was used to identify
the critical failures that require immediate remedial action, whereas
the later was used in parallel to estimate the cost of failures reaching
the customer and to evaluate the impact of the corrective action
taken.

Sankar and Prabhu [5] presented a modified approach for priori-
tization of failures in a system FMEA, which uses the ranks 1–1000
called risk priority ranks (RPRs) to represent the increasing risk of the
1000 possible severity–occurrence–detection combinations. These
1000 possible combinations were tabulated by an expert in order of
increasing risk and can be interpreted as `if–then' rules. The failure
having a higher rank was given a higher priority.

Bevilacqua et al. [12] defined RPN as the weighted sum of six
parameters which are safety, machine importance for the process,
maintenance costs, failure frequency, downtime length and operat-
ing conditions, multiplied by the seventh factor, i.e. machine access
difficulty, where the relative importance weights of the six parame-
ters were estimated using pairwise comparisons. Monte Carlo sim-
ulation was performed as a sensitivity analysis to verify the robust-
ness of the final ranking results.

Braglia [13] developed a multi-attribute failure mode analysis
(MAFMA) based on the analytic hierarchy process (AHP) technique,
which considers four different factors O, S, D, and expected cost as
decision attributes, possible causes of failure as decision alternatives,
and the selection of cause of failure as decision goal. The goal, at-
tributes and alternatives formed a three-level hierarchy, where the
pairwise comparison matrix was used to estimate attribute weights
and the local priorities of the causes with respect to the expected
cost attribute, the conventional scores for O, S and D were normal-
ized as the local priorities of the causes with respect to O, S, and
D, respectively, and the weight composition technique in the AHP
was utilized to synthesize the local priorities into the global prior-
ity, based on which the possible causes of failure were ranked. A
sensitivity analysis was also conducted to investigate the sensitiv-
ity of the priority ranking of the causes to the changes in attribute
weights.

Braglia et al. [14] also presented an alternative multi-attribute
decision-making approach called fuzzy TOPSIS approach for FMECA,
which is a fuzzy version of the technique for order preference by
similarity to ideal solution (TOPSIS). The TOPSIS method is a well-
known multi-attribute decision-making methodology based on the
assumption that the best decision alternative should be as close as
possible to the ideal solution and the farthest from the negative-
ideal solution. The proposed fuzzy TOPSIS approach allows the risk
factors O, S and D and their relative importance to be assessed using
triangular fuzzy numbers rather than precise crisp numbers.

Chang et al. [15] used fuzzy sets and gray systems theory for
FMEA, where fuzzy linguistic terms such as very low, low, moderate,
high and very high were used to evaluate the degrees of O, S and D,
and gray relational analysis was applied to determine the risk pri-
ority of potential causes. To carry out the gray relational analysis,
fuzzy linguistic assessment information was defuzzified as crisp val-
ues, the lowest level of the three factors O, S and D was defined as
a standard series, and the assessment information of the three fac-
tors for each potential cause was viewed as a comparative series,
whose gray relational coefficients and gray relational degree with the
standard series were computed in terms of the gray systems theory
[16]. Bigger gray relational degree means smaller effect of potential
cause. The increasing order of the gray relational degrees represents
the risk priority of the potential problems to be improved. In [9],
Chang et al. also utilized the gray system theory for FMEA, but the
gray relational degrees were computed using the traditional scores
1–10 for the three factors rather than fuzzy linguistic assessment
information.

Seyed-Hosseini et al. [17] proposed a method called decision
making trial and evaluation laboratory (DEMATEL) for reprioritiza-
tion of failure modes in FMEA, which prioritizes alternatives based
on severity of effect or influence and direct and indirect relation-
ships between them. Direct relationships were a set of connections
between alternatives with a set of connection weights represent-
ing severity of influence of one alternative on another. An indirect
relationship was defined as a relationship that could only move in
an indirect path between two alternatives and meant that a failure
mode could be the cause of other failure mode(s). Alternatives hav-
ing more effect on another were assumed to have higher priority
and called dispatcher. Those receiving more influence from another
were assumed to have lower priority and called receiver.

Bowles and Peláez [18] described a fuzzy logic-based approach for
prioritizing failures in a system FMECA, which uses linguistic terms
such as remote, low, moderate, high and very high to describe O, mi-
nor, low, moderate, high and very high for S, non-detection, very low,
low,moderate, high and very high for D and not-important,minor, low,
moderate, important and very important for the riskiness of failure.
The relationships between the riskiness and O, S, D were character-
ized by a fuzzy if–then rule base which was developed from expert
knowledge and expertise. Crisp ratings for O, S and D were fuzzi-
fied to match the premise of each possible if–then rule. All the rules
that have any truth in their premises were fired to contribute to the
fuzzy conclusion. The fuzzy conclusion was then defuzzified by the
weighted mean of maximum method (WMoM) as the ranking value
of the risk priority. Similar fuzzy inference method also appeared in
[6,8,11,19–25].

Fuzzy RPN approaches usually require a large number of rules and
it is a tedious task to obtain a full set of rules. The larger the number
of rules provided by the users, the better the prediction accuracy
of the fuzzy RPN model. Tay and Lim [24] argued that not all the
rules were actually required in fuzzy RPN models, eliminating some
of the rules did not necessarily lead to a significant change in the
model output, but some of the rules might be vitally important and
could not be ignored. They thus proposed a guided rules reduction
system (GRRS) to simplify the fuzzy logic-based FMEA methodology
by reducing the number of rules that need to be provided by FMEA
users for fuzzy RPN modeling process.

The above literature review shows that much effort has been paid
to the improvement of FMEA by incorporating factor weights, more
factors, expert knowledge and/or fuzziness into the analysis, but no
or little attention has been paid to the diversity and uncertainty of
assessment information. As is known, FMEA is a team function and
cannot be performed on an individual basis. In other words, FMEA
is a group decision behavior. Different FMEA team members may
demonstrate different opinions because of their different expertise
and backgrounds [26]. They may provide different assessment infor-
mation for the same risk factor, some of which may be complete or
incomplete, precise or imprecise, known or unknown and certain or
uncertain. This diversity and uncertainty of assessment information
is sometimes inherent, not easy to eliminate and in need of being
considered in FMEA. In this paper we propose a new risk priority
model for FMEA using the evidential reasoning (ER) approach. The
new model can not only model the diversity and uncertainty of the
assessment information in FMEA, but also incorporate the relative
importance of risk factors into the determination of risk priority of
failure modes in a strict way.

