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ABSTRACT The Shainin SystemTM (SS) is the name given to a problem

solving system, with its associated strategies and tools, developed by Dorian

Shainin, and widely used and promoted in the manufacturing sector. Dorian

Shainin also called this system Statistical Engineering, reflecting his engin-

eering education and background. The consulting firm, Shainin LLC, offers

the system under the trademarked name Red X1 Strategy. Much of SS is

neither well documented, nor adequately discussed in peer-reviewed

journals. The goal of this article is to provide an overview of SS, a critical

assessment, and a brief comparison with other industrial problem solving

systems. The emphasis is on a discussion of the guiding philosophy and

principles. Some specific SS tools are examined and compared with alterna-

tive methods. In our assessment, the Shainin System is valuable for many

types of problems and many of its elements have been, or should be, incor-

porated into other process improvement methodologies. However, many of

the statistical tools and methods promoted in conjunction with SS are neither

novel nor necessarily the best.

KEYWORDS B vs. CTM, Components SearchTM, group comparison, Isoplot1,

multivari chart, precontrol, progressive search, red X1 strategy, Shainin,

Six Sigma, Variable SearchTM

INTRODUCTION

The goal of this article is to provide a critical overview of the Shainin
SystemTM (SS) for quality improvement, developed over many years under
the leadership of the late Dorian Shainin. SS is also called Statistical
Engineering by the consulting firm Shainin LLC that holds the trademark
and Red X1 strategy in parts of the automotive sector where SS is popular.
The overall methodology has not been subject to critical review although
some of the components have been discussed extensively. Here we provide
such a review and also compare the Shainin System to other process
improvement systems including Six Sigma. We also describe a few of the
more controversial and widely used SS statistical methods.

The Shainin System was developed for and is best suited to problem solv-
ing on operating, medium to high volume processes where data are cheaply
available, statistical methods are widely used and intervention into the
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process is difficult. To our knowledge, it has been
mostly applied in parts and assembly operations.
We have little knowledge or experience on the use
of SS in continuous process industries.

Bhote and Bhote (2000) and Bhote (1991, 1988)
give the most complete (although not comprehen-
sive) treatment of SS. We agree with reviewers
(Nelson, 1991; Moore, 1993; Hockman, 1994; and
Ziegel, 2001) that these books make many unsub-
stantiated, exaggerated claims. What is worse, we
believe that these books are a disservice to SS, since
the hyperbole hides many of the genuinely useful
ideas. A less technical and less controversial refer-
ence that includes many case studies is Traver
(1995). Overviews of SS have been published in con-
ference proceedings; see Shainin (1992, 1992b, 1993,
1993b, 1995), Shainin and Shainin (1990), and
Shainin et al. (1997). Other review articles include
Logothetis (1990) and De Mast et al. (2000). Does
et al. (1999) cover many of the specific tools associa-
ted with the Shainin System but not the overall strat-
egy. Ledolter and Swersey (1997a, 1997b) review two
widely heralded SS tools, precontrol and variables
search. There may be new developments not yet in
the public domain. Steiner and MacKay (2005)
present a variation reduction algorithm that builds
on what we think are the best elements of SS.

In assessing the Shainin System, it is important to
differentiate between the overall approach that we
think is strong, and the specific analysis methods
some of which are weak. The article is divided into
two major parts. First, we discuss the basic principles
underlying SS, and the consequences of applying
these principles within the Shainin System. It is the
use of these principles and the corresponding algor-
ithm in combination that defines and distinguishes
the overall strategy of SS from other approaches.
Next, we discuss a selection of SS statistical tools
used within the algorithm. By ‘‘tool’’, we mean the
data collection plan and the subsequent analysis
method. We discuss alternatives to the analysis
methods where appropriate.

THE GUIDING PRINCIPLES OF THE
SHAININ SYSTEM

We consider the underlying principles of SS in two
groups. The first group follows from the idea that
there are dominant causes of variation. This idea

appears in Juran and Gryna (1980), but it is Shainin
who fully exploits this concept. The second group
of principles is embedded in the algorithm, the
Shainin SystemTM, shown in Figure 1.

