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ABSTRACT
The connection between optimization methods and statistics dates back at least to the early part
of the 19th century and encompasses many aspects of applied and theoretical statistics,
including hypothesis testing, parameter estimation, model selection, design of experiments, and
process control. This paper is an overview of some of the more frequently encountered
optimization problems in statistics, with a focus on quality control and improvement. Descriptions
of a variety of optimization procedures are given, including direct search methods, mathematical
programming algorithms such as the generalized reduced gradient method, and heuristic
approaches such as simulated annealing and genetic algorithms. We hope both to stimulate
more interaction between the statistics and optimization methodology communities and to create
more awareness of the important role that optimization methods play in quality control and
improvement.

Key Words: Control Charts, Design of Experiments, Design Optimality, Optimization, Process
Control, Search Methods.

INTRODUCTION
MANY problems in statistical quality control and improvement involve the application of
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optimization methodology. Both the problem types and the variety of optimization methodology
employed are diverse. Often the context of the problem involves building a model of a system,
and then using optimization techniques to determine values for the system parameters that
result in the best measures of system effectiveness. Some examples include determining design
parameters for a control chart, selecting the appropriate target for a production process where
the feasible region for the quality characteristic is constrained by specification limits, and finding
the settings for process variables such that one or several quality characteristics are optimized.
As an example of the last type of problem, suppose that one is interested in determining the
settings for the process variable's reaction time, temperature, and initiator feed rate that
maximize the yield of a polymer material while simultaneously keeping the number average
molecular weight and the viscosity in ranges that make the product acceptable to the customer.

While the above examples are relatively modern illustrations of the interface between
optimization methods and statistics, the connection has been a long and extensive one, as
illustrated by the use of least squares and linear regression. The method of least squares, which
dates from the early part of the 19th century, involves finding the parameter values in an
observational model that minimize the sum of the squared differences between the predicted
and observed values. This is an unconstrained optimization problem that is easily solved by
calculus methods because the model expectation function is a linear function of the unknown
parameters. As in many optimization problems, the difficulty arises not in solving the problem
itself but in selecting a model that accurately represents the "real" relationship expressed in the
data. Most statisticians are familiar with the problems encountered with over-specified models; if
a high-degree polynomial is fit to a handful of data points, predictions based on both interpolation
and extrapolation often become unreliable. Indeed, selecting the "best" subset of variables for a
linear regression model from a set of candidate regressors is a challenging optimization problem.
Furnival and Wilson (1974), in a landmark paper, solved this problem by employing a branch-
and-bound approach, a technique widely used in the operations research field. We will give a
description of branch-and-bound techniques in a subsequent section.

In general, parameter estimation is often a nice example of the optimization-statistics
interface. We discuss this particular problem in the next section because it is an excellent way to
introduce the interface of optimization and statistics in a framework that is familiar to a wide
audience. In the remaining sections of this paper we give an overview of optimization problems
and techniques in process monitoring and control and process characterization and
improvement using statistically designed experiments. We also provide a selection of both
current and foundational references that we feel represent, but do not exhaust, the existing
literature.

The purpose of this paper is to overview many interesting problems that are at the interface of
quality improvement and optimization. We do not attempt to be encyclopedic in our coverage,
and we realize that many other topics could have been included in this survey. Instead, we have
chosen to focus on the problems that are of personal interest and relevant to our professional
experience. We hope that this paper encourages discussions of this interface; we are interested
in learning more, and we are sure that there are many more interesting topics that we have
excluded. One obvious (and deliberate) omission is any coverage of classical mathematical
programming techniques in statistics. We feel that, at the level of discussion in this paper, the
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book by Arthanari and Dodge (1981) does a very good job of introducing these problems and
their formulation to the reader. We also provide descriptive presentations of several of the more
useful optimization techniques and give pointers to the relevant literature. Our primary objective
is to encourage more interaction between the engineering, statistics, computer science, and
operations research communities.

OPTIMIZATION AND PARAMETER ESTIMATION

Parameter estimation by the method of maximum likelihood is another elementary example of
the connection between optimization methodology and statistics. Recall that if X is a random
variable with probability density f(x; theta), where theta is a vector of the parameters of the
distribution, and if X[sub1], X[sub2], ..., X[subn] is a random sample of size n, then the likelihood
function of the sample is

L(theta) = f(x[sub1];theta) « f(x[sub2];theta) ... f(x[subn];theta).

The maximum likelihood estimator of theta is the value of theta that maximizes L(theta).
Generally, calculus methods are employed to find the maximum likelihood estimator, and for
many of the standard distributions this produces acceptable results. However, maximum
likelihood estimation in regression and analysis of variance models often leads to complicated
optimization problems. For example, in nonlinear regression and time-series applications, the
likelihood function may exhibit local as well as global maxima and the solutions obtained may
depend critically on the initial estimates selected for the parameters and, to some extent, on the
method used. When maximum likelihood estimation is applied to estimation of variance
components in random and mixed models, computing methods have to deal with very sparse
matrices of high dimension, nonlinear functions, local and global optima, and the possibility of
obtaining negative estimates of some of the variance components. A good reference on the
computational and optimization aspects of variance component estimation is Searle, Casella,
and McCulloch (1992).

PROCESS MONITORING AND CONTROL

Many of the best known connections between statistical quality control and optimization are in
the general area of control charts for process monitoring and control. The design of such control
charts is an example. To use a control chart, the practitioner must select the sample size, the
interval of time between samples, and the control limits. Some charts, such as the exponentially
weighted moving average (EWMA) chart, require the determination of additional parameters.
Designing control charts to satisfy statistical criteria or performance criteria, such as specified
average run lengths, is an optimization problem in the hypothesis testing framework. Early work
in this area was done by Weiler (1952). Also, economic design criteria have been considered by
many authors starting with Duncan (1956). Review papers by Montgomery (1980), Svoboda
(1991), and Ho and Case (1994), the panel discussion contribution by Keats et al. (1997), and
the book by Al-Sultan and Rahim (1997) describe much of the key work in this area.

CONTROL CHARTS WITH OPTIMAL ECONOMIC PERFORMANCE

The general approach followed by those working in this field is to make formal use of the fact
that operating a process-monitoring scheme has economic consequences. That is, there are
costs associated with operating the monitoring procedure, costs associated with investigating
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out-of-control signals and potentially correcting process upsets, as well as costs associated with
units reaching the customer that either do not conform to requirements or exhibit excessive
variability. A formal mathematical model is used to connect these costs to the design parameters
of the control chart and other system parameters. It is customary to assume that there is a single
out-of-control state and that the time between occurrences of the assignable cause is an
exponential random variable. The usual form of the objective function, E(A), is

E(A) = E(C)/E(T), (1)

where T is the length of the cycle (i.e., the length of time the process operates in the in-control
state plus the operating period in the out-of-control state until the assignable cause is removed),
C is the total cost incurred over a cycle, and E is the expectation operator.

Several authors have studied the objective function in Equation (1) and noted that in many
practical situations it is locally convex (in a reasonable region of the parameter space). The first
partial derivatives of E(A) with respect to the control chart parameters are typically nonlinear
functions and do not have simple direct solutions. Optimization procedures have been developed
based on solving numerical approximations to the system of first partial derivatives. However,
the usual approach is to employ a direct search procedure.

Direct search methods encompass many approaches to optimization that avoid calculating
derivatives. They are usually treated as an alternative to finite-differencing methods, which many
believe to be inappropriate for real optimization due to problems with numerical stability. The
simplest direct search procedures behave in much the same way as finite differencing, with the
main difference being a much larger step size in direct search methods. The intent is to define a
"neighborhood" of a given point by searching, perhaps along the coordinate directions, in the
hope of finding a direction of significant improvement. For a thorough review of direct search
methods, see Powell (1998).

The most popular direct search method is probably the simplex algorithm of Nelder and Mead
(1965). In this method, a set of n+1 current solutions and their function values (for a problem in n
dimensions) is maintained and updated so as to drop the point with the worst value and add a
point in what is hopefully an improving direction. (The name of the algorithm comes from the fact
that the convex hull of (n + 1) points in n dimensional space, if they are not in a degenerate
configuration, is known as a simplex.) The specific ways in which this is accomplished are
numerically complicated, but, basically, the algorithm takes advantage of the local structure of
the response surface. It stretches, shrinks, and otherwise manipulates the solution simplex to
move quickly when improvements are easy and to be careful when necessary so as to avoid
missing a local optimum.

Another approach is the use of grid-based methods. In this approach, a discrete lattice is
overlaid on the feasible region; the current solution is then one of the lattice points, and search
directions may cycle through the coordinate directions until no improvement can be found. The
pattern search method of Hooke and Jeeves (1961) is an extension to this idea whereby the
algorithm generates search directions that are not necessarily in the coordinate directions, but
are instead based on the last step taken and the improvement achieved along the coordinate
directions. The Hooke and Jeeves method may shrink or stretch the current step length as
appropriate. Many contemporary optimization texts discuss this method, but for an extremely
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clear exposition, with classic illustrations, see the text by Wilde and Beightler (1967). One step of
the Hooke and Jeeves method is illustrated in Figure 1.

Most direct search methods do not guarantee convergence to a global optimum; as in most
optimization approaches, local optimality is the best that can be guaranteed. Some, however,
such as the refining grid-based methods for bounded domains (again, see Powell (1998)), can
make this promise, although at the expense of enormous computational effort. Another
drawback is that they are only appropriate for very simple constraints of the form

a[subi] [less or equal] x[subi] [less or equal] b[subi], (2)

for each of the decision variables, x[subi].

As an illustration of search methods in designing control charts, Montgomery (1982) gives a
procedure that sequentially steps through a range of values of the sample size n, simultaneously
both utilizing a one-dimensional search on the width of the control limits and solving a numerical
approximation to the derivative of the objective function with respect to the interval between
samples. This results in a very effective search. He applies the algorithm to the X control chart.
Many other authors have developed optimization procedures for other types of control charts
using a similar approach.

Woodall (1986 and 1987) observed that economically-optimal control chart designs often have
poor statistical performance; for example, they may exhibit short in-control average run lengths
and thus be susceptible to excessive false alarms. Saniga (1989) proposed dealing with this
problem by imposing statistical constraints on the economic solution, leading to what is often
called economic-statistical design or statistically-constrained economic design approaches. The
constraints are typically on average run length and/or average time to signal and take the form of
inequalities such as Equation (2). Saniga (1989) originally applied this approach to the X and R
control charts. McWilliams (1994) provides a FORTRAN program for this procedure.
Subsequently, Saniga, Davis, and McWilliams (1995) considered statistically constrained
economic design of attribute control charts and Montgomery et al. (1995) used this approach for
the EWMA control chart.