The paper is organized as follows. In Section 2, we develop
the risk priority model using the ER approach and incorporate
the relative importance weights of risk factors into the determi-
nation of risk priority of failure modes. In Section 3, we provide
a numerical example to illustrate the potential applications of
the new model in FMEA. Section 4 concludes the paper with a
summary.
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2. Risk priority model using the ER approach

The ER approach was developed for multiple attribute decision
analysis (MADA) and has found an increasing number of applications
in recent years [27–34]. In this section, we develop a risk priority
model for FMEA using the ER approach to model the diversity and
uncertainty of the assessment information in FMEA. The new model
allows FMEA teammembers to assess risk factors independently and
express their opinions individually. It also allows the risk factors to
be aggregated in a rigorous yet nonlinear rather than simple addition
or multiplication manner. The model is developed step-by-step as
follows.

2.1. Assessment of risk factors using belief structures

O, S and D are the three major risk factors identified in FMEA.
Although more risk factors could be included, the main concern of
this paper is not the identification of risk factors, but their assess-
ment and aggregation. The risk priority model to be developed in
this paper has no limitation on the number of risk factors and is ap-
plicable to any number of risk factors. The three risk factors can be
evaluated numerically or linguistically. Both of them have been ex-
tensively applied and have their merits and demerits. For example,
linguistic terms such as very low, low, moderate, high, and very high
allow FMEA team members to express their opinions in a fuzzy and
imprecise way, but the determination of membership functions of
the linguistic terms is highly subjective. In this paper, we choose the
traditional numerical ratings in Tables 1–3 [4] for the assessment
of risk factors, where O is rated according to the failure probability
which represents the relative number of failures anticipated during
the design life of an item, S is rated according to the seriousness of
the failure mode effect on the next higher assembly, the system or
the user and D is rated according to the designer's subjective judg-
ment of the likelihood that a failure will be found in subsequent tests.
Although linguistic terms can also be used for the model to be de-
veloped, the ER algorithm may be different, depending on whether
their membership functions intersect or not. If there is no intersec-
tion between them as in [28], then the ER algorithm will be the
same; otherwise, the fuzzy ER algorithm should be used in the next
subsection. The interested reader may refer to [32] for the fuzzy ER
algorithm.

As mentioned in the previous section, the numerical ratings in
Tables 1–3 were criticized because they were not easy to precisely
determine. Such a drawback can be overcome by the ER approach,
which allows FMEA team members to provide their subjective judg-
ments in the following flexible ways:

• A precise rating such as 4, which can be written as {(4, 100%)}.
Such an expression is referred to as a belief structure in the ER
approach.

• A distribution such as 4 to 40% and 5 to 60%, which means that
a failure mode is assessed with respect to the risk factor under
consideration to rating 4 to the degree of 40% and to rating 5 to
the degree of 60%. Here the degrees of 40% and 60% represent the
confidences (also called belief degrees) of the FMEA team member
in his/her subjective judgments and the distribution can be equiv-
alently expressed as {(4, 40%), (5, 60%)}. When all the confidences
are summed to one, the distribution is said to be complete; other-
wise, it is said to be incomplete. For example, {(4, 40%), (5, 50%)} is
an incomplete distribution or called incomplete assessment, where
the missing information of 10% is referred to as local ignorance
and could be assigned to any rating between 1 and 10 according
to the Dempster–Shafer theory of evidence [35].

• An interval such as 4–5, which means that the rating of a failure
mode with respect to the risk factor under evaluation is between
4 and 5. This can be written as {(4 − 5, 100%)}.

• No judgment, which means the FMEA team member is not willing
to or cannot provide an assessment for a failure mode with respect
to the risk factor under consideration. In other words, the rating
by this FMEA team member could be anywhere between 1 and
10 and can be expressed as {(1–10, 100%)}. Such judgments are
referred to as total ignorance.

Obviously, the belief structures in the ER approach provide FMEA
team members with an easy-to-use and very flexible way to express
their opinions and can better quantify risk factors than the tradi-
tional RPN methodology. All failure modes with respect to the three
risk factors can be evaluated using belief structures. In the next sub-
section, we will see how the belief structures of each failure mode
with respect to every risk factor provided by FMEA team members
individually can be synthesized into a group belief structure and how
the group belief structures of each failure mode with respect to the
three risk factors can be aggregated into an overall belief structure
using a recursive interval ER algorithm.

2.2. Group belief structures and their aggregations

Suppose there are K members (TM1, . . . , TMK ) in a FEMA team
responsible for the assessment of N failure modes (FM1, . . . , FMN)
with respect to L risk factors (RF1, . . . ,RFL). Each team member TMk
is given a weight !k >0 (k=1, . . . ,K) satisfying

∑K
k=1!k =1 to reflect

his/her relative importance in the FMEA team. Each risk factor RFl is
given a weight wl >0 (l= 1, . . . , L) satisfying

∑L
l=1wl = 1 to reflect its

relative importance in the determination of risk priorities of the N
failure modes. The two different sets of weights can be determined
by using direct rating [36,37], point allocation [36,37], eigenvector
method [38], linear programming techniques for multidimensional
analysis of preferences (LINMAP) [39], or Delphi method [40], etc.
together with the team members' domain knowledge. If there is
no sufficient reason or evidence to show the differences among the
FMEA teammembers in their judgment qualities, the teammembers
should be given an equal weight.

Let {(Hij,"
(k)
ij (FMn,RFl)), i = 1, . . . , 10; j = i, . . . , 10} be the belief

structure provided by TMk on the assessment of FMn with respect
to RFl, where Hii for i= 1–10 are the ratings defined for risk assess-
ment, Hij for i = 1–9 and j = i + 1 to 10 are the intervals between

Hii and Hjj, and "(k)
ij (FMn,RFl) are the belief degrees to which FMn is

assessed on RFl to the intervals Hij. All the ratings Hii for i = 1–10
and the intervals Hij for i = 1–9 and j = i + 1 to 10 together form a
frame of discernment, which is expressed as

H =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H11 H12 · · · H19 H110
H22 · · · H29 H210

...
...

...
H99 H910

H1010

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 1 − 2 · · · 1 − 9 1 − 10
2 · · · 2 − 9 2 − 10

...
...