DOMINANT CAUSES OF VARIATION
AND PROGRESSIVE SEARCH

A fundamental tenet of SS is that, in any problem,
there is a dominant cause of variation in the process
output that defines the problem. This presumption is
based on an application of the Pareto principle to the
causes of variation. Juran and Gryna (1980, p. 105)
define a dominant cause as ‘‘a major contributor to
the existence of defects, and one which must be rem-
edied before there can be an adequate solution.’’ In
SS, the dominant cause is called the Red X1. The
emphasis on a dominant cause is justified since
‘‘The impact of the Red X is magnified because the
combined effect of multiple inputs is calculated as
the square root of the sum of squares’’ (Shainin,
1995). To clarify, if the effects of causes (i.e., process
inputs that vary from unit to unit or time to time)
are independent and roughly additive, we can

FIGURE 1 The Shainin systemTM for quality improvement (from
Shainin, 1992).
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decompose the standard deviation of the output that
defines the problem as:

stdevðoutputÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðstdev due to causes 1Þ2

þ ðstdev due to cause 2Þ2 þ . . .

vuut ð1Þ

A direct consequence of (1) is that we cannot reduce
the output standard deviation substantially by
identifying and removing or reducing the contri-
bution of a single cause, unless that cause has a large
effect. For example, if (stdev due to cause 1) is 30%
of the stdev (output), we can reduce the stdev (out-
put) by only about 5% with complete elimination of
the contribution of this cause. The assumption that
there is a dominant cause (possibly because of an
interaction between two or more varying process
inputs) is unique to SS and has several consequences
in its application.

Within SS, there is recognition that there may be
a second or third large cause, called the Pink XTM

and Pale Pink XTM respectively (Shainin, 1993b),
that make a substantial contribution to the overall
variation and must be dealt with in order to solve
the problem. Note that if there is not a single
dominant cause, reducing variation is much more
difficult, since, in light of (1), several large causes
would have to be addressed to substantially
reduce the overall output variation. To simplify
the language, we refer to a dominant cause of the
problem, recognizing that there may be more than
one important cause.

There is a risk that multiple failure modes contrib-
ute to a problem, and hence result in different domi-
nant causes for each mode. In one application, a
team used SS to reduce the frequency of leaks in cast
iron engine blocks. They made little progress until
they realized that there were three categories of
leaks, defined by location within the block. When
they considered leaks at each location as separate
problems, they rapidly determined a dominant cause
and a remedy for each problem.

SS uses a process of elimination (Shainin, 1993b),
called progressive search, to identify the dominant
causes. Progressive search works much like a suc-
cessful strategy in the game ‘‘20 questions,’’ where
we attempt to find the correct answer using a series
of (yes=no) questions that divide the search space

into smaller and smaller regions. To implement the
process of elimination, SS uses families of causes of
variation. A family of variation is a group of varying
process inputs that act at the same location or in
the same time span. Common families include
within-part, part-to-part (consecutive), hour-to-hour,
day-to-day, cavity-to-cavity and machine-to-machine.
At any point in the search, the idea is to divide the
inputs remaining as possible dominant causes into
mutually exclusive families, and then to carry out
an investigation that will eliminate all but one family
as the home of the dominant cause.

Progressive search works in conjunction with the
assumption that there are only one or two dominant
causes. If we can attribute most of the observed vari-
ation to one family, we can eliminate all varying
inputs that act in other families from consideration
as a possible home of the dominant cause. For
example, in a multivari study (see the next section),
suppose we find that variation part-to-part is much
larger than variation time-to-time. Then, all varying
inputs that change over the longer time frame, such
as properties of batches of raw material, can be
eliminated as dominant causes.

Another consequence of the assumption of a
dominant cause is that we can gain a lot of infor-
mation about this cause by comparing units with
extreme values of the output. To our knowledge, this
explicit use of ‘‘leveraging’’ is unique to SS. Shainin
et al. (1997) refer to comparing the ‘‘best of the best’’
(BOB) and ‘‘worst of the worst’’ (WOW) units. The
values of the dominant cause must be substantially
different on these two groups of units and hence it
will be identifiable. One advantage of leveraging is
that we can eliminate families of causes using inves-
tigations with small samples of extreme units. The
idea of leveraging is specifically employed in many
SS tools, including Component SearchTM, Variable
SearchTM and group comparison, discussed later in
this article. Note, however, to find a small number
of extreme units, we may need to measure the out-
put on a large number of units. Also, the terminology
can cause confusion. For outputs with two sided
specifications, none of the extreme units is best of
the best.