Generally, the addition of constraints to an optimization problem results in a degraded
solution, with respect to the optimal objective function value, in comparison to the optimal
solution to the unconstrained problem. On the other hand, constraints may be an integral part of
the problem. For example, in the economic control chart design problem, constraints ensure
adequate statistical performance for the chart, regardless of the economics. This is desirable,
since the actual cost parameters are difficult to estimate. Furthermore, many studies have
shown that adding statistical performance constraints to an economic model usually results in
only a modest increase in system costs.

With the increasing availability of computer software to implement these procedures and the
industrial focus on cost reduction, it is perhaps surprising that there has been little industrial use
of economic models to design control charts. Possibly many practitioners feel that using a
complex optimization procedure to design a relatively simple process monitoring scheme is not
worthwhile, or they may be intimidated by the number of cost and other system parameters that
must be estimated in order to use these models. One possible solution to the cost estimation
issue was suggested by Del Castillo, Mackin, and Montgomery (1996), who proposed a multiple
criteria optimal design procedure for control charts. They utilized an interactive, multi-criteria,
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nonlinear optimization algorithm, along with a model for which the user does not have to specify
the costs of either false alarms or out-of-control performance. Only sampling costs, which are
usually easier to estimate, need be specified. Some authors have suggested that because there
has been little industrial use of economic models, research in the area should be abandoned.
However, Woodall and Montgomery (1999) observe that these authors may have been
premature in reaching such a conclusion. For example, much of the theoretical work on
alphabetic design optimality in the 1950's has not been extensively used by practitioners until the
last 10 years when computer codes that implement the D-criterion (for example) became widely
available as features in experimental design software. Furthermore, this was one of the first
areas in quality control and applied statistics that attracted the attention of industrial engineers
and operations research analysts, and it served to initiate much useful interaction between these
disciplines.

CONTROL CHARTS WITH OPTIMAL STATISTICAL PERFORMANCE

The traditional design for an X control chart is subgroups of 3 to 5 objects with 3-sigma control
limits. Shewhart (1931) recommended this design; therefore, it can probably be considered a
standard for an X chart. These guidelines, along with the critical rational subgrouping principle,
have provided an implicit design strategy, at least for Shewhart charts, for decades. However,
one might choose to modify one or more of the standard design parameters--subgroup size,
control limits, and frequency of sampling--in a specific application. With Shewhart control charts,
the concept of statistical errors can be used to assist in the design in a manner nearly identical to
hypothesis testing. One trades false alarms against the sensitivity to process upsets. Instead of
statistical errors, many prefer to express performance in terms of the run length.

The run length is the number of points plotted until a signal, and the preeminent summary of
the run length distribution is the average run length (ARL). A large ARL is desired when no
assignable causes are present; a short ARL is desired otherwise. Several authors have
commented on the extreme skewness of the run length distribution and the poor summary
provided by ARL. Still, ARL is probably the most widely used design criterion.

Weiler (1952) provided an early analysis of control chart performance. He determined the
subgroup size that minimizes the average amount of inspection required to detect a change in
the process mean for Shewhart X charts. Page (1954) determined the subgroup size and
control limits to minimize the average run length of items inspected. However, these analyses
did not explicitly consider the frequency of samples. For example, if measurements are recorded
every minute, the three-sigma limits might generate false alarms every few hours. The rational
subgrouping principle provides guidelines, but often more than one design is still feasible. Keats,
Miskulin, and Runger (1995) explicitly considered three design parameters: subgroup size,
control limits, and frequency of sampling in the optimization of average production length (APL).
APL is the mean number of units produced before a signal from the chart. In the common case
of a constant production rate, APL is approximately proportional to the average time to signal
(ATS) of a control chart. However, ATS typically assumes that a subgroup is formed
instantaneously. Keats, Miskulin, and Runger (1995) provided a simple design strategy for non-
economic models that were optimized by straightforward numerical methods.

Outside of Shewhart control charts, the lack of the simple geometric distribution for run length

6/41



2/3/2016

http://web.b.ebscohost.com/ehost/detail/detail ?vid=44&sid=05910b65-f78e-4a0d-8fc1- 7fd99c3e514a%40sessionmgr115&hid=105&bdata=JnNpdGU9ZWhvc3...

Optimization Problems and Methods in Quality Control and Improvement: EBSCOhost

has forced a focus on metrics such as the ARL. Both cumulative sum (CUSUM) and EWMA
control charts are often designed for ARL performance. The analysis uses either an approximate
solution to an exact integral equation or an exact solution to an approximate Markov chain
model. Champ and Rigdon (1991) discussed the relationship between the two methods.
Hawkins and Olwell (1997) provided recommendations for CUSUM designs. Prabhu, Runger,
and Montgomery (1997) considered the relationship between subgroup sizes and sampling
intervals to optimize the time to signal of a CUSUM control chart.

Interesting optimization problems arise from charts designed so that the interval between
samples or the sample size is changed during the operation of the chart. These adaptive charts
can be designed to achieve a particular objective, and ATS is a convenient metric. Reynolds et
al. (1988) and Runger and Pignatiello (1991) considered X charts and many publications
extended these results to alternate charts and adaptive strategies. Prabhu, Runger, and
Montgomery (1995) provided a design tool. A particularly difficult problem is the optimal adaptive
strategy for the important steady-state performance of these charts. Runger and Montgomery
(1993) used the Karush-Kuhn-Tucker (KKT) conditions for nonlinear optimization in the context
of a discretized version of an X chart to obtain the globally optimal adaptive-sampling rule. Work
continues on the optimal rules for other charts.

PROCESS OPTIMIZATION AND DESIGNED EXPERIMENTS

The most obvious connection between designed experiments and optimization is in the area
of response surface methodology (RSM). Introduced by Box and Wilson (1951), RSM is a
collection of statistical design techniques, empirical model-building procedures, and optimization
methods that are intended for use by engineers, statisticians, scientists, and other process
specialists in attaining optimal operating conditions for processes. Recent papers by Box and Liu
(1999), Box (1999), Myers (1999), and the discussion of those papers highlight many important
aspects of the RSM field.

Much of RSM, particularly in the early years, was focused on finding operating conditions for
the process variables that resulted in @ maximum or minimum response. The canonical analysis
of a second-order response surface, in which the model is transformed via a translation and
rotation of the original coordinate axes to a form that facilitates interpretation of the fitted surface
as either a maximum, a minimum, a saddle point, or some type of ridge system, is equivalent to
determining whether the Hessian matrix is positive-definite, negative-definite, or indefinite. Ridge
analysis, introduced by Hoerl (1964), is used to find a point of either maximum or minimum
response on a saddle system with spherical region constraints. The three texts on RSM by Box
and Draper (1987), Khuri and Cornell (1996), and Myers and Montgomery (1995) discuss these
and other optimization techniques.

In the early 1980's renewed interest in statistically designed experiments was catalyzed by the
robust parameter design problem and by novel design and analysis methods proposed by
Genichi Taguchi to solve this problem. In robust parameter design, as viewed by Taguchi, the
experimenter is trying to design a system (a product or a process) to minimize variability
transmitted to the response by variables that are uncontrollable once the system is deployed in
the field. Taguchi referred to these uncontrollable variables as noise variables and assumed that
they were at least controllable for purposes of an experiment. The usual formulations of the
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robust parameter design problem involve maximizing or minimizing the mean of a response
while simultaneously minimizing variability, or driving the mean to a specific target while
minimizing variability around the target. Taguchi was really advocating optimization; however,
the statistical methods he proposed were inefficient from an experimental design viewpoint, and
in many cases they will miss significant information about interactions, which could lead to
suboptimal solutions. He also utilized a pick-the-winner approach to optimization that was not
based on any system model (empirical or mechanistic). This approach selects one of the original
design points (or a non-design corner point in the region) as the optimum and, therefore, does
not assure the experimenter that even a local optimum has been achieved. Much of the criticism
and debate regarding Taguchi's methods is summarized in Myers and Montgomery (1995, Ch.
10) and in Montgomery (1997, Ch. 14).

Formal recognition of the robust design problem as an optimization problem is due to Vining
and Myers (1990), who expressed the problem as maximization or minimization of an objective
function subject to a single equality constraint. They assumed both the objective function and the
constraint to be complete second-order response surface models, and they employed the dual
response optimization algorithm of Myers and Carter (1973) to solve the problem. This algorithm
is similar in many respects to ridge analysis, which seeks the maximum or minimum point on a
quadratic function subject to the solution lying inside the spherical design region and utilizes a
single Lagrange multiplier in solving the optimization problem. Myers and Carter (1973)
optimized a quadratic function subject to both a quadratic equality constraint (for instance, a
surface of constant variance) and the spherical design region constraint. There have been
several other formulations and methods proposed for the dual response problem; for example,
see Del Castillo and Montgomery (1993), Lin and Tu (1995), and Vining (1998). Dual responses
are a special case of multiple responses, an area in which there is a significant interplay
between optimization and statistics.

THE MULTIPLE RESPONSE PROBLEM

Many designed experiments involve more than one response. For example, in determining
optimum conditions for yield in a chemical process, we may simultaneously be interested in
conditions that bring physical or chemical properties of the material, such as molecular weight,
viscosity, or concentration, to levels that satisfy customer requirements. In some industrial
settings, such as semiconductor manufacturing, 12 to 15 response variables are not unusual.
The robust parameter design problem discussed above is a special case of this problem where
there are two responses, the mean and variance of a fundamental response observed during
the experiment.

The objective of many designed experiments is response optimization. When there are
several responses, this problem is often called the multiple response optimization problem or the
simultaneous optimization problem. Historically, in the response surface context, we have solved
this problem by first modeling each response individually and graphically superimposing the
contour plots from each model. This overlay is then examined to find the appropriate set of
operating conditions for the process. Since it is unlikely that a single set of operating conditions
produces the optimum for all responses simultaneously, one usually searches for a set of
conditions that comes as close as possible to satisfying all response requirements. This set of
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conditions is often referred to as the "sweet spot" for the process. For an early example of this
approach, see Lind, Goldin, and Hickman (1960).

Figure 2 illustrates this approach using an example from Montgomery (1997). In this example,
there are two process variables: x[sub1] = reaction time and x[sub2] = temperature and three
responses: y[sub1] = yield, y[sub2] = viscosity, and y[sub3] = molecular weight. The objective is
to maximize yield, while simultaneously keeping viscosity and molecular weight in the ranges
specified by the customer; namely, y[sub2] = 65+/-3, and y[sub3] < 3400. Figure 2 plots the
predicted yield contour 78.5 (this was considered the lowest acceptable vyield), predicted
viscosity contours 62 and 68, and the predicted molecular weight contour 3400. Clearly, there
are several sets of potential operating conditions for time and temperature that will achieve these
objectives.