...
9 9 − 10

10

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (2)

The collective assessment of the K team members for each failure
mode with respect to each risk factor is also a belief structure, called
group or collective belief structure, which is denoted as {(Hij,"ij), i=
1, . . . , 10; j = i, . . . , 10}, where "ij is referred to as group or collective
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belief degree and is determined by

!ij(FMn,RFl) =
K∑

k=1

"k!
(k)
ij (FMn,RFl),

i = 1, . . . , 10; j = i, . . . , 10;
n = 1, . . .N; l = 1, . . . , L. (3)

That is, a group belief degree is the weighted sum of the individual
belief degrees corresponding to the same rating or interval. Take the
belief structures in Table 6 for severity assessment of failure mode
1 for example. The five individual belief structures are, respectively,
as {(7, 20%), (8, 80%)}, {(8, 100%)}, {(8, 100%)}, {(6−7, 50%), (8−9, 50%)}
and {(8, 100%)}, where the ratings and intervals with a zero belief
degree are omitted from the belief structures for brevity. The rela-
tive importance weights of the five team members are known as 0.3,
0.3, 0.2, 0.1 and 0.1, respectively. By Eq. (3), the group belief struc-
ture from the five individual belief structures can be determined as
{(7, 6%), (8, 84%), (6 − 7, 5%), (8 − 9, 5%)}.

The group belief structures for the N failure modes with respect
to the L risk factors form a belief decision matrix, which differs
from the traditional decision matrix in that the former consists of
belief structures while the latter is made up of numerical values.
Based on the belief decision matrix, group belief structures on the
assessment of each failure mode with respect to the L risk factors
can be aggregated into an overall belief structure using a recursive
interval ER algorithm.

Different from the traditional RPN which is the simple product of
the three risk factors O, S and D, the recursive interval ER algorithm
aggregates risk factors in a systematic yet rigorous way, which is
neither their simple addition nor their simple multiplication, but a
highly nonlinear form of the risk factors. The interested reader may
refer to Yang and Xu [34] for the discussion on the nonlinearity of
the ER approach. The aggregation is based on the combination rule of
the Dempster–Shafer theory of evidence [35] and is detailed below.

Let {(Hij,!ij(FMn,RFl)), i = 1, . . . , 10; j = i, . . . , 10} and {(Hij,!ij(FMn,
RFp)), i = 1, . . . , 10; j = i, . . . , 10} be two group belief structures on the
assessment of the failure mode FMn with respect to the risk factors
RFl and RFp (1! l, p!L), respectively, and wl and wp be the relative
importance weights of the two risk factors. The recursive interval ER
algorithm first transforms the two group belief structures into basic
probability masses by considering the relative importance weights
of the two risk factors and using the following equations:

mij = wl!ij(FMn,RFl), i = 1, . . . , 10; j = i, . . . , 10, (4)

mH = 1 − wl, (5)

nij = wp!ij(FMn,RFp), i = 1, . . . , 10; j = i, . . . , 10, (6)

nH = 1 − wp. (7)

The above probability masses are viewed as two pieces of evidence
and combined to produce a set of combined probability masses:
cij (i = 1, . . . , 10; j = i, . . . , 10) and cH , which are computed using the
following equations [31]:

cij = 1
1 − C

⎡

⎣−mijnij +
i∑

k=1

10∑

l=j

(mklnij + mijnkl) +
i−1∑

k=1

10∑

l=j+1

(mkjnil + milnkj) + mHnij + mijnH

⎤

⎦ , (8)

cH = mHnH
1 − C

, (9)

C =
10∑

i=1

10∑

j=i

i−1∑

k=1

i−1∑

l=k

(mklnij + mijnkl), (10)

where the summation process
∑i2

i=i1
f (i) will not be carried out if

i1 > i2. That is,
∑i2

i=i1
f (i) = 0 for i1 > i2. The combined probability

masses are then aggregated further with the basic probability masses
transformed from the group belief structure on the assessment of
the failure mode FMn with respect to another risk factor. Such an
aggregation process is recursively carried out until the L group belief
structures on the assessment of the failure mode FMn are all aggre-
gated. The recursive interval ER algorithm is easy to implement on
a microsoft excel worksheet. In Appendix A, we provide Table 11 to
show how three pieces of evidence can be recursively combined on
a microsoft excel worksheet. If there are more pieces of evidence,
they can be recursively combined in the same way.

Let xij (i = 1, . . . , 10; j = i, . . . , 10) and xH be the final combined
probability masses. The overall assessment of the failuremode FMn is
an overall belief structure, denoted by {(Hij,#ij(FMn)), i=1, . . . , 10; j=
i, . . . , 10}, where #ij(FMn) represents the overall belief degree that the
failure mode FMn is assessed to the interval Hij and is determined
by the following equation:

#ij(FMn) =
xij

1 − xH
, i = 1, . . . , 10; j = i, . . . , 10. (11)

In the case that the relative importance weights of risk factors are de-
terministic, #ij(FMn) for i=1, . . . , 10; j=i, . . . , 10 are also deterministic.
If the weights themselves are uncertain, say intervals, then #ij(FMn)

are also intervals, denoted by [#Lij(FMn),#Uij (FMn)], where #Lij(FMn)

and #Uij (FMn) are determined by the following pair of models:

#Lij(FMn) = Minimize
xij

1 − xH
Subject to wL

l !wl!wU
l , l = 1, . . . , L,

L∑

l=1

wl = 1, (12)

#Uij (FMn) = Maximize
xij

1 − xH
Subject to wL

l !wl!wU
l , l = 1, . . . , L,

L∑

l=1

wl = 1. (13)

The overall assessments of the N failure modes can all be obtained
in this way. After performing the recursive interval ER algorithm for
the N failure modes, we get N overall belief structures, each for one
failure mode.