SS shuns brainstorming and cause-and-effect dia-
grams when screening possible causes. Using
cause-and-effect analysis, once all possibilities are
identified, we are forced to look at a large number
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of potential dominant causes one-at-a-time or in
some combination. Using progressive search and
carefully designed observational investigations, we
can rule out large families without ever identifying
the individual varying inputs that make up the fam-
ily. In our experience, progressive search is much
more efficient than brainstorming. Shainin (1993)
states, ‘‘there is no place for subjective methods such
as brainstorming or fish bone diagrams in serious
problem solving.’’ We agree with this statement
when the goal is to find a dominant cause; however,
we disagree when we are looking for a solution,
having identified a dominant cause.

The success of progressive search depends on our
ability to combine empirical knowledge provided by
process investigations and engineering=process
knowledge. The need for data from the process is
emphasized throughout the SS methodology. This
emphasis has perhaps led to the misunderstanding
(De Mast et al., 2000) that qualitative process knowl-
edge is not required in SS. A team must have deep
understanding of the process to construct appropri-
ate families, plan investigations and identify a parti-
cular family as the home of a dominant cause.
Process knowledge is also essential when determin-
ing an appropriate change to the product, process,
or control plan that will reduce or eliminate the effect
of an identified dominant cause. The necessity for
process knowledge is acknowledged in all process
improvement systems. However, in SS, there is an
increased awareness that in order to progress, engin-
eering process knowledge must be combined with
empirical knowledge gained by studying the
process.

Within SS, there is no explicit consideration of
whether the dominant or any other causes are com-
mon or special. The search strategy is designed to
look for one or two causes with large effects. For
variation reduction problems, using families of vari-
ation and the method of elimination is a more effec-
tive way to partition the causes than is the classical
Statistical Process Control (SPC) division into com-
mon and special causes. To substantially reduce
the process variation in many cases, we need to
address common cause variation and the control
chart will be no help in identifying such causes.
For example, if the dominant cause acts part to part,
then the common cause variation within any time
based subgroup will be large and the control chart

will not signal the action of the dominant cause. With
families defined specifically based on existing pro-
cess knowledge, there is a broad array of sampling
plans and analysis methods, other than control
charts, that can be used to eliminate families.

The focus on finding and eliminating the effects of
a dominant cause is appropriate in many problems,
but can be restrictive. There are variation reduction
techniques, such as making a process robust to
noise, 100% inspection and feedback control that
do not require knowledge of a dominant cause
(Steiner and MacKay, 1997–1998, 2005).

The use of progressive search is not without diffi-
culties. It can be hard to identify a dominant cause
that is an interaction between varying inputs in dif-
ferent families. Progressive search requires patience
since multiple investigations are usually required to
isolate dominant causes, and it is innately sequential
which can be a hard sell in today’s fast paced indus-
trial environment. With small sample sizes and the
emphasis on extremes, there is a risk of focusing
on outliers that are not due to the dominant cause
driving the overall variation. The definition of
‘‘extreme’’ requires care, especially in the case of
two-sided specifications. It is possible that different
dominant causes are responsible for units with out-
put values on opposite sides of the target. In some
problems, rare in our experience, there may be no
dominant cause, that is, many causes contribute
roughly equally to the problem. For an artificial
example, suppose that there are 20 causes, all of
which contribute independently and additively to
the variation so that (1) applies. Then, if all causes
are equally important, completely removing the
effects of half the causes only reduces the output
standard deviation by about 30%. In these instances,
all problem-solving systems based on Juran’s diag-
nostic and remedial journey will have difficulty
because the effect of any one cause is masked by
the variation due to all others.