In practice, the graphical approach is limited to two or perhaps three dimensions. Therefore,
there is considerable interest in more general approaches. One of these is to formulate the
multiple response problem as a constrained optimization problem. In general, suppose that we
have m responses and that for each we have a response surface model *y[subi] = f[subi](x). We
select one response as the primary response (or the objective function) and solve

max(min)*y[sub1] = f[sub1](x)

subject to (3)

I[subi] [less or equal] *y[subi] = f[subi](x) [less or equal] u[subi], i=2, 3, ... m
X [element of] R,

where we have chosen the first response as the objective function and I[subi] and u[subi] are
lower and upper bounds on the remaining responses, i = 2, 3, ..., m. The last constraint in
Equation (3) is a "region" constraint that ensures that the solution vector, x[subs], is inside the
experimental region, R. For cuboidal designs, this constraint usually takes the form -1 [less or
equal] x[subi] [less or equal] 1, i =1, 2, ..., k (the number of design variables), while for spherical
designs the constraint would be x'x [less or equal] r[sup2], where r is the design radius. At least
one commercially-available experimental design software package, Design-Expert, will allow the
user to formulate the multiple response optimization problem in this manner, although the region
constraint is required to be cuboidal. It should be noted that in the special case where the f[subi]
are convex functions and there are no lower bounds on the constraint functions, the result is a
convex optimization problem (minimizing a convex function over a convex feasible region), which
is a well-solved problem with several efficient methods. For a thorough treatment of convex
optimization, see, for example, Nesterov and Nemirovskii (1994) and the many references
contained therein. The majority of instances do not satisfy these conditions for convexity, either
because one or more of the f[subi] are saddle systems and, hence, indefinite, or because there
are finite lower bounds. Even so, in some cases the models can be altered slightly (for instance,
in the case of a near-ridge saddle) to a convex optimization problem with little impact on the
quality of the optimal solution.

There are two broad classes of methods that can be used to solve this problem: direct search
methods and mathematical optimization algorithms. The direct search methods usually
employed are the pattern search method of Hooke and Jeeves (1961) or the sequential simplex
(see Nelder and Mead (1965) or Copeland and Nelson (1996) for a modern presentation in the
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context of multiple responses). Most commercially available experimental design software that
handles multiple response optimization uses one of these two techniques.

As noted previously, direct search methods are essentially hill-climbing methods. That is, they
start from an initial solution and move in the local gradient direction, or an appropriate
approximation to it. An obvious disadvantage of this approach is that multiple optima are often
present (see, e.g., Figure 2), and there is no guarantee that one will find the absolute or global
optimum solution. In fact, we are usually interested in finding all of the optimum solutions
because some solutions may be more desirable than others based on practical considerations
not taken into account in the mathematical formulation. For example, one of the operating
windows in Figure 2 is larger than the other, implying more robust operating conditions for the
process. This potential problem can be alleviated somewhat by selecting several starting points
and applying the search algorithm from each starting point. Since the volume of the search
region increases dramatically with an increase in the number of design variables, the analyst
must select enough starting points to ensure that all (or nearly all) of the optimal solutions are
found.

Various mathematical optimization algorithms can also be applied to this problem. The
generalized reduced gradient (GRG) method (see Lasdon, Fox, and Ratner (1974) and Del
Castillo and Montgomery (1993)) is a very popular choice because the method is broadly
applicable to many types of mathematical programming problems and because it is widely
available in commercial software. The popular spreadsheet package EXCEL employs a version
of the GRG, and so it is possible to solve multiple response optimization problems without
additional specialized optimization or statistical software. Since the GRG makes explicit use of
derivatives, it is considerably more efficient than direct-search methods and may be less likely to
be confused by numerous local optima. GRG methods are nice because they can find locally
optimal solutions to problems with nonlinear equality constraints, which normally cause problems
for other standard approaches. The basic idea is that the gradient (in the case of maximization)
is taken to be a desirable search direction. It is projected onto the tangent space of the active
constraints (equalities and tight inequalities) to give the reduced gradient. The algorithm then
takes a predictor step in this direction (usually moving off of the active constraints) and employs
a Newton's (or similar) method to the infeasibilities incurred to correct the step and return to the
set of active constraints. The GRG is thus a member of the large class of methods known as
predictor-corrector methods. Figure 3 illustrates the predictor-corrector approach.

There are, of course, many possible variations of the optimization problem formulated in
Equation (3). Del Castillo (1996) presents a formulation of the multiple response optimization
problem that allows one to obtain solutions that simultaneously satisfy confidence region
constraints for all responses. His methodology is applicable to both linear and quadratic models,
but assumes that a rotatable design has been used.

A third general approach to multiple response optimization is to attempt to simultaneously
optimize all m responses. An obvious possibility is to form some function combining the
responses, such as

Ay = [Graphic Character Omitted] a[subi]*y[subi], (4)
where a[subi] are the weights, and optimize the composite response *y. In practice, choosing
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the weights appropriately is usually difficult, and so this approach is not widely used unless there
is some unequivocal way to select the weights (e.g., see Montgomery, Talavage, and Mullins
(1972)) or unless the weights can be selected dynamically via some interactive multiple
response optimization procedure. Montgomery and Bettencourt (1977) illustrate the use of the
Geoffrion-Dyer interactive vector-maximal algorithm (see Geoffrion, Dyer, and Feinberg (1972)
and Dyer (1973)) for a response surface system involving five responses.

In general implementations, the weights are chosen based on the relative importance of the
various responses, usually obtained through the advice of experts on the process in question.
The use of weights to form a composite objective function reduces a multiple-response problem
to a simpler, single response problem. It also obviously "loses" some information in the
conversion, as one single value of the composite response can correspond to many possible
levels of the individual responses. Therefore, when there are multiple responses to be optimized,
this method is not expected to provide a robust solution or to even help trace the efficient frontier
of solutions.

The most popular approach to simultaneous response optimization is the desirability function
approach, as proposed by Derringer and Suich (1980). In this approach, each response is
converted into an individual desirability function, say, d[subi] = h(*y[subi]), where d[subi] = O if
the response is in an unacceptable range, d[subi] = 1 if the response is at the optimum value,
and 0 < d[subi] < 1 otherwise. When the response, y[subi], should be at a target value, T, such
that L [less or equal] T [less or equal] U, Derringer and Suich use the function

[Formula Omitted]

to convert the response to a desirability. In Equation (5), the exponents s and t are used to
determine the shape of the desirability function, thereby controlling how important it is that the
response achieve the target in the final optimal solution. Often these exponents are chosen in
the range from 0.01 to 10. Similar conversions are made for responses that should be either
maximized or minimized. Then the solution, x[subs], is found that maximizes the geometric mean
of the individual response desirabilities,

D = ([Graphic Character Omitted] d[subi])[sup1/m].

Direct search methods are used to find the optimum solution because the individual
desirability functions are not differentiable. Note that this version of the multiple response
problem is still susceptible to the multiple-optima phenomena noted when discussing the
mathematical programming formulation. Because direct search methods could easily terminate
at a local optimum, when using these methods it is essential to start from several different points
in the factor space to ensure that all or at least a reasonable number of the optima have been
found. This approach to multiple response optimization has been implemented in several
experimental design software packages. For example, see Design-Expert.

Del Castillo, Montgomery, and McCarville (1996) show how to replace the non-differentiable
desirability functions of Derringer and Suich with differentiable equivalents that are fourth-order
polynomials. The coefficients in these polynomials are treated as tuning constants and set so
that they will closely mimic the shape of the original, non-differentiable desirability functions.
Then mathematical programming optimization algorithms such as the GRG can be used to
optimize the overall desirability function. This allows experimenters to use efficient optimization
tools (including spreadsheets) to solve a variety of formulations of the multiple response
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optimization problem.

Problems with highly nonlinear, or multimodal, objective functions are extremely difficult to
solve and are further complicated by the presence of multiple objectives. A standard approach in
this situation is to use a heuristic search procedure. There are several families of methods that
have been proposed for finding global optima for such problems, two of which are simulated
annealing and genetic algorithms. Neither is guaranteed to find the global optimum, but they
have been designed to use different means of avoiding getting stuck at local optima.

Simulated annealing, although properly described as a Monte-Carlo simulation procedure,
(see Metropolis et al. (1953)) is a local search procedure; it maintains a current solution to the
problem and defines a neighborhood of "nearby" solutions. Instead of considering all neighbors
and only moving to a new solution that improves the objective, a simulated annealing algorithm
picks a random neighbor and then has a positive probability of moving to a slightly worse
solution. (The algorithm always accepts a neighbor that improves the objective.) This probability
is decreasing in the magnitude of the change, and as the algorithm progresses, the probability
function is continually lowered for each value (in a process called "cooling") until, in the last
stages of the algorithm, only improving changes are made.

Numerical examples give mixed results. Simulated annealing is designed to wander around
the feasible region a lot at first, crossing over "hills" in the objective surface in a search for a
significantly lower area. As the cooling proceeds, though, it becomes more and more
constrained and can become confined to a local "valley." The rate at which the cooling takes
place, called the cooling schedule, should therefore be designed with the structure of the
response surface in mind. The best results usually require a bit of tuning of the cooling schedule,
and for robust implementations, simulated annealing is often coupled with a random starting
point and re-started several times. For a more detailed account of the simulated annealing
approach, see Bohachevsky, Johnson, and Stein (1986). Haines (1987) applies this approach to
the problem of constructing optimal experimental designs.

Genetic algorithms (see Holland (1974)), in contrast to the one-solution-at-a-time approach of
most optimization algorithms, maintain a population of hundreds, or thousands, of solutions.
They then use the evolutionary concepts of reproduction, mutation, and selection to create
successive generations of these solutions in the hope that the population will tend to produce
very strong members and, thus, near-optimal solutions.

This is accomplished by encoding each solution as a string of characters, or digits, called a
chromosome. This encoding is done in such a way as to allow for a "crossover" operation
between two randomly chosen solutions in the current population to produce another solution
that combines aspects of each of the originals. For example, in a problem with 10 factors at two
levels apiece, the chromosome might be a 10-digit binary string, where the i[supth] digit
represents a low or a high level of the i[supth] factor (see Figure 4). Then, given two sets of
factor levels, a third solution (and a fourth--as is sometimes done) could be formed by swapping
out the first k values of one string for the first k values of the other. This still gives a "feasible"
setting of the 10 factors, and the hope is that if the first few factors were set the right way in one
and the last few factors were set right in the other, then the new offspring will have most (or all)
of its factors set right. Of course, if they aren't, a poor solution won't join the next generation
after an objective-based selection procedure is applied. Genetic algorithms also apply "cloning"
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methods to ensure that particularly strong solutions survive and "mutation" methods to fiddle with
random elements of random solutions to ensure that the entire feasible region eventually gets
considered.