2.3. Expected risk score

The overall belief structure provides for each failure mode a
panoramic view which shows the ratings and intervals each failure
mode is assessed to and the belief degrees assessed to these rat-
ings and intervals. Such information is helpful for the FMEA team

to understand the overall risk of each failure mode. Failure modes
assessed to high ratings or intervals with high belief degrees are
obviously more risky than those assessed to low ratings or intervals
with high belief degrees. In a very small number of cases such as
a small number of failure modes, the risk priority of failure modes
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could be determined by observing and analyzing their overall belief
structures. However, in most cases, the risk priority of failure modes
cannot be easily determined by analyzing their overall belief struc-
tures. For ranking purpose, the overall belief structures need to be
converted into expected risk scores, which are defined as below:

ERS(FMn) =
10∑

i=1

10∑

j=i

!ij(FMn)Hij, n = 1, . . . ,N. (14)

In the case that there exists !ij(FMn)!0 for some j!i or the relative
importance weights of risk factors are intervals, the expected risk
score ERS(FMn) is an interval, denoted by [ERSL(FMn), ERSU(FMn)],
where ERSL(FMn) and ERSU(FMn) are determined by

ERSL(FMn) = Minimize
10∑

i=1

10∑

j=i

!ij(FMn)Hii

Subject to wL
l "wl"wU

l , l = 1, . . . , L,
L∑

l=1

wl = 1, (15)

ERSU(FMn) = Maximize
10∑

i=1

10∑

j=i

!ij(FMn)Hjj

Subject to wL
l "wl"wU

l , l = 1, . . . , L,
L∑

l=1

wl = 1, (16)

where !ij(FMn) are determined by Eq. (11). Accordingly, the average
expected risk score is defined as

ERS(FMn) = 1
2 (ERS

L(FMn) + ERSU(FMn)),

n = 1, . . . ,N. (17)

By solving the above pair of models for each failure mode, the ex-
pected risk scores of all the N failure modes can be generated. The
bigger the expected risk score, the higher the risk priority. The N
failure modes can be prioritized based on their expected risk scores
using a minimax regret ranking approach.

2.4. The minimax regret approach for ranking expected risk scores

The minimax regret approach (MRA) developed by Wang et al.
[41] is a method for comparing and ranking interval numbers and
is briefly summarized below for the sake of application. Let ui =
[uLi ,u

U
i ] = ⟨ci, di⟩ (i = 1, . . . ,N) be N intervals, where ci = 1

2 (u
L
i + uUi )

and di = 1
2 (u

U
i − uLi ) are their midpoints and widths. Without loss of

generality, suppose ui = [uLi ,u
U
i ] is chosen as the biggest interval. Let

v = maxj!i (uUj ). Obviously, if u
L
i < v, the decision maker (DM) may

regret due to the loss of opportunity that other interval numbers
might be ranked higher than ui. The maximum loss the DM may
suffer from is given by

Max(ri) = v − uLi = max
j!i

(uUj ) − uLi .

If uLi #v, the DM will definitely suffer from no loss of opportunity
and thus will not regret. In this situation, the DM's regret is defined
as zero, i.e. ri = 0. Combining the above two situations, we have

Max(ri) = max

[

max
j!i

(uUj ) − uLi , 0

]

.

The minimax regret criterion will choose the interval satisfying the
following condition as the best (most desirable) one:

Min
i

{max(ri)} = min
i

{

max

[

max
j!i

(uUj ) − uLi , 0

]}

.

Based on the above analysis, Wang et al. [41] gave the following
definition for comparing and ranking interval numbers.

Definition 1. Let ui = [uLi ,u
U
i ] = ⟨ci,di⟩ (i = 1, . . . ,N) be N intervals.

The maximum regret value (MRV) of each interval ui is defined as

R(ui) = max

[

max
j!i

(uUj ) − uLi , 0

]

= max

[

max
j!i

(cj + dj) − (ci − di), 0

]

,

i = 1, . . . ,N. (18)

The interval with the smallest MRV should be chosen as the best
interval. In order to generate a full ranking for the N intervals, the
following eliminating process was suggested by Wang et al.

Step 1. Calculate the MRVs of the N intervals and choose the in-
terval with the smallest MRV as the best one. Suppose ui1 is selected
for 1" i1"N.

Step 2. Eliminate ui1 from the further consideration and recalcu-
late the MRVs of the remaining (N−1) intervals, from which choose
the one with the smallest MRV as the second best interval. Suppose
ui2 is chosen for 1" i2"N, but i2!i1.

Step 3. Eliminate ui2 from the further consideration and recalcu-
late the MRVs of the remaining (N−2) intervals, from which choose
the one with the smallest MRV as the third best interval.

Step 4. Repeat the above elimination process until only one in-
terval uiN is left. The final ranking is given by ui1 >ui2 > · · · >uiN .

By means of the above MRA, the N expected risk scores can all
be ranked. The ranking will serve as the risk priority of the N failure
modes.

3. Application to a fishing vessel

In this section, we study an FMEA problem using the ER approach
in a group-based decision-making environment to show its potential
applications and benefits. This FMEA example is adapted from [11]
and is limited to only a few systems of an ocean going fishing vessel.
In other words, not all possible failure modes in a fishing vessel are
considered in this example.

The FMEA for the fishing vessel in question investigates four
different systems which are structure, propulsion, electrical, and
auxiliary systems. Each system is considered for different failure
modes that could lead to accidentswith undesired consequences. The
effects of each failure mode on the system and vessel are studied
along with the provisions that are in place or available to mitigate or
reduce risks. For each of the failure modes, the systems are investi-
gated for any alarms or condition monitoring arrangements, which
are in place. There are 21 failure modes in total which were identi-
fied by a FMEA team and are presented together with their effects
on the systems and vessel in Table 4.

Suppose the FMEA team is made up of five experts, each playing
a different role in the team and given a different weight. The weights
for the five members are assumed to be 0.3, 0.3, 0.2, 0.1 and 0.1, re-
spectively. Each team member evaluates the 21 failure modes with
respect to three major risk factors O, S and D using the traditional
ratings individually. Tables 5–7 present the assessment results of
the five team members on the 21 failure modes with respect to
the three major risk factors, where incomplete assessments and
ignorance information are shaded and highlighted. The relative
importance weights of the three risk factors are provided as inter-
vals, i.e. wO ∈ [0.2, 0.35], wS ∈ [0.4, 0.5] and wD ∈ [0.15, 0.25].
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Table 4
FMEA for a fishing vessel [11].