THE PROBLEM SOLVING ALGORITHM

The SS steps for problem solving are given in
Figure 1. Note that the algorithm is defined for a sin-
gle project, and is designed to fit into a larger project
selection and management process, not discussed
here. See Shainin et al. (1997). The algorithm is
divided into two parts, the diagnostic and remedial
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journeys, terminology from Juran and Gryna (1980,
p. 104). In the diagnostic journey, the problem is
defined, the measurement system is assessed, and
the dominant cause of variation is identified and veri-
fied. In the remedial journey, the effect of the domi-
nant cause is eliminated or reduced by changing the
product design, the process, or the control plan.

The purpose of the first stage of the algorithm is to
quantify the magnitude of the selected problem. To
do this, we monitor the output of the process using
an appropriate sampling scheme (often a multivari
plan) for a sufficiently long period of time, so that
we see the effect of all large causes of variation,
especially the dominant cause. The process variation
is then displayed using a histogram or summarized
numerically. This baseline histogram is called the Green
Y1 distribution (Shainin et al., 1997) in SS terminology.

We use the baseline distribution to quantify the
problem, to set a goal that has the potential to
improve the process, and to assess any proposed
remedy. The baseline distribution is also used to plan
and check that a dominant cause exhibits its full
effect in each investigation in the progressive search.
We call this the full range of variation. This is impor-
tant information necessary to keep us from focusing
on the wrong family of causes. The idea of quantify-
ing the nature of the problem is part of all problem-
solving approaches. The unusual feature of SS is the
explicit link between the search for the dominant
cause and the baseline distribution.

The second stage in the SS algorithm (see Figure 1)
involves the quantification and establishment of an
effective measurement system. Without a good
measurement system, it is difficult to learn about
and improve the process, and the measurement sys-
tem itself may be home to the dominant cause of the
problem. Having a separate step in the SS approach
devoted to checking the measurement system helps
to ensure this essential task is not neglected. We look
at the recommended plan and analysis for assessing
the measurement system in the next section.

In most problems, we need to consider several
measurement systems, since we measure not just
the output but also some inputs. By eliminating fam-
ilies of causes, SS reduces the number of specific
inputs that are candidates for study. SS emphasizes
checking the measurement system for the process
output, but says little about establishing reliable
measurement systems for any measured inputs.

The goal of the third stage of the SS algorithm is to
generate clues about the dominant cause. This is the
progressive search. At this stage, another key empha-
sis in SS is to ‘‘talk to the parts’’ (Shainin, 1992). In
statistical jargon, we use observational rather than
experimental plans as much as possible.

SS makes heavy use of observational plans such as
multivari investigations, stratification, group com-
parison, and scatter (correlation) plots within the
progressive search. It is surprising, given the
availability of statistical software, that analysis of
variance and regression techniques are not
included. Recommended experimental plans, such
as swapping components within assemblies are per-
formed off-line and avoid disrupting production. The
use of a sequence of observational plans is made
explicit and is emphasized in SS in the search for
the dominant cause unlike any version of Six Sigma
we have seen.

The purpose of the fourth and the fifth stages of
the algorithm is to confirm the identity of the domi-
nant cause. The end result of the progressive search
may be a single cause or a short list of suspects. With
SS, dominant causes are verified using a formal
experiment because of concerns about possible con-
founding (because of the earlier use of observational
plans) and spurious associations (because of the
small sample sizes). The suspect dominant causes
are the factors that must be held fixed in the experi-
ment. SS uses two level designs with the levels set at
the ends of the normal range of variation of the sus-
pect cause(s). Changing the levels of a dominant
cause in the experiment should produce the full
range of the output variation. Full factorial designs
are recommended so that interactions among the
suspects can be identified. With a single suspect, SS
recommends a six run experiment (sometimes called
B vs. CTM-see the next section) with three replicates
for each level.

A full factorial verification experiment is feasible
because the list of suspects is short. Also, because
the purpose is clear, there is little temptation to
mix up the verification of the dominant cause and
the search for a remedy. That is, at this stage, inputs
that are normally fixed are not changed within the
experiment. Note that these fixed inputs cannot be
a dominant cause of the observed output variation.