The main strength of genetic algorithms is that the objective function doesn't have to have any
structure at all. The only structure required is in the encoding of solutions into chromosomes to
assist in the definition of the crossover operation. One potential drawback is that chromosomes
must be encoded such that every possible chromosome is feasible for the original problem since
genetic algorithms do not consider constraints directly. One popular work-around for this
shortcoming is to introduce a penalty function for violated constraints, thus shifting all of the work
into the objective function. Genetic algorithms also require tuning, much like simulated annealing.
The mutation rate, the selection and cloning procedures, the population size, and the number of
generations to evaluate (or the convergence criterion to employ) all affect the performance of
genetic algorithms.

In the multi-objective case, genetic algorithms are especially appealing because of the ease
with which multiple populations can be maintained (one for each objective, perhaps, plus one
population for an aggregate objective, such as a desirability function). Then the main algorithm
can be designed to look for solutions that are strong with respect to all of the responses present,
possibly combining strong solutions from the separate populations in an attempt to produce such
solutions. For a small sample of applications involving these approaches, see Horng (1998);
Schaffer (1994); Murata, Ishibuchi, and Tanaka (1996); and Cieniawski, Eheart, and Ranjithan
(1995).

All of the multiple response optimization techniques we have discussed assume that the
responses are independent or uncorrelated. In some situations, this assumption is inappropriate
and a method that takes the dependence among responses into account would be appropriate.
Khuri and Conlon (1981) and Khuri and Cornell (1996) present an approach in which a
generalized distance measure is employed to indicate the weighted distance of each response
from its individual optimum value. The variances and covariances of the responses are used in
determining the weights. Then the solution is found that minimizes the generalized distance. This
is a very nice approach that does not seem to have been utilized extensively in practice probably
because it is not available in standard experimental design or general statistical software.

OPTIMAL DESIGNS
By the phrase "optimal" design we usually mean a design that is best with respect to some
specific criterion. To fix ideas, suppose that we are interested in fitting the model

y = Xbeta + epsilon, (6)

where y is an n x 1 vector of observations, X is an n x p matrix of the design factor settings
and (depending on the order of the model) functions of those settings, beta is a p x 1 vector of
unknown parameters, and epsilon is an n x 1 vector of errors usually assumed to be normally
and independently distributed with mean zero and common variance sigma[sup2]. The variances
and covariances of the least squares estimates of the parameters beta are the elements of
sigma[sup2] (X'X)[sup-1]. Furthermore, the joint confidence region for beta is

(MBegin Greek}b - b)' ({End Greek}X'X) ({Begin Greek}b - b) {End Greek}[less or equal]
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psigma[sup2] F[subalpha,p,n-p]. (7)

Much of optimal design theory and practice is focused on selecting the settings of the factors
that make the elements of (X'X)[sup-1] in some sense small. The fundamental mathematical
work in this area was started by Kiefer (1958) and followed up in subsequent papers (Kiefer
(1959, 1961, and 1962)). See also Kiefer and Wolfowitz (1960). A very useful recent reference
is Pukelsheim (1995), which summarizes many of the results and points out connections
between the various optimality criteria.

Because the squared lengths of the principal axes of the confidence ellipsoid in Equation (7)
are proportional to the eigenvalues lambda[sub1], lambda[sub2], ..., lambda[subp] of the matrix
(X'X)[sup-1], one very popular approach to optimal design involves minimizing these
eigenvalues. Specifically, the criterion is to choose a design such that maximizes

[X'X]| = [Graphic Character Omitted] lambda[sup-1[sub[subi]. (8)

A design that maximizes this criterion is called a D-optimal design. Other design optimality
criterion can be expressed in terms of the eigenvalues of (X'X)[sup-1]. For example, consider:

tr(X'X)[sup-1] = [Graphic Character Omitted] lambda[subi]

lambda[submax] = max(lambda[sub1], lambda[sub2], ..., lambda[subp]).

Designs that minimize the trace of (X'X)[sup-1] or that minimize the largest eigenvalue of
(X'X)[sup-1] are called A- and E-optimal designs, respectively. The D-, A-, and E-criteria
minimize the volume of the joint confidence region for the regression coefficients (Equation (7)),
the sum of the variances of the regression coefficients, and the maximum variance of a
regression coefficient, respectively. A very important criterion, particularly for response surface
designs, is to find a design that minimizes

G = max [x[sup(m)'] (X'X)[sup-1]x([sup(m)]] for x [element of] R,

where x[sup(m)] is a point of interest in the experimental region R expanded to model form.
This is the G-optimal criterion; essentially, it seeks a design that minimizes the maximum
prediction variance over the experimental region.

These alphabetic design optimality criteria were originally developed as criteria for situations
where the designs are considered a continuous probability measure over the region of interest.
These continuous designs are, of course, not realizable but they could be approximated by
designs consisting of a discrete arrangement of points with an integer number of trials at each
design point.

The D-optimal criterion is probably the most familiar to practitioners and the most widely used
in practice, at least in part because it has been implemented in many computer software
packages. The usual approach is to have the experimenter define a set of N candidate design
points for the model that is to be fit. This candidate set is often a grid of points over either a
cuboidal or spherical region. Then an optimization algorithm is employed to select the subset of
n < N that maximize the determinant of (X'X). Two general types of algorithms are used.

Exchange algorithms are widely used to generate designs that are nearly D-optimal. These
algorithms operate by selecting a set of n points as an initial design and then exchanging points
in the design with unused candidate points in an effort to increase the determinant of (X'X).
There are various types of exchange algorithms, such as the rank-1 augmentation schemes that
choose points to add and remove sequentially (see Wynn (1972) and Mitchell (1974)) and the
rank-2 exchange algorithms that choose points to add and remove simultaneously (see Cook
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and Nachtsheim (1980) and Johnson and Nachtsheim (1983)). In the k-exchange algorithm of
Johnson and Nachtsheim (1983), all one-point-at-a-time exchanges are considered. Then once
all these one-point-at-a-time exchanges are completed, two-point-at-a-time exchanges are
evaluated. If any two-point exchange is made, all the one-point-at-a-time exchanges are once
again evaluated. When all of the two-point exchanges are completed, three-point exchanges are
considered. In general, this process continues until all k-point exchanges have been considered.
If at any level an exchange is successful, then the process always begins again with one-point-
at-a-time exchanges. Many computer codes use k = 5. Li and Wu (1997) report on using
exchange algorithms with several different values of k and point out that k = 5 is a good
compromise between design efficiency and computing time. Meyer and Nachtsheim (1995)
describe a variation of this procedure called the cyclic coordinate exchange algorithm in which
individual coordinates of the design points and the candidate points are exchanged.

Often the initial design is chosen at random from the candidate set. In other cases it may be
selected according to some other design criterion, such as the distance-based criterion. Since
there is no assurance that the final design created by the algorithm is actually a D-optimal
design, some computer codes solve the problem several times using different initial designs and
select the final design with the largest determinant of (X'X) as the D-optimal design.

Lin and Kernighan (1971) develop an exchange procedure in the context of the Traveling
Salesman Problem (TSP), another combinatorial optimization problem of the same complexity
as the optimal design problem. It has a bigger neighborhood than the set of simple pairwise (or
2-opt) swaps, but is less computationally intensive than the higher order swapping methods (k-
opt). It implements a backtracking algorithm on a sequence of 2-opt swaps at each iteration,
resulting in exchanges of different magnitudes at every step. The Lin-Kernighan procedure is
one of the most competitive algorithms for the TSP, but as far as we are aware it has not been
implemented in the context of optimal designs.

As in the optimal design algorithms, the concept of multiple runs with different starting points
can be extremely helpful. Since the local optimum in which a k-opt algorithm eventually gets
stuck is completely determined by the starting point, picking several random (or well spread out)
starting points offers the hope of avoiding those that are significantly worse than the global
optimum. This problem often arises when greedy heuristics are used to construct the initial
solution (such as a nearest-neighbor algorithm for the TSP).

The other approach to constructing alphabetically optimal designs is to use a branch and
bound algorithm (see Welch (1982)). Generally, a branch and bound algorithm is a divide and
conquer approach to combinatorial optimization problems. The two main components of branch
and bound algorithms are 1) a way of defining a relaxation of the original problem that is easy to
solve optimally and 2) a way of partitioning the relaxation into two (or more) subproblems. The
general approach is to solve the original relaxation (in many cases this is a relaxation of an
integrality restriction or of a set of "nasty" constraints) to get an upper bound on the value of the
optimal (maximal) solution. If the solution to the relaxation is feasible for the original problem,
then we have found the optimal solution (since its value must be greater than or equal to any
feasible value). Otherwise, the branch and bound algorithm develops two alternative
subproblems (which cover all possible feasible solutions) and models each as a relaxed
subproblem. These subproblems are then solved, each one providing an upper bound for the
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respective region. If any subproblem has a feasible solution and it is better than the current best
solution (if any have been seen), then it becomes the new incumbent (best solution found).
When all subproblems have been fathomed, the current incumbent must be the optimum
because we've ruled out (either explicitly or implicitly) all other possibilities.

This approach obviously leads to an explosion in the number of subproblems. Efforts to
mitigate this growth center on the concept of bounding. If a feasible solution is found in a
subproblem, then obviously no branching needs to occur in that particular subproblem. The real
trick comes in realizing that this feasible solution can impact other subproblems, too. This is
because any feasible solution to the original problem automatically places a lower bound on the
optimal solution value. If any subproblem relaxation has a value below this lower bound, then
that subproblem cannot contain the optimum and therefore no further branching is necessary.
Finally, any infeasible subproblem requires no branching. These three methods of halting the
branching process are known as fathoming. The order in which subproblems are evaluated can
have a large impact on the processing time. Frequently, shifting from a breadth-first search of
the subproblem tree to a depth-first, or guided heuristic search, can reduce the total computation
time by several orders of magnitude. Finally, the bounding step can be modified by fathoming if
the upper bound is within an acceptable margin of the lower bound, say, 5%. When all the
subproblems have been fathomed, the remaining feasible solution (if any) will be guaranteed to
be within 5% of optimal. This "fudge factor" can also have a drastic effect on the run-time of
general branch and bound algorithms.

While alphabetically-optimal designs are useful in certain situations, they have been subjected
to a wide variety of criticisms. They are very sensitive to the assumptions made by the
experimenter, particularly with regard to the form of the model that is to be fit, and the number of
observations that are to be taken. For instance, a design that is D-optimal for a particular model
might not support another very similar model (e.g., see Myers and Montgomery (1995, Example
8.11)). There has been some work devoted to making optimal designs less model-dependent.
For example, Cook and Nachtscheim (1982) have investigated strategies for constructing
optimal designs for a family of models. Another technique for reducing the model dependence is
the Bayesian D-optimal approach. In this procedure the experimenter assumes that a model of
order d[sub1] is of primary interest, but wishes to protect against the possibility that the true
system is best described by a model of order d[sub2], where d[sub2] > d[sub1]. Prior
probabilities are assigned to the additional terms in the higher-order model and a design that is
D-optimal with respect to the posterior covariance matrix of the model parameters is found.
Good references for this procedure are Chaloner (1984), Pilz (1991), and DuMouchel and Jones
(1994). Bayesian D-optimal designs for mixture experiments are discussed in Andere-Rendon,
Montgomery, and Rollier (1997). Probably the best uses of alphabetically-optimal designs are in
irregular design regions (such as found in mixture experiments) or where there are unusually
restrictive blocking requirements in the experiment.