Item Description Component Failure mode Failure effect on system Failure effect on vessel Alarm Provision

1 Structure Rudder bearing Seizure Rudder jam No steering ctrl No Stop vessel
2 Structure Rudder bearing Breakage Rudder loose Reduced steering ctrl No Stop vessel
3 Structure Rudder structure Structural failure Function loss Reduced steering No Use beams
4 Propulsion Main engine Loss of output Loss of thrust Loss of speed Yes None
5 Propulsion Main engine Auto shutdown M/E stops Loss of speed Yes Anchor
6 Propulsion Shaft and propeller Shaft breakage Loss of thrust Loss of speed No Anchor
7 Propulsion Shaft and propeller Shaft seizure Loss of thrust Loss of speed Yes Anchor
8 Propulsion Shaft and propeller Gearbox seizure Loss of thrust Loss of speed Yes Anchor
9 Propulsion Shaft and propeller Hydraulic failure Cannot reduce thrust Cannot reduce speed No Anchor

10 Propulsion Shaft and propeller Prop. blade failure Loss of thrust Loss of speed No Slow steaming
11 Air services Air receiver No start air pressure Cannot start M/E No propulsion Yes Recharge receiver
12 Electrical system Power generation Generator fail No electric power Some system failures Yes Use stand by generators
13 Electrical system Main switch board Complete loss Loss of main supply No battery charging Yes Use emergency 24V
14 Electrical system Emergency S/B Complete loss Loss of emergency supply No emergency supply No Use normal supply
15 Electrical system Main batteries Loss of output Loss of main 24V Loss of main low volt Yes Use emergency 24V
16 Electrical system Emergency batteries Loss of output Loss of emergency supply No emergency supply No Use normal supply
17 Auxiliary system Fuel system Contamination M/E and generation stop Vessels stops Yes Anchor
18 Auxiliary system Fuel system No fuel to M/E M/E stops Vessel stops No Anchor
19 Auxiliary system Water system No cooling water Engine overheat M/E auto cut-out Yes Use stand-by pump
20 Auxiliary system Hydraulic System loss No hydraulics No steering Yes Stop vessel
21 Auxiliary system Lube oil system Loss of pressure Low pressure cut-off M/E stops Yes Use stand-by pump

Table 5
Occurrence assessment by FMEA team members.

Failure mode FMEA team member

1 2 3 4 5

1 1 1 1 1

2 1: 50%, 2: 50% 1 1 1 1

3 2 2: 90% 2 2 2

4 8 8 8: 80%, 9: 20% 8 8
5 6 6 6 6 6
6 2 2 2 2 2–3
7 2 2 2 2 2
8 1 1: 75% 2: 25% 1 1 1

9 3 3 3 3

10 1: 80% 2: 20% 1 1 1 1–2: 85% 3: 15%
11 4 4 4 3–4: 75% 5: 25% 4
12 9 9 9 9 9

13 8 8: 80% 8 8 8

14 3 3 4 3 3
15 3 3 3 3 3: 70% 4: 30%
16 1 1 1 1 1
17 3–5: 90% 6: 10% 4 4 4 4

18 2 2 2: 90% 2 2

19 7 7 7 7 7: 80%
20 9 9 9 7: 30% 8–9: 70% 9
21 9 8–9 9 9 9

Obviously, there is no existing FMEA method that can be used,
without making some kind of assumptions, to deal with the assess-
ment information in Tables 5–7, which is different from one team
member to another and also includes incomplete assessments and
ignorance. To carry out a priority analysis, we first use belief struc-
tures to express the FMEA team members' individual assessments
and synthesize them into group belief structures by using Eq. (3),
as presented in Table 8. The group belief structures are then ag-
gregated into overall belief structures using the recursive interval
ER algorithm described in Section 2. The results are presented in
Table 9, where the overall belief degrees, which are intervals, are
determined by models (12)–(13). The overall belief structures in
Table 9 are finally converted into expected risk scores by solving

models (15)–(16) for each failure mode. Table 10 presents the ex-
pected risk scores of the 21 failure modes, which are visualized
in Fig. 1, and their average expected risk scores are computed by
Eq. (17). The expected risk scores are ranked using the MRA. The
risk priority ranking of the 21 failure modes is presented in the last
column of Table 10.

From the overall belief structures in Table 9, it is observed that
the overall belief degrees are all intervals. This is because the relative
importance weights of the three risk factors are intervals and uncer-
tain. Such a type of uncertainty is referred to as interval uncertainty
[30,31]. Take the failure mode FM16 for example. The five FMEA team
members unanimously evaluate it to the ratings 1, 8, and 3 on O, S
and D three risk factors, respectively. The final overall assessment,
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Table 6
Severity assessment by FMEA team members.

Failure mode FMEA team member

1 2 3 4 5

1 7: 20%, 8: 80% 8 8 6–7: 50%, 8–9: 50% 8

2 8 8 8 8

3 7-9: 90% 8 6–8 8 8

4 8 8 8 8 7-9: 80%

5 8 7-9: 90% 8 8 8

6 8 8 8 6–8 8
7 9: 75%, 8: 25% 9 9 9 9
8 4 4 4 4: 50%, 5: 50% 3–5: 75%, 6–7: 25%
9 2 2 2 2 2

10 2 2 1–2: 60%, 3–4: 40% 2 2
11 2 2–3 2 2 2
12 3 3 3: 60%, 4: 40% 3 3
13 2–3: 80%, 3–4: 20% 3 3 3 3
14 7 8 7 7 7
15 3 3 3 3 3
16 8 8 8 8 8
17 8 4 8 8 8
18 7 7 7 7 7
19 2 1–2: 75%, 2–3: 25% 2 2 2

20 8 8 8 8

21 3 3 3 3 3

Table 7
Detectability assessment by FMEA team members.

Failure mode FMEA team member

1 2 3 4 5

1 3 3 3 3 3: 90%
2 3 3 3 3 3
3 4 4 4 4 3–4: 80%, 5–6: 20%
4 5 5 5 5 5
5 6 6 6: 85%, 7: 15% 6 6

6 1 1: 85%, 2: 15% 2 1

7 3 2 2 1–2: 75%, 3–4: 25% 2
8 3 3 3: 80%, 4: 20% 3 3
9 3 3 3–4: 60%, 5: 40% 3 3

10 4 4 4 4 4

11 3: 70%, 5: 30% 3 3 3

12 7 7 7 7 7
13 6 6 6 5–7 6
14 4 4 4 4 4

15 4 4: 95% 4 4 4

16 3 3 3 3 3
17 5 5 5 5 5
18 7 6–8 7 7 7

19 4 4 4 8-9: 90% 4

20 4: 60% 9 9 9 9

21 6 6 4–6 6 4: 25%, 5–7: 75%

however, is {(1, 20–35%), (3, 10.29–21.67%), (8, 43.33–60%)}, which
means that the overall belief degree of FM16 being assessed to rating
1 is between 20% and 35%, to rating 3 between 10.29% and 21.67%,

and to rating 8 between 43.33% and 60%, depending on what values
the three risk factor weights take within their intervals. Generally
speaking, as long as the original assessment information including
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Table 8
Group assessment of the FMEA team on the 21 failure modes with respect to the three major risk factors.