We now discuss the steps of the algorithm in the
remedial journey. We assume that a dominant cause
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has been identified and verified. The first step in the
remedial journey applies to the special case of a sin-
gle dominant cause that is an interaction between
two varying inputs. That is, a major component of
the variation in the output, denoted by y, can be
explained by the joint variation of two varying inputs
denoted by x1, and x2. We have an interaction since
the relationship between the output and the first
input depends on the level of the second input.
The presence of interaction suggests a non-linear
relationship y ¼ f (x1, x2)þ residual, where the
residual variation is relatively small, since x1, and
x2 together are a dominant cause. We may be able
to exploit this relationship to desensitize the process
to variation in x1 and x2 by changing the set points
of x1, x2 or both. We can investigate this possibility
with a series of small experiments with two factors
x1, and x2. This strategy may or may not be effective.
It is a special application of parameter design where
the experimental factors are limited to the set points
of the inputs that make up the dominant cause. We
can find little evidence (e.g., it is not explicit in the
algorithm as shown in Figure 1) that SS considers
the more general strategy to reduce variation due
to an identified cause by exploiting interactions with
a wider selection of inputs fixed in regular pro-
duction. One of the referees pointed us to the Con-
cept diagram, another SS tool. The only reference
that we can find (Moore and Butkovitch, 1998) gives
a Concept diagram that shows the effect of a process
change on the output. We cannot see that this corre-
sponds to applying parameter design and further-
more, there is no indication as to how to identify
the necessary interactions between the normally
fixed inputs and the varying dominant cause. One
advantage of SS is that in the remedial journey, we
deal only with dominant causes. This ensures that,
if parameter design is used, the noise factors (domi-
nant causes) are known to have a large effect.
Resources are not wasted investigating unimportant
noise factors.

The goal of the next stage of the algorithm is to
define realistic specifications (tolerances) for
the input corresponding to the dominant cause. We
can establish these specifications based on the
specified tolerance of the output by quantifying the
relationship between the output and the dominant
cause. In SS, this task is accomplished with a
Tolerance ParallelogramTM (Shainin, 1993b). This tool

is described in more detail in the Shainin Tools
section.

The algorithm splits at the next stage. We take irre-
versible corrective action to mean that the variation
in the cause can be eliminated. More interestingly,
if this is not possible, then the algorithm suggests
Process Control. In SS terminology, this means
precontrol, not Shewhart control charts. Precontrol
is a feedback control system applied to the dominant
cause to keep its value within the specification limits
derived in the previous stage. The relative merits of
precontrol versus Shewhart or other control charts
have been widely discussed—see the next section.
Precontrol is a feedback controller designed as part
of an adjustment scheme, and hence it should be
compared to other feedback controllers, not just con-
trol charting. Feedback control can be effective only
if the dominant cause exhibits structural variation
(Joiner, 1994). That is, the dominant cause must vary
in such a manner that we can predict the future from
the current and past values, and then have time to
make adjustments, as necessary. In SS language, if
the dominant cause resides in the part-to-part family,
no form of feedback control can be effective in
reducing variation. If this is the case, then precontrol
will not be effective and the algorithm provides no
guidance as to how to proceed.

The final two stages of the algorithm need no
further discussion.

In summary, we think that the algorithm is very
strong for the diagnostic journey, but weak and
incomplete for the remedial journey. We can find
no evidence in the literature that strategies such as
feedforward control, robustness and process desen-
sitization are considered (Steiner and MacKay,
2005). If the dominant cause does not exhibit
structural variation, then precontrol will fail as a
process adjustment scheme.

The use of designed experiments on existing pro-
cesses is common in all major industrial problem-
solving approaches. However, in comparison to
other approaches, in SS, the use of experimentation
is subordinated to observational investigations. In
particular, the Shainin system avoids screening
experiments to look for a dominant cause. As
described earlier, experiments are recommended in
the diagnostic journey only after the list of suspect
dominant causes is short. This is a major advantage
of SS since observational investigations are typically
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much cheaper and more easily implemented than
experimental investigations. Since the dominant
cause is acting in the current process, the view is that
we can generate clues about its identity by watching
the process in action in an informed organize way.
Screening experiments to look for dominant causes
are problematic for many reasons. We may not select
the dominant cause as a factor in the experiment and
it is often difficult to hold suspect dominant causes
(that vary in normal production) fixed in an experi-
ment, especially when there are many suspects. We
need to choose extreme levels (after first determining
what this means) of the suspect causes if we hope to
establish that the cause is dominant. In our view the
use of screening experiments to search for a domi-
nant cause should be considered a tool of last resort.