Another area in which there has been a useful connection between experimental design and
optimization methodology is construction of supersaturated designs. These designs were
introduced by Booth and Cox (1962) and employ n observations to investigate k factors, where k
> n - 1. Since even in the relatively simple case of two-level factors a supersaturated design
cannot be orthogonal, the experimenter would like to find a design that is as "close" to
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orthogonal as possible. Booth and Cox (1962) used a computer search procedure to generate
their designs. Lin (1993) renewed interest in both the theory and application of these designs,
presenting a method of design construction based on half-fractions of Hadamard matrices. Lin
(1995) and Li and Wu (1997) describe other algorithms for constructing supersaturated designs.
Their methods are similar to the local search algorithms employed in other related combinatorial
optimization problems.

MULTIVARIATE ANALYSIS

Optimization is widely used in multivariate statistical analysis. In particular, the likelihood
principle and maximum likelihood estimates are common approaches that provide benchmarks
for alternate multivariate methods. Because the likelihood methods are similar to those used in
univariate statistical analyses, we prefer to mention some alternative uses of optimization.

An interesting optimization problem results from modern methods to detect multivariate
outliers. Outliers are much nastier in high-dimensional data because graphical detection is more
difficult. Consequently, numerical methods that are not sensitive to the outliers--but, instead,
detect the outliers are valuable. Rousseeuw (1985) proposed the minimum volume ellipse
(MVE) as a high-breakdown estimate for the mean vector and covariance matrix of a
multivariate dataset. The MVE is the smallest ellipsoid covering just over half of the data. The
robust estimates of the mean and covariance matrix come from classical calculation of these
quantities only using the subset of observations that are contained in the MVE. Although simply
described, the numerical methods to determine the MVE are not trivial. The original algorithm
used random resampling to find the subset of observations with the smallest volume of the
ellipsoid covering them.

Hawkins (1993) improved the algorithm using steepest descent with random restarts rather
than the random sampling method. Woodruff and Rocke (1993) proposed a heuristic search
optimization procedure. Currently, the software S-plus 4.5 uses genetic algorithms.

Unfortunately, the MVE is inefficient with asymptotic efficiency of zero (Davies (1992)). The
implementation in S-Plus goes an additional step and adds all remaining observations apart from
the MVE back in for the final estimate of the mean and covariance matrix if their Mahalanobis
distances (calculated with the MVE estimates) are less than a cutoff value from the chi-squared
distribution. This significantly increases the efficiency of the estimates.

An alternative estimator is the Minimum Covariance Determinant (MCD) that was also
introduced by Rousseeuw (1985). The MCD searches for the sample of size q < n that has the
minimum value among all samples evaluated by the determinant of its covariance matrix. The
estimator is most often a 50% breakdown estimator so q is set to the integer part of (n+p+1)/2.
The algorithm has evolved from random resampling much like the MVE. The improvements
proposed by Hawkins (1994), Woodruff and Rocke (1994) and the genetic algorithms parallel
those of the MVE. Butler, Davies, and Jhun (1993) proved that the MCD has much better
statistical properties--notably, efficiency--than the MVE. Several other authors recommended the
MCD over the MVE (Simpson and Chang (1997)) simulations in Rocke and Woodruff (1996)).
However, Rocke and Woodruff (1997) did not recommend either as a stand-alone procedure
because of the computational complexity in high dimensions. It is not known how the genetic
algorithms perform as stand-alone procedures.
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An operations research approach to classification provides some interesting optimization
problems. Fisher's linear discriminant function and the quadratic discriminant extension are well-
known statistical methods for classification (Mardia, Kent, and Bibby (1979)). The problem
scenario is to assign each case to one of several classes based on vectors with continuous
variables. A training sample of cases that consist of the vectors and the known class
membership is used to develop the assignment rule. It is not well known among the statistical
community that multiple programming methods for these same problems have been considered
for some time (Freed and Glover (1981)). In fact, there is an extensive literature for both linear
and quadratic methods, with a good summary of references provided by Silva and Stam (1994).

For example, consider a classification into one of two classes based on a two-dimensional
vector of independent variables. The problem is illustrated in Figure 5. One multiple
programming formulation seeks the line that minimizes the sum of the absolute deviations of the
incorrectly classified points. This is the sum of the line segments shown in Figure 5. Alternative
formulations seek to minimize the maximum deviation, to minimize the number of incorrectly
classified points, and to minimize the deviations for incorrectly classified points as well as
maximize the deviations for correctly classified points. These formulations provide reasonable
objectives for classification algorithms that extend the traditional statistical objectives. They can
typically be solved by a standard linear programming package.

CONCLUDING REMARKS

We have provided a broad overview of optimization problems arising in statistics and quality
control with a goal of stimulating more interaction between researchers in these two
communities. We hope that this survey helps present some of the frontiers of optimization
techniques in statistics. There are possibilities for methodological breakthroughs in areas as
diverse as optimal experimental design, economic process monitoring and control, and response
surface optimization, to name just a few. New techniques for multi-objective optimization,
effective heuristics for combinatorial optimization, and cutting-edge interior point methods for
nonlinear programming, seem to offer as many research opportunities as there are combinations
of ideas and techniques from the two areas.
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FIGURE 1. One Step in Hooke and Jeeves' Direct Search Method. Dotted Vector Indicates
Previous Step, Dashed Vector Indicates Extension of Previous Step, White Circles Indicate
Points Considered, and Solid Vector Indicates Resulting (Best) Step.
FIGURE 2. Design Expert Plot of Non-Convex Region Determined by Three Response
Constraints.
FIGURE 3. Predictor-Corrector Step on an Equality Constraint (bold curve) with Objective
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Contours Shown. Dashed Arrow Indicates True Gradient.

FIGURE 4. lllustration of a Crossover Operation Using Two Binary Chromosomes. The
Offspring is Formed from the Head of the First Parent and the Tail of the Second.

FIGURE 5. An lllustration of Classification by Discriminant Function Chosen to Minimize the
Sum of the Distances from Incorrectly Classified Points. Two Predictor Variables and Two
Classes are Shown.
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DISCUSSION

ERWIN M. SANIGA

University of Delaware, Newark, DE 19716

CARLYLE, Montgomery, and Runger's (CMR) coverage of optimization problems and
methods in the field of quality provides a good overview of most of the primary problems and
solution methods explored in the literature to this point.

In this discussion, | briefly address three issues related to their paper: 1. finding a solution to
the control chart design problem, 2. finding a solution to optimization problems in quality in
general, and 3. building models for practical use.

Control chart design is a problem addressed in the literature for more than thirty years (see,
e.g., Keats et al. (1997) and related discussion by Box et al. (1997)). In this problem, the
objective is to determine the parameters of a control chart such that cost is minimized or profit is
maximized according to an economic model, desired average run length (ARL) or average time
to signal (ATS) are achieved, or both are achieved simultaneously. These problems are called
economic design, statistical design, and economic statistical design, respectively.

Characteristics of this problem include nonlinear cost or profit functions and nonlinear
constraints with functions that sometimes do not exist in closed form. An example of the latter is
the sampling distribution of the sample range in an R chart. Since sample size is an integer and
sampling frequency is a real number (while the width of the control limit can be expressed as
either depending upon the type of chart) the economic and economic-statistical design problem
is a mixed-integer nonlinear programming problem. The statistical design problem is one where
one wishes to find a feasible solution to a set of nonlinear constraints. The resulting constraint
satisfaction problem can also be solved using mixed-integer nlp methods.

As hard as it sounds, it really is not too difficult to find very good locally optimal solutions to
any of the problems above. Couple that with the fact that since real time solutions are not an
issue there has been very little work along the lines of exploring alternate solution
methodologies. In our own work we have effectively used such methods as two-stage grid
search (Saniga (1977, 1979) and Saniga and Montgomery (1981)), generalized reduced
gradient methods (Saniga (1989) and Collani, Saniga, and Weigand (1994)) and enumeration
(Saniga (1991) and Saniga, Davis, and McWilliams (1995)). The considerable experimentation
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we have done in those papers point to the fact that all of the optimization techniques we have
used seem to work very well and it is hard to make a point that one method is preferred to
another.

Such is not the case with some of the combinatorial optimization problems, such as some
mathematical programming applications to discrimination and classification discussed by Stam
(1997) and optimal design, two problems mentioned by CMR. Problems of a specific
combinatorial nature sometimes require solution methods built upon a knowledge of the
particular problem structure. Combinatorial optimization problems can be an ugly beast and one
needs to take advantage of all knowledge when solving them. This requires one to keep abreast
of the literature and the new solution breakthroughs as they occur. And while one can argue that
these problems are not generally of a real-time nature, it is also true that time is a problem when
solutions to even moderate sized problems cannot be found.

Most of the problems CMR mention that cannot be solved analytically or are not of a
combinatorial nature can be solved in a number of ways. As we mention above, we have solved
a number of different control chart design problems using a variety of methods including writing
programs to use methods addressed by CMR. Users not interested in writing their own
programs can sometimes find special purpose programs published in the Journal of Quality
Technology (these and others are also available on-line on the STATLIB website managed by
Vlachos at Carnegie Mellon University (http://www.lib.stat.cmu.edu/jqt/). In addition, many
commercial packages are available to solve most of the problems that CMR mention. A review
by Fourer (1999) of linear programming packages is broader than that because many of these
packages will solve nonlinear problems and integer problems. It is an excellent reference for
those interested in using existing programs. Also, those interested in learning more about the
advances in mathematical programming regarding solvers, modeling systems, and internet
optimization services should read Fourer (1998).

In closing, | wish to bring up a point mentioned by CMR in the context of optimal design. They
mention that alphabetically-optimal designs are subject to criticism because they are only optimal
in the context of the specified form of the model. That is, it may be better to use a different model
than the one specified. | believe the criticism about context can be expanded to many of the
other applications of optimization methodology CMR discuss. Moreover, | think there are
additional issues one must consider when building models for practical use. Five that come to
mind are listed below.

1. As we note, the context must be appropriate. An optimal design for a completely
randomized experiment is not really optimal when a split plot experiment is better. Finding an
economic control chart design when an organizations' quality suffers in comparison to a
competitors may not be as good as finding and implementing a statistical design which
guarantees quick signaling of assignable causes.

2. The objective criterion must be appropriately selected.

3. The coefficients must be accurately measured.

4. A good solution must be obtainable, something which is not always true for some quality
problems of a combinatorial nature.