Failure Occurrence Severity Detectability
mode

1 {(1, 80%), (1–10, 20%)} {(7, 6%), (8, 84%), (6–7, 5%), (8–9, 5%)} {(3, 99%), (1–10, 1%)}
2 {(1, 85%), (2, 15%)} {(8, 90%), (7–9, 9%), (1–10, 1%)} {(3, 100%)}
3 {(2, 97%), (1–10, 3%)} {(6–8, 20%), (8, 50%), (1–10, 30%)} {(4, 90%), (3–4, 8%), (5–6, 2%)}
4 {(8, 96%), (9, 4%)} {(8, 90%), (7–9, 8%), (1–10, 2%}} {(5, 100%)}
5 {(6, 100%)} {(8, 70%), (7–9, 27%), (1–10, 3%)} {(6, 97%), (7, 3%)}
6 {(2, 90%), (2–3, 10%)} {(8, 90%), (6–8, 10%)} {(1, 65.5%), (2, 24.5%), (1–10, 10%)}
7 {(2, 100%)} {(8, 7.5%), (9, 92.9%)} {(2, 60%), (3, 30%), (1–2, 7.5%), (3–4, 2.5%)}
8 {(1, 92.5%), (2, 7.5%)} {(4, 85%), (5, 5%), (3–5, 7.5%), (6–7, 2.5%)} {(3, 96%), (4, 4%)}
9 {(3, 70%), (1–10, 30%)} {(2, 100%)} {(3, 80%), (5, 8%), (3–4, 12%)}

10 {(1, 84%), (2, 6%), (3, 1.5%), (1–2, 8.5%)} {(2, 80%), (1–2, 12%), (3–4, 8%)} {(4, 100%)}
11 {(3–4, 7.5%), (4, 90%), (5, 2.5%)} {(2, 70%), (2–3, 30%)} {(3, 81%), (5, 9%), (1–10, 10%)}
12 {(9, 100%)} {(3, 92%), (4, 8%)} {(7, 100%)}
13 {(8, 94%), (1–10, 6%)} {(3, 70%), (2–3, 24%), (3–4, 6%)} {(6, 90%), (5–7, 10%)}
14 {(3, 80%), (4, 20%)} {(7, 70%), (8, 30%)} {(4, 100%)}
15 {(3, 97%), (4, 3%)} {(3, 100%)} {(4, 98.5%), (1–10, 1.5%)}
16 {(1, 100%)} {(8, 100%)} {(3, 100%)}
17 {(4, 70%), (6, 3%), (3–5, 27%)} {(4, 30%), (8, 70%)} {(5, 100%)}
18 {(2, 98%), (1–10, 2%)} {(7, 100%)} {(7, 70%), (6–8, 30%)}
19 {(7, 98%), (1–10, 2%)} {(2, 70%), (1–2, 22.5%), (2–3, 7.5%)} {(4, 96%), (1–10, 4%)}
20 {(7, 3%), (9, 90%), (8–9, 7%)} {(8, 80%), (1–10, 20%)} {(9, 70%), (8–9, 27%), (1–10, 3%)}
21 {(9, 70%), (8–9, 30%)} {(3, 100%)} {(4, 2.5%), (6, 70%), (4–6, 20%), (5–7, 7.5%)}

Table 9
Overall assessment of the 21 failure modes.

Failure mode Overall belief structure for each failure mode

1 {(1, 15.2–26.19%), (3, 10.49–22.15%), (7, 2.69–3.65%), (8, 37.72–51.16%), (6–7, 2.25–3.05%), (8–9, 2.25–3.05%), (1–10, 3.99–6.75%)}
2 {(1, 17.1–29.84%), (2, 3.02–5.27%), (3, 10.35–21.73%), (8, 38.85–53.78%), (7–9, 3.89–5.38%), (1–10, 0.43–0.6%)}
3 {(2, 22.37–36.28%), (4, 10.79–21.17%), (6, 0.04–0.07%), (8, 19.6–26.87%), (3–4, 0.96–1.89%), (5–6, 0.24–0.47%), (6–8, 7.84–10.75%), (1–10, 12.7–16.71%)}
4 {(5, 8.04–17.88%), (8, 77.16–86.43%), (9, 0.74–1.22%), (7–9, 2.82–4.01%), (1–10, 0.71–1%)}
5 {(6, 43.73–60.89%), (7, 0.38–0.72%), (8, 26.89–38.88%), (7–9, 10.37–15%), (1–10, 1.15–1.67%)}
6 {(1, 6.55–13.46%), (2, 24.1–38.61%), (8, 38.21–53.5%), (2–3, 1.98–3.43%), (6–8, 4.25–5.94%), (1–10, 1–2.05%)}
7 {(2, 34.85–51.71%), (3, 2.97–6.02%), (8, 3.01–4.3%), (9, 37.26–53.22%), (1–2, 0.74–1.5%), (3–4, 0.25–0.5%)}
8 {(1, 18.11–31.87%), (2, 1.47–2.58%), (3, 10.5–21.5%), (4, 37.64–51.42%), (5, 2.13–2.94%), (3–5, 3.2–4.41%), (6–7, 1.07–1.47%)}
9 {(2, 42.65–59.17%), (3, 30.62–44.19%), (5, 0.83–1.71%), (3–4, 1.25–2.56%), (1–10, 5.34–8.9%)}

10 {(1, 17.7–29.77%), (2, 37.17–48.83%), (3, 0.3–0.52%), (4, 10.27–21.4%), (1–2, 7.89–9.23%), (3–4, 3.25–4.52%)}
11 {(2, 29.97–40.77%), (3, 10.54–20.17%), (4, 16.97–29.92%), (5, 1.62–2.65%), (2–3, 15.34–19.56%), (1–10, 0.96–1.99%)}
12 {(3, 39.87–55.2%), (4, 3.47–4.8%), (7, 10.29–21.67%), (9, 20–35%)}
13 {(3, 30.67–42.17%), (6, 9.35–19.72%), (8, 18.5–32.22%), (2–3, 10.52–14.46%), (3–4, 2.63–3.61%), (5–7, 1.04–2.19%), (1–10, 1.18–2.06%)}
14 {((3, 15.79–27.36%), (4, 17.48–30.29%), (7, 29.64–41.45%), (8, 12.7–17.76%)}
15 {(3, 81.32–91.29%), (4, 8.59–18.42%), (1–10, 0.12–0.26%)}
16 {(1, 20–35%), (3, 10.29–21.67%), (8, 43.33–60%)}
17 {(4, 35.14–43.94%), (5, 10.65–22.57%), (6, 0.56–0.96%), (8, 27.59–39.03%), (3–5, 5.02–8.6%)}
18 {(2, 16.24–29.75%), (7, 63.95–78.42%), (6–8, 2.81–5.7%), (1–10, 0.33–0.61%)}
19 {(2, 30.54–42.17%), (4, 9.85–20.66%), (7, 19.55–34.16%), (1–2, 9.82–13.55%), (2–3, 3.27–4.52%), (1–10, 1.03–1.55%)}
20 {(7, 0.6–0.96%), (8, 31.58–44.36%), (9, 37.76–52.23%), (8–9, 5.13–7.73%), (1–10, 7.5–10.44%)}
21 {(3, 39.63–56.18%), (4, 0.24–0.49%), (6, 6.89–13.73%), (9, 14.18–24.4%), (4–6, 1.96–3.92%), (5–7, 0.73–1.47%), (8–9, 11.05–15.76%), (1–10, 0.29–0.59%)}

Table 10
Expected risk scores and risk priority rankings of the 21 failure models.

Failure mode Expected risk score (ERS) Average ERS Risk priority ranking

Minimum Maximum

1 4.5144 5.9795 5.2470 10
2 4.4401 5.6816 5.0609 12
3 3.8215 6.0675 4.9445 15
4 7.3854 7.8229 7.6042 2
5 6.5909 7.3014 6.9462 3
6 4.3073 5.6143 4.9608 14
7 4.8387 6.0498 5.4443 9
8 2.7878 3.3429 3.0654 18
9 2.2616 3.2560 2.7588 20

10 1.8879 2.3227 2.1053 21
11 2.5819 3.1918 2.8869 19
12 5.0480 6.0013 5.5247 7
13 4.3393 5.4605 4.8999 13
14 5.1238 5.7961 5.4600 6
15 3.0835 3.2026 3.1431 17
16 4.4667 5.6000 5.0334 11
17 5.2625 5.8249 5.5437 5
18 5.4192 6.2478 5.8335 4
19 3.2105 4.2780 3.7443 16
20 7.6406 8.7400 8.1903 1
21 4.8481 6.0443 5.4462 8
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Fig. 1. Visualization of the expected risk scores of the 21 failure modes.

weight information contains uncertainty such as incomplete assess-
ment, interval and/or ignorance, the final overall assessment will be
uncertain.

As is clear from Table 10, failure mode 20 has the biggest min-
imum and maximum expected risk scores and is therefore given a
top risk priority, followed by failure modes 4, 5 and 18. On the con-
trary, failure mode 10 has the smallest minimum and maximum ex-
pected risk scores among the 21 failure modes and is thus ranked
at the bottom. The 21 failure modes are all completely ranked and
distinguished from each other and there is no tie between their risk
priority rankings. This is one of the benefits of the use of the ER
approach for FMEA.

It is also observed from Fig. 1 that failure mode 15 has the
smallest uncertainty and failure mode 3 has the biggest uncertainty
(i.e. the widest ERS interval). This is because failure mode 15 is
only assessed to two ratings 3 and 4 plus a very small amount of
ignorance (missing) information (0.12–0.26%), while failure mode 3
is assessed to multiple ratings 2, 4, 6 and 8 and multiple intervals
3–4, 5–6 and 6–8 plus a significant amount of ignorance infor-
mation (12.7–16.71%). Therefore, reducing uncertainty in original
assessment information can significantly reduce the uncertainty in
the final assessment results. This can help the FMEA team to build
a more stable risk priority ranking. In another word, in order to
build a stable risk priority ranking, FMEA team members should
do their best to make their judgments as accurately as possible.
For example, if FMEA team member 1 (TM1) can provide some
information rather than ignorance about the assessment of FM3
with respect to the severity of the failure, say, 6–8, then the ex-
pected risk score of FM3 will narrow down from [3.8215, 6.0675]
to [4.5931, 6.0634]. If TM1 provides a more precise judgment,
say, {(7, 30%), (8, 70%)}, then ERS(FM3) will be further improved to
[4.8140, 6.0095]. Instead of providing an interval 6–8, if TM3 can
also provide a precise assessment, say, {(6, 10%), (7, 90%)}, then
ERS(FM3) will become [4.8918, 5.8772]. If the uncertainty involved
in the relative importance weights of the three risk factors can be
reduced as well, say, from wO ∈ [0.2, 0.35], wS ∈ [0.4, 0.5] and wD ∈
[0.15, 0.25] to wO ∈ [0.25, 0.35], wS ∈ [0.4, 0.45] and wD ∈ [0.2, 0.25],
then ERS(FM3) will be further improved to [4.8918, 5.4529]. When
the factor weights can be precisely determined, say, wO = 0.35,
wS = 0.4 and wD = 0.25,ERS(FM3) will become [4.8918, 5.0071],
which is much narrower and more precise than the original
interval [3.8215, 6.0675].

In the above analysis, it is assumed that the five FMEA team
members do their evaluations separately and their results are then
tabulated and synthesized with their relative importance weights.
This is, however, not the only way for the five members to do their

assessments. They can also do their evaluations together in a room.
The proposed FMEA approach has no special requirements on how
the FMEA teammembers do their evaluations, separately or together.
When doing their assessments together in a room, the FMEA team
members may try to reach a consensus on every evaluation to be
conducted. If they can reach a consensus on all the evaluations, the
FMEA team will be viewed as a whole and there will be no need to
assign any weight to any member of the team. The team's opinions
in this situation are directly modeled as group belief structures. If the
FMEA team members cannot reach a consensus on the evaluations
they conduct, then the teammembers' individual opinions should be
weighted and synthesized into group belief structures just as they
do their evaluations separately. Obviously, no matter how the FMEA
team members do their assessments, the proposed FMEA approach
is always applicable. This is one of the advantages of the use of the
proposed FMEA.