5. The model should be robust which means the solution should be good even if the
conditions under which the model was built changes.
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Careful consideration should be given to all of those issues when using any optimization
method or any model in general for the purpose of quality control and improvement.
Dr. Saniga is a Professor in the Department of Business Administration. His email address is
saniga@college.be.udel.edu.
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JOHN SEMPLE
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WE would like to begin by thanking the authors for a very informative paper. They have made
a successful attempt to summarize a very broad technical area. As they mention in their paper,
optimization problems lie at the core not only of Applied or "Industrial" Statistics, but of statistical
methodology in general. Following the authors line of attack to such a formidable topic, we
would like to confine our comments to some quite specific optimization problems existing in the
areas of quality control and improvement that we have studied in the last few years.

OPTIMIZATION TECHNIQUES IN RESPONSE SURFACE METHODOLOGY

The authors mention optimization problems arising in the "Phase II" or "end game" of
response surface methodology (RSM) once curvature has been detected and quadratic
responses have been fitted to data. However, important optimization issues also exist in "Phase
I" of RSM. In particular, the multiple response problem also exists when operating a process far
from its (multiple) optima, when fitted responses are likely to be first order. In this case, the
question is how to find a direction of improvement in the controllable factors space for all
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responses of interest. Del Castillo (1996) proposes to use confidence cones on the direction of
steepest ascent/descent as a guide for finding directions where all or at least the most important
responses improve. We would like to ask the authors about their views on this problem, and if
they have encountered it in their consulting practice.

"Phase II" RSM optimization problems are the more challenging. Consider the authors'
Problem (3) when m = 1. Suppose, without loss of generality, that we wish to minimize the
primary response and assume the region of interest is a sphere of radius rho. Thus, we wish to
minimize

AY[subp] (x) = b[sub0Q] + x'b + X'BXx,

subject to

AY[subs] (x) = c[sub0] + xX'c + xX'Cx =T (1)

X'X [less or equal] rho[sup2].

This is the so-called "Dual Response" (DR) problem that has received considerable attention
in the literature due in part to its relation to Taguchi's parameter design problems (Vining and
Myers (1990)).

General purpose nonlinear programming codes (e.g., GRG2) have been used to solve this
type of problem (Del Castillo and Montgomery (1993)), but for indefinite B and C matrices these
methods may settle on local optima (Semple (1997)). It is our experience in RSM that for more
than three controllable factors, the fitted quadratic responses are usually indefinite; that is, they
are saddle functions. Our work has concentrated on methods for the global optimization of such
multiple quadratic-response systems, and our current work is considering the case m > 1.

In a series of papers (Semple (1997) and Del Castillo, Fan, and Semple (1997, 1999)), we
have developed algorithms based on the so-called trust region methods (Sorensen (1982)) that
practically guarantee the location of a global optimum for dual response systems (m = 1). In the
course of this investigation two types of problems were identified: degenerate problems and
nondegenerate problems. The former are much harder to solve than the latter, but occur less
frequently. To understand degeneracy in DR systems, let theta[sub1] and theta[subrho] denote
the Lagrange multipliers associated with the two constraints. Semple (1997) showed that a
solution generated from the stationarity equation

(B - theta[sub1]C + theta[subrho]l)x = 1/2(theta[sub1]c - b) (2)

for (theta[sub1], theta[subrho]) [element of] Gamma [triple bond] [(theta[sub1], theta[subrho]) :
(B - theta[sub1]C + theta[subrho]l) is positive definite and theta[subrho] [greater or equal] 0] with
AY[subs](x) = T and x'x [less or equal] rho[sup2] is in fact a global minimum of problem. The
search in Gamma was originally suggested by Myers and Carter (1973) as an extension of
Ridge Analysis techniques. A systematic search of the Lagrange multipliers can be done by
initially fixing theta[sub1] and varying theta[subrho], a search related to the parametric trust
region problem:

min AY[subp](x) - theta[sub1]*Y[subs](x) s. t. X'x [less or equal] rho[sup2].

To find theta[subrho], the following auxiliary function needs to be solved for a given
theta[sub1]:

J(theta[subrho]) = 1/4 (theta[sub1]c - b)'(B - theta[sub1]C + theta[subrho]l)[sup-2]
(theta[sub1]c - b) = [Graphic Character Omitted] gamma[sup2[sub[subi] / (theta[subrho] +
lambda[subi])[sup2] = rho[sup2],
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where gamma = Q'(theta[sub1]c - b)/2, Q is an orthonormal basis of eigenvectors of B -
theta[sub1]C and the lambda[subi] are their corresponding eigenvalues. Since Newton's method
applied to this function may diverge, a transformed equation is actually solved. An existing
subroutine, DRSALG, solves the DR problem using a nested search in theta[sub1] until AY[subs]
(x) = T. If the problem is nondegenerate, then the global optimum (theta[sub1], theta[subrho])
[element off Gamma and DRSALG will converge to it. However, the target is not always
achieved on Gamma. This occurs when gamma[sub1] = 0, so the first pole of J(theta[subrho]) is
missing, and *Y[subs](x* (theta[sub1])) may therefore exhibit discontinuities. Thus, there may be
target values T that will be unattainable and fall inside the discontinuity gap if the search is
restricted to Gamma. For this degenerate case, a rotation method called AXIS was proposed
and shown to be effective in locating global optima in more than 99% of degenerate cases (Del
Castillo, Fan, and Semple (1999)). The DRSALG/AXIS procedure, DR2, is available at
http://lwww .ie.psu/people/faculty/castillo/research.htm for downloading. We point out that the
case of an inequality constraint can be solved (and global optimal solutions found with very high
probability) by solving the equality constrained case parametrically on T, the target value for the
secondary response. Inequality constraints result in solutions very close to the minimum mean
square error (MSE) solutions (Del Castillo and Montgomery (1993)) without having to resort to
an MSE objective function, which is fourth order if the responses are quadratic.

EXAMPLE

Consider the example in Lin and Tu (1995); they minimize an MSE objective applied to a
printing process (a 3-factor problem in Vining and Myers (1990)). The mean and standard
deviation functions are quadratic polynomials; thus, the MSE criterion is quartic. Instead of
minimizing such a complicated function (without any guarantee of global optimality, a particular
concern if the number of factors is larger than in this example), consider solving, instead,

min Asigma(x) s.t. *p(x) = T, x'x [less or equal] 3

for different values of T around the desired value of 500. Using DR2, the results are as in
Table 1.

The minimum MSE solution, from Lin and Tu (1995), is X' = (1.5651, -0.7373, 0.0883), which
gives "y = 495.68 and MSE = 1634.57. The results in Table 1 indicate that the on-target solution
("u =T = 500) is very close to the minimum MSE solution (contrary to what Lin and Tu state).
The advantage of using DR2 in this parametric form is that we are certain of obtaining the global
optimum MSE solution.

OPTIMAL DESIGN OF CONTROL CHARTS

There is certainly a large body of literature already existing in economic design of control
charts that considers modifications to Duncan's (1956) original model in many different ways.
Duncan's model has been extended to several different types of control charts. In contrast, there
are almost no real-life applications of economic models for control chart design. The only
exception we are aware of is the work of Lorenzen and Vance (1986) who claimed to have
applied economically-designed charts at General Motors. At first, the reasons for the lack of
applications seem obvious: control charts are relatively easy to use, but economic models are
very complicated non-linear optimization models that require hard-to-estimate cost parameters.

http://web.b.ebscohost.com/ehost/detail/detail ?vid=44&sid=05910b65-f78e-4a0d-8fc1- 7fd99c3e514a%40sessionmgr115&hid=105&bdata=JnNpdGU9ZWhvc3... 28/41
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Keats et al. (1997) elaborate on these and other barriers to implementation of economic
designs.

Let us propose another plausible explanation for the lack of practical applications of economic
chart design models. Simply put: Are these models solving a real problem for industry?
Examples abound in the operations research literature (where research on optimization theory is
usually published) in which invented, hard to solve problems are first proposed and then solved--
exactly or heuristically--by elegantly developed techniques. Although we do not claim that the
underlying chart design problem is invented or unreal, it seems that the proposed models have
failed to capture the actual economics. After more than 40 years of intense research in the area,
it is hard to believe that industry has failed to recognize the benefits of using economically-
designed control charts.

Perhaps there is a less drastic explanation for the lack of interest in economic designs in
practice. As described by the authors, pure statistically-based designs are usually sufficient in
practice. Consider designing an X chart where it is necessary to decide a sample size (n), a
control limit width (k), and a time between samples (h). In principle, n and k can be uniquely
determined based solely on statistical (and not economic) grounds, unless the cost of sampling
is so high to warrant very small samples (regardless of h). In such high-cost scenarios, we
probably should not be using an X chart to begin with. Constraining the risks of Type | and Il
errors (or constraining the average run lengths (ARL's)) is equivalent to, and easier than,
defining costs associated with these errors, given the shadow price interpretation of Lagrange
multipliers associated with the constraints.

The time between samples needs to be decided not only on economic grounds but also in the
context of the underlying production system. Besides sampling costs, production specifics (such
as the production schedule, the length of the production runs, the production rate, the
maintenance schedule, the probability of bad setup operations) enter into the practical
determination of h. Some of these issues have been studied in the literature (Weigand (1994);
Del Castillo and Montgomery (1996); Keats, Miskulin, and Runger (1997)), but these
considerations add complexity to an already complex model and do not consider all the possible
production aspects simultaneously.

In our experience sampling costs are the only costs essential to finding a complete chart
design. This reasoning motivated Del Castillo, Mackin, and Montgomery (1996) to develop a
multicriteria method for designing X charts (the program can be downloaded from the same web
address as mentioned above). The inputs to the program are shift size, rate of assignable
causes, sampling costs, maximum alpha risk and minimum desired power. The model
simultaneously minimizes, subject to statistical constraints,

* the expected number of false alarms (f[sub1]),

* the average time to signal (f[sub2]), and

* the sampling cost per cycle (f{sub3]).

The program presents different solutions (f[sub1], f[sub2], f[sub3]) to the user who enters his
or her preferences into the program in an interactive manner, similarly to the description given by
Carlyle, Montgomery, and Runger when discussing their Equation (4).

THE GEOMETRIC DISTRIBUTION AND ARL'S
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The reason why the ARL is sufficient to compare the performance of charts with geometric-
distributed run lengths is that, if RL[sub1] = Geom[sub1] and RL[sub2] = Geom[sub2], with
ARL[sub1] [less or equal] ARL[subZ2], then this implies that RL[sub1] is stochastically larger than
RL[sub2]; that is,

P(RL[sub2] [less or equal] r) [less or equal] P(RL[sub1] [less or equal] r)

for all integer r > 0. Thus we are safe in choosing the first chart (if we are talking about the
out-of-control performance) or the second chart (if we are talking about the in-control
performance) based solely on ARL performance. Given that the geometric run length distribution
is very skewed, studying the performance of a single chart based on the ARL criterion can be
misleading, but for comparing two or more charts, ARL comparisons are adequate if the run
length distributions are geometric. We note that the run length distribution is not geometric when
parameters are estimated, even for the relatively simple case of an X chart. For a non-geometric
random variable, ordering of means does not necessarily imply stochastic ordering (although the
reverse is always true, see Ross (1983, Ch. 8)); thus ARL comparisons should be
complemented with more run length distribution information for chart design comparison
purposes. From an optimization point of view, when the run lengths are not geometric, we could
end up with a multicriteria problem in which we simultaneously look at higher moments of the
run length distribution.