It may be argued that when the FMEA team members do their
assessment together in a room, individual belief structures (opin-
ions) may be biased due to the pressure of the group or group
thinking. In particular, an inexperienced engineer may not be ex-
pected to contribute as much as that by an experienced one and
a young engineer could be further influenced away from his/her
original opinions. This phenomenon does happen in some methods
such as majority rule which requires the minority to be subordi-
nate to the majority. The proposed FMEA approach, however, has
no such a phenomenon and does not follow the majority rule. The
FMEA team members can express their opinions independently and
freely.

4. Conclusions

Considering the fact that FMEA is a group decision function and
cannot be done on an individual basis and different FMEA team
members may provide different assessment information, we pro-
posed in this paper an FMEA using the group-based ER approach,
which can capture FMEA team members' diversity opinions and pri-
oritize failure modes under different types of uncertainties such as
incomplete assessment, ignorance and intervals. The core of the pro-
posed FMEA was the development of the risk priority model using
the group-based ER approach, which includes assessing risk factors
using belief structures, synthesizing individual belief structures into
group belief structures and aggregating the group belief structures
into overall belief structures, converting the overall belief structures
into expected risk scores and ranking the expected risk scores us-
ing the MRA. The proposed FMEA was examined with an illustrative
application to a fishing vessel and proved to be useful and practical.
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Table 11
Recursive combination of three pieces of evidence.

m ⊕ n Evidence: m

H11 . . . H1N H22 . . . H2N . . . HNN H

m11 . . . m1N m22 . . . m2N . . . mNN mH

Evidence: n H11 n11

11 11

11{ }

n m

H
. . .

11 1

11{ }
Nn m

H n11m22

{!} . . . n11m2N

{!} . . . n11mNN

{!}

11

11{ }
Hn m

H

...
...

... . . .
...

... . . .
... . . .

...
...

H1N n1N

1 11

11{ }
Nn m

H
. . .

n1Nm1N

{H1N} n1Nm22

{H22}
. . .

n1Nm2N

{H2N} . . .
n1NmNN

{HNN}
n1NmH

{H1N}

H22 n22
n22m11

{!} . . . n22m1N

{H22}
n22m22

{H22}
. . . n22m2N

{H22}
. . . n22mNN

{!}
n22mH

{H11}
...

...
... . . .

...
... . . .

... . . .
...

...

H2N n2N
n2Nm11

{!} . . . n2Nm1N

{H2N}
n2Nm22

{H22}
. . . n2Nm2N

{H2N} . . . n2NmNN

{HNN}
n2NmH

{H2N}
...

...
... . . .

...
... . . .

... . . .
...

...

HNN nNN
nNNm11

{!} . . . nNNm1N

{HNN}
nNNm22

{!} . . . nNNm2N

{HNN} . . . nNNmNN

{HNN}
nNNmH

{HNN}

H nH

11

11{ }
Hn m

H
. . . nHm1N

{H1N}
nHm22

{H22}
. . . nHm2N

{H2N} . . . nHmNN

{HNN}
nHmNN

{H}

Nonnormalized probability masses Sum for {H11} . . . Sum for {H1N} Sum for {H22} . . . Sum for {H2N} . . . Sum for {HNN} nHmNN {H}

Normalized probability masses c11 . . . c1N c22 . . . c2N . . . cNN cH

Evidence: s H11 s11
s11c11
{H11}

. . . s11c1N
{H11}

s11c22
{!} . . . s11c2N

{!} . . . s11cNN
{!}

s11cH
{H11}

...
...

... . . .
...

... . . .
... . . .

...
...

H1N s1N
s1Nc11
{H11}

. . . s1Nc1N
{H1N}

s1Nc22
{H22}

. . . s1Nc2N
{H2N} . . . s1NcNN

{HNN}
s1NcH
{H1N}

H22 s22
s22c11
{!} . . . s22c1N

{H22}
s22c22
{H22}

. . . s22c2N
{H22}

. . . s22cNN
{!}

s22cH
{H22}

...
...

... . . .
...

... . . .
... . . .

...
...

H2N s2N
s2Nc11
{!} . . . s2Nc1N

{H2N}
s2Nc22
{H22}

. . . s2Nc2N
{H2N} . . . s2NcNN

{HNN}
s2NcH
{H2N}

...
...

... . . .
...

... . . .
... . . .

...
...

HNN sNN
sNNc11
{!} . . . sNNc1N

{HNN}
sNNc22
{!} . . . sNNc2N

{HNN} . . . sNNcNN
{HNN}

sNNcH
{HNN}

H sH
sHc11
{H11}

. . . sHc1N
{H1N}

sHc22
{H22}

. . . sHc2N
{H2N} . . . sHcNN

{HNN}
sHcNN
{H}

Nonnormalized probability masses Sum for {H11} . . . Sum for {H1N} Sum for {H22} . . . Sum for {H2N} . . . Sum for {HNN} nHmNN{H}

Normalized probability masses x11 . . . x1N x22 . . . x2N . . . xNN xH

Aggregated belief degrees "ij
x11
1−xH

x1N
1−xH

x22
1−xH

x2N
1−xH

xNN
1−xH

–

Note: N is the number of ratings, ! is the empty/null set and the sum for {Hij} represents the sum of all the probability masses assigned to the rating/interval Hij , seeing
{H11} for example, whose probability masses are highlighted and shaded.

In comparison with the traditional RPN and its variants, the pro-
posed FMEA has the following advantages:

• The relative importance weights of risk factors are considered. They
can not only be deterministic but also uncertain such as intervals
or preference order.

• Risk factors are aggregated in a highly nonlinear manner which
is neither the simple addition nor the simple product of the risk
factors.

• The diversity and uncertainty of FMEA team members' assessment
information can be well reflected and modeled using belief struc-
tures.

• Failure modes can be fully ranked and well distinguished from each
other unless some of them are assessed to be the same.

• Expected risk score is a continuous number from 1 to 10 without
any holes, which is either a crisp number or an interval.

• More risk factors can be included if necessary. The proposed FMEA
is not limited to O, S and D, but applicable to any number of risk
factors.

• There is no need to build any rule bases which are highly subjective.
Different experts may make distinct judgments, leading to different
rules.
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Appendix A. Recursive combination manner of multiple pieces of
evidence

For the convenience of the readers to understand and implement
the interval ER algorithm, we provide Table 11 to show how three
pieces of evidence can be combined on a microsoft excel worksheet
in a recursive way. If there are more pieces of evidence to be com-
bined, they can be recursively combined in the same way.
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