Dr. Del Castillo is an Associate Professor in the Industrial & Manufacturing Engineering
Department. He is a Member of ASQ. His email address is exd13@psu.edu.
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WE would like to thank Carlyle, Montgomery, and Runger (CMR) for providing an interesting
overview of some of the problems at the interface of quality improvement and optimization. In
our discussion we will comment on a few of the ideas presented in their paper that either one or
both of us found confusing or on which we have a slightly different perspective. We will also
provide some additional references relevant to the interface of statistics and optimization.

DEFINITIONS

Since the vast majority of the people reading this paper will have some expertise in either
statistics or optimization, but probably not both, we feel it is important to carefully define any
terminology specific to one of these areas. In particular, we think the following definitions may be
useful.

The Karush-Kuhn-Tucker conditions identify optimal solutions of constrained minimization
(maximization) problems whose objective function and constraint functions are continuous and
differentiable. These are necessary conditions for general problems and sufficient conditions for
convex (concave) problems. For more details about the conditions see Bazaraa, Sherali, and
Shetty (1993).

The efficient frontier is the set of efficient outcomes to a (un)constrained optimization problem
with multiple objective functions. A feasible solution of a multiple-objective optimization problem
is said to be efficient (Pareto-optimal, noninferior) if trading one efficient solution for another in
order to improve an objective results in the deterioration of at least one other objective. Efficient
(nondominated) outcomes are images of efficient solutions.

A k-opt heuristic is an algorithm to improve an existing tour of the traveling salesman problem, or
it can apply more generally to a problem that seeks a subgraph with all nodes. All subsets of the
edge-set of a tour of size k are considered. Each subset is removed in turn to see whether the
resulting paths can be recombined to form a tour of lesser cost. Since the number of subsets
grows exponentially with k, k-opt for k > 3 is seldom used.

A greedy heuristic is one that is based on a "greedy" principle: at each step make the cheapest
choice having maximum immediate improvement with little if any regard to future decisions or
consequences.

The integrality restriction requires that all data and/or variables of a problem are integral. The
restriction is not limiting for most applications because one can always transform rational data to
integer data by multiplying the rational data by a suitably large number.

A breadth-first search is a graph searching strategy based on branching to generate all the
nodes at the current depth of the graph before generating any that are further down.
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A depth-first search is a graph searching strategy based on generating nodes as far down as
possible and backing up one node to initiate a new probe when no new nodes can be found at
deeper levels.

The breakdown point of an estimator is the smallest fraction of the observations that one would
have to replace in order to cause the estimator to exceed any bound. For example, the sample
median is a 50% breakdown estimator (the best possible breakdown point) since one would
have to replace at least half the observations in order to ensure the middle value was among
them.

A rotatable experimental design is one such that the variance of the predicted response (using
the design) depends only on the distance from the center point and is, therefore, unchanged if
the design is rotated about its center point.

It was unclear to us what was meant by "an operations research approach to classification"
and by a "multiple programming formulation". Also, we did not find the statement that Prabhu,
Runger, and Montgomery (1995) provide a design tool to be particularly informative. Similarly,
the description of the methods of Lin (1995) and Li and Wu (1997) as being similar to the local
search algorithms employed in other related combinatorial optimization problems provided little
insight.

ECONOMIC DESIGN AND ALPHABETIC OPTIMALITY

With regard to the economic design of control charts, CMR suggest that one possible reason
they have found little industrial use is that practitioners may be intimidated by the number of cost
and other system parameters that must be estimated. An alternative possibility is that such
information is virtually never attainable. While it does not necessarily follow that lack of industrial
use should suggest abandoning a research area, their analogy with alphabetic optimality does
not seem appropriate since lack of computer implementation is not the issue with economic
design of control charts. CMR also suggest that alphabetic optimality of experimental designs
was one of the first areas in quality control and applied statistics to attract the attention of
industrial engineers and operations research analysts, but we have been unable to verify this.
Rather it seems that design of control charts and acceptance sampling plans provided the initial
problems of mutual interest.

THE EM ALGORITHM

While CMR do mention maximum likelihood estimation in regression and analysis of variance
leading to complicated optimization problems, they do not mention the interesting problems that
arise when looking for maximum likelihood estimates (MLE's) of the parameters of a mixture of
normal distributions. That problem is often solved using the EM algorithm proposed by Demster,
Laird, and Rubin (1977). The algorithm was named for its two steps at each iteration: the E step
replaces the missing values in the incomplete data set with their expectations, and the M step
derives the estimates by maximizing the likelihood function of the "pseudo complete" data. In the
mixture-of-normals problem the "incompleteness" in the data is due to not knowing which
component of the mixture each observation came from. While the EM algorithm has the
disadvantage of converging slowly, it has the advantage that at each iteration the likelihood
function is guaranteed to be nondecreasing. Modifications to the EM algorithm to improve its
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performance were suggested by Meng and Rubin (1993) and Rai and Matthews (1993). In the
context of searching for MLE's for the parameters of a mixture of two normal distributions, Finch,
Mendell, and Thode (1989) discussed the general problem of assessing the adequacy of a
numerical search for a global optimum.

MULTI-OBJECTIVE PROBLEMS

In their discussion of optimization techniques applicable in statistics and quality control, CMR
focus on single-objective nonlinear or combinatorial optimization and multi-objective optimization.
The latter is of particular interest in multiple-response optimization of designed experiments,
which gives rise to problems with highly nonlinear, or multimodal, multiple objective functions. As
CMR mention, the weighted-sum scalarization, which converts the original problem with a
vector-objective function to a single-objective (scalar) problem, is a classical approach to multi-
objective problems. This approach, however, works much better than CMR imply. It works very
well for problems with concave (convex) objective functions maximized (minimized) over a
convex feasible set, and it can be used to trace almost the whole efficient frontier. Geoffrion
(1968) showed that a feasible point is properly efficient if and only if it is an optimal solution of
the weighted-sum problem for some positive weights. Thus, except for those efficient points that
are not properly efficient, that is, for which finite trade-offs do not exist, the weighted-sum
approach can be used to obtain the efficient frontier.

Due to their complexity, many multi-objective problems are treated with heuristic algorithms,
and CMR discuss this class of methods. Their references on the use of genetic algorithms,
however, are problem oriented (scheduling, groundwater monitoring). Two references offering
general insight into this subject are Srinivas and Deb (1994) and Fonseca and Fleming (1995).
Since CMR discuss simulated annealing only in the single-objective context, it is worth adding
that Serafini (1992); Ulungu, Teghem, and Fortemps (1995); and Czyzak and Jaszkiewicz
(1998) developed simulated annealing approaches to multi-objective combinatorial problems.

Methods other than those mentioned by CMR can be employed in multi-response optimization
for generating the efficient frontier. The weighted-Tchebycheff approach (see Steuer (1986))
can successfully trace the efficient frontier of a very general multi-objective problem, and the
method proposed by Kostreva, Ordoyne, and Wiecek (1992) was specially developed for
problems with polynomial objective and constraint functions. More recent approaches attempt to
approximate the efficient frontier rather than generate its individual points. Approximations based
on exact algorithms have been developed for bi-objective problems (see Jahn and Merkel (1992)
and Payne (1993)). However, due to the complexity of the frontier in higher dimensions,
approximations for higher-dimensional problems have been based on heuristics (see
Gandibleux, Mezdaoui, and Freville (1997) as well as the references on genetic algorithms and
simulated annealing).

ADDITIONAL SOFTWARE AND OTHER REFERENCES

A good discussion of Taguchi's robust parameter design ideas can be found in Kackar (1985),
and a particularly enlightening discussion of some of the statistical shortcomings is given by
Hunter (1985). Wynn (1970) is another reference associated with exchange algorithms. While
almost everyone is familiar with EXCEL, specific references for Design-Expert (1996) and S-
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Plus (1997) are probably useful. More information on simulated annealing can be found in
Volume 8, Nos. 3 & 4 (1988) of the American Journal of Mathematical and Management
Sciences. Of particular interest are the papers by Meyer and Nachtsheim (1988) and Collins,
Eglese, and Golden (1988). The first of these discusses constructing exact D-optimal designs
using simulated annealing, and the second one provides an annotated bibliography on simulated
annealing of almost 100 pages. The book by Goldberg (1989) discusses genetic algorithms.
Fourer (1999) and Nash (1998) provide surveys of software available for linear programming
and nonlinear programming, respectively. The February 1997 issue of OR/MS Today (a
publication of the the Institute for Operations Research and the Management Sciences) provides
a survey on add-in software for spreadsheets, including routines for optimization, linear
programming, nonlinear programming, and genetic algorithms.

CONCLUSION

Recent scholarly events give evidence of the interest in statistics within the operations
research and optimization community. Conference talks on multi-objective formulations of some
statistical problems were given by Wellington (1999) and Narula (1999), who claimed that useful
insights can be obtained when classical statistical topics such as point and interval estimation,
hypothesis testing, acceptance sampling, regression analysis, and discriminant analysis are
posed as multi-objective problems.

Finally, CMR have limited their discussion to certain aspects of optimization techniques in
statistics. The reverse is also possible; that is, statistical techniques can be used to improve
optimization procedures. See, for example, Parsons and Johnson (1997).
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MARK E. JOHNSON

University of Central Florida Orlando, FL 32816-2370

ANYON who is a bona fide practitioner in the area of quality control and process improvement
(or more generally, applied statistics) would have faced the sometimes daunting task of solving
optimization problems. Carlyle, Montgomery, and Runger (CMR) have provided us a virtual
travelogue of their experiences with optimization methods on their voyages through many
venues populated with real problems involving industrial applications. Their journeys appear
seamless--identifying the appropriate off-the-shelf technique effortlessly at every destination.
This may be a testament to their insight in selecting the appropriate scheme or perhaps they are
overly modest in downplaying any difficulties that they have encountered. In contrast, my own
experiences in optimization/statistical applications would be best described as rocky, with
endless potholes, speed bumps, and detours in an odyssey to obtain or to refine an optimization
scheme that consistently works. The advantage, of course, of the more tortured journey is the
challenge in overcoming the obstacles in hopes of eventually relating the lessons-learned to
future travelers.

The analysis of light water reactor failure data (Booker, Easterling, and Johnson (1981))
provided an area of application early in my career that led to a detailed consideration of
optimization methods. By this time, the Cox proportional hazards model (Cox (1972)) had
blossomed as the method for observational data in epidemiological studies, and it was natural to
try to apply it to reactor reliability problems for which failures (at least at that time) were
exceedingly rare. To cut to the chase, in many data set situations parameter estimation
algorithms would lead to the dreaded outcome "Newton-Raphson did not converge." No amount
of refinement as to the starting values corrected the problem (grid search, preliminary Nelder-
Mead, etc.), which was also very discouraging. Eventually, working with Maurice Bryson (Bryson
and Johnson (1981)), we realized that there were many circumstances in optimizing the partial
likelihood associated with the Cox model that led to non-convergence owing to optimal
parameter estimates with limiting infinite values! Hence, Newton-Raphson should not converge!
This greatly complicated a subsequent Monte Carlo study of the small sample performance of
the Cox model (Johnson et al. (1982)), which in turn called into question the suitability of it in
some circumstances. Not too surprisingly, the biostatistics community has not been enthusiastic
about this work which raises practical issues with the implementation of the proportional hazards
model. CMR do not explicitly mention reliability as an area involving their personal experiences
with optimization schemes. Have they had such encounters and if so, would they comment upon
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them?

CMR cite our work with simulated annealing (Bohachevsky, Johnson, and Stein (1986)).
Bohachevsky originally called my attention to this method following the landmark paper by
Kirkpatrick, Gelatt, and Vecchi (1983). This Science article inspired numerous forays into
consideration of simulated annealing. Our efforts first focussed on a marvelous and challenging
optimization problem posed by Bates (1985). Bates went to Herculean efforts to find a global
optimum to a problem using the fundamental approach of Box and Wilson (1951) applied to a
nonlinear response function. Our variant of simulated annealing (with an empirical cooling
schedule) led to what appears to be the global optimum for this problem. Extensive sensitivity
analyses reported in the paper offered additional compelling evidence that our variant of
simulated annealing had in fact meandered to the optimal solution. We have also been
encouraged by the reactions of cohorts at other universities, such as in a global optimization
seminar in 1999 at the University of Colorado at Denver arranged by Dr. Karen Kafadar. It can
be somewhat surprising that such a "crude" or "simplistic" scheme such as simulated annealing
can work, as it is little more than a biased random walk. Bohachevsky noted the possibility of
couching simulated annealing in a gambler's ruin framework to gain insight into its improbably
good performance (Bohachevsky, Johnson, and Stein (1992, 1995)). Do CMR have any specific
impressions of simulated annealing either based upon personal experience or observations of
industrial applications?

In their comprehensive review of various optimization schemes applied to industrial
applications, CMR mention genetic algorithms which offer a rather unusual approach to
optimization by maintaining a population of candidate solutions and letting it evolve through
reproduction, mutation, and ultimately survival-of-the-fittest solutions. The applications cited tend
to involve classical operations research applications such as scheduling problems. Recently, |
collaborated with Rebecca Parsons (Parsons and Johnson (1997)) to apply RSM techniques to
optimize the performance of genetic algorithms in a DNA sequence assembly problem. This
approach led to the setting of tuning parameters far afield of the "conventional wisdom" values in
molecular biology and led to excellent solutions of previously intractable problems. In particular,
we found that the population size could be reduced drastically with a corresponding reduction in
execution time. Along these lines, | am again interested, if CMR would comment on the use of
optimization methods (especially RSM) in the general area of software engineering. This seems
to be an area that is begging for attention, but is difficult since the response functions tend not to
emulate physical measurements of manufactured projects.

Obviously, the CMR article provided me a timely excuse to revisit my own forays into
optimization in the context of statistical applications. | would like to close by addressing a
concern as to the likelihood that the CMR article will attain the goal of stimulating more
interaction between the statistics and operations research communities. | would conjecture that
the operations research (OR) crowd reads JQT about as much as we read the journals
Operations Research or Management Science. Given that the OR community does discover this
article, what is in it for them? A very positive feature of the CMR article is the reporting of the
widespread use of optimization methods. What exactly are the open questions at the
statistics/operations interface that could attract collaborations with our friends in OR,
management science, or industrial engineering departments? Both communities have their pet
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problems that continue to get attention. The traveling salesman problem and Rosenbrock's
function continue to draw interest by optimizers. The analysis of Fisher's iris data and
Brownlee's stack loss data may never be completely exhausted. | wonder if there is an
interesting problem at the interface of optimization and quality control/process improvement that
could draw both groups together. Given CMR's track record, | am confident that they can identify
such a problem (or problems), thereby establishing a track toward their stated goal.

Dr. Johnson is Professor in the Department of Statistics. His email address is
mejohnso@mail.ucf.edu.
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RESPONSE

W. MATTHEW CARLYLE, DOUGLAS C. MONTGOMERY, and GEORGE C. RUNGER

IN our paper, we have attempted to outline some of the problems on the boundaries of the
fields of quality control/improvement and optimization. Our intent was to initiate discussion and
provide a starting point for further research. We feel as if we have had some success towards
attaining this goal, and we would like to thank all of the discussants for their participation. Their
insightful remarks significantly improved the presentation of the material, and provided exactly
the kind of valuable discussion we were hoping for. Several of the discussants were also
referees for the original version of the manuscript, and we are appreciative of their helpful
criticism on the previous version of the paper.
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Of course, any omissions are due to our preferences, and we encourage our colleagues to
initiate conversations regarding their favorite areas, as well. For example, Johnson reminds us
that the field of reliability provides many interesting problems, and also provides examples from
his own experience of successful uses of contemporary heuristics. Saniga provides valuable
references to surveys and reviews of optimization software, (notably absent from our paper), as
well as pointers to his experiences with several co-authors with difficult optimization problems.
We would like to take this opportunity to answer some of the points raised in the responses to
our article and to expand briefly upon some of our experiences.

Nelson and Wiecek mention that the weighted-sum approach for multiple response problems
works well in many instances and can be used to trace out the efficient frontier. While this is true
for problems where each response (or objective) is to be extremized (for instance, in the case of
economic or time-based objectives), in many interesting problems in quality control some of the
responses are to be restricted to certain operating ranges. The multiple response optimization
problem in response surfaces is a classic example.

Our main intent in this section was not to malign the weighted-sum approach, but instead to
point out the versatility of the desirability function approach, which can (with suitable choices for
the ranges, midpoints, and exponents) subsume many of the older techniques. Indeed, we feel
that this is a clear example of a problem that has caused considerable debate among
optimization enthusiasts for quite some time and for which the statistics community has
developed a very general, powerful tool.

Johnson poses a question regarding our experiences with simulated annealing (SA), and we
enlarge our reply to include genetic algorithms (GA) as well. Our principal experiences with both
of these methods are very similar; the concepts are easy to explain in the classroom, or to a
research group, so that home-brewed algorithms are solving complex problems in a matter of
days or weeks. After several experiments, the students or the researchers find that they spend a
lot of time "tuning" the parameters, and their frustration grows as they encounter two difficulties.
First, "obvious" choices for the parameters don't work. In GA, the most common mistakes are to
build too much intelligence in the initial population, avoiding entire regions of the solution space
and to use too small of an initial population in the interests of computation time. Second, good
parameter choices for one problem are almost worthless for another. In SA implementations,
one cooling schedule can work well for one scheduling problem, but get stuck in (very poor) local
optima for problems in a very similar type of problem. (Or even for a different instance of the
same type of problem!)

The solution, of course, is the one that Johnson himself proposes. Our students all take
courses on experimental design, and most have sufficient exposure to response-surface
methodology to enable them to set up a sequence of experiments to find good parameter values
for their heuristics and, therefore, find good solution methodologies for their problems. Of
course, as they perform their experiments, they end up learning rules of thumb that work for
their problem domain, reducing the number of completely unknown parameters and speeding up
their search.

Del Castillo and Semple observe that most of our comments on the multiple response
optimization problem are confined to the second phase of RSM, where the experimenter is
focusing on finding optimum solutions within a region of interest. They (quite correctly) note that
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the problem also occurs in phase one, where the experimenter is trying to move from the
starting conditions for the system towards the region of the eventual optimum. We have found
that the desirability function approach can also be applied in conjunction with steepest ascent in
this situation, so that the experimenter is essentially finding a path of steepest ascent in
desirability space. An important issue in this problem is dealing with two, say, responses that
have paths of steepest ascent that are at large angles to each other, so that the best direction
for one response is very nearly the worst direction for the other. There is often little that can be
done about this situation from an optimization perspective. The solution is usually of an
engineering or scientific nature, requiring a change in some systems aspect of the problem, such
as alternative materials, different processing or new design/formulation of the product. Since
steepest ascent is frequently performed in development work, this is often a feasible approach.
On the other hand, finding out that there is a problem of this type once the full-scale process is in
operation can potentially be catastrophic. This is another argument for starting statistically
designed experiments very early in product and process design.

The comment that Johnson made about the effort-lessness implied by our paper brought a
smile to our faces. Of course, we have committed the classic error of describing clean results
without elaborating on the torturous path to which Johnson alludes. We have certainly
encountered our share of problems along the way that did not yield to the obvious method(s),
and if we didn't enjoy such challenges we would probably not be in this field. In the paper we
hardly mention one of the biggest difficulties, and it is one that plagues us constantly. Especially
in the field of combinatorial optimization, the importance of building a good model cannot be
overemphasized. We can't begin to count the number of models we have built, and worked at
for days, only to find that a reformulation yields a rapid solution. Space restrictions and the lack
of a complete answer do not permit us to describe the "right" way to build models, and we feel
that a complete guide will probably never be written.

Finally, we close with a response to Johnson's question as to whether the operations
research community reads the Journal of Quality Technology or will get anything out of our
paper. This is a very good point; this paper was intentionally targeted towards that part of the
statistics community interested in using optimization methods for their applications. To this end,
we have given brief descriptions of problems already familiar to practitioners and researchers
alike, and then elaborated on the general ideas behind some of the most popular optimization
techniques applicable to these problems.

For such a survey to be attractive to the optimization community we would need to shift the
focus somewhat and elaborate on the details of the problems, and then use less space
describing the methods that have already been employed along with some indications of their
success. Problem details could include the specific characteristics of the functions involved, the
forms of the constraints, the "standard" version of the problems encountered in practice, and so
forth. In this way, each community would have their side of a bridge to the other, and if these
two documents were reasonably parallel in their construction, they could serve as a starting
point for many valuable collaborations. We appreciate the fact that the biggest obstacle would
probably be the differing vocabularies of the two communities, but given our common
mathematical background we feel that reasonable compromises could be made.

The first author, whose academic roots lie firmly planted in optimization, presented our paper
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at the Fall Technical Conference. Perhaps one of the other authors should make a modified
version of this presentation to the optimization community, and thereby complete the circuit.

Source: Journal of Quality Technology, Jan2000, Vol. 32 Issue 1, p1, 17p
Item: 2729413
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