SS is weak in its use of experimental plans in the
remedial journey. To reduce variation, there must
be a change in process settings, the control plan,
or the product or process design; that is, a change
to one or more process inputs that are fixed in nor-
mal production. These changes can be sought and
investigated only by using experiments. In the
remedial journey, screening experiments and the
sequential approach to experimentation should be
considered.

The stress on the importance of the measurement
system is a strong point of the SS algorithm, shared
by most versions of Six Sigma. This discussion of
the importance of measurement systems is missing
or limited, in many well-respected books on Statisti-
cal Process Control (SPC) and Design of Experiments
(DOE), such as Montgomery (1996, 2001), and Ryan
(1989).

The use of a systematic approach to problem solv-
ing is not unique to SS. There are many competitors
such as DMAIC (define, measure, analysis, improve,
control) in Six Sigma (Harry and Schroeder, 2000)
See also Juran’s (1988) Diagnostic and Remedial
Journeys Approach, Harry’s twelve-step Break-
through Cookbook approach (1997, pp. 21.19), and
the Process Improvement and Problem Solving Stra-
tegies proposed by Hoerl and Snee (2001). DMAIC
maps well to the Shainin System, with D, M and A
corresponding to the diagnostic journey and I and
C corresponding to the remedial journey. Compared
to these other systems, the purpose and the strategies
for the individual stages in SS are more specific. The
methodology is prescriptive, going as far as to

suggest specific tools that are useful for the different
steps. The algorithm is specially designed for a
medium to high volume manufacturing process in
which inputs and outputs can be readily measured.
Six Sigma, for instance, has a much broader range
of application.

Another major difference is that SS does not
distinguish between common and special causes as
discussed earlier. Hoerl and Snee (2002), for
example, suggest different systematic approaches to
deal with common and special causes. SS, properly
in our view, focuses on dominant causes.

A SELECTION OF SHAININ TOOLS

In this section, we describe and critique a selec-
tion of the more interesting and controversial tools
associated with the Shainin System, namely: Iso-
plot1, multivari chart, Component SearchTM, Vari-
able SearchTM, group comparison, B vs. CTM, and
precontrol. By tool, we mean both the plan of the
investigation and the recommended analysis
method. See Bhote and Bhote (2000) for a more
extensive, though not complete, list of SS tools.

SS tools are generally statistically simple plans
with small sample sizes that make extensive use of
graphical displays and non-parametric tests that can
be performed by hand. Given their purpose, we feel
that the simple plans are to be highly recommended
in most cases. We believe, however, that the non-
parametric analysis methods are weak and non-
intuitive. While we are strongly in favor of graphical
approaches, with today’s widespread availability of
statistical software, ease of calculation is not an issue
and we recommend supplementing the graphs with
straightforward standard analyses. For some of the
SS tools, we suggest alternative analysis methods that
are better in most circumstances.

ISOPLOT1

An Isoplot1 study (Traver, 1995; Shainin, 1992) is
used to compare the relative size of the process and
measurement system families of variation. In its sim-
plest form, 30 units are selected, and each unit is
measured twice. An Isoplot analysis starts with a scat-
terplot of the two measurements on each unit. On
this plot, the horizontal variation is the overall pro-
cess variation as measured by the first reading and
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the vertical variation is the overall process
variation as measured by the second reading. The
variation in a direction perpendicular to the
45-degree line represents the measurement system
variation and, if all points lie near the 45-degree line,
the measurement system variation is small. Figure 2
provides an example where, while not dominant,
the variation due to the measurement system is
relatively large.

With appropriately chosen pairs of measurements,
we can assess repeatability or systematic differences
between two operators, gauges etc. Outliers are
obvious from the plot.

The SS Isoplot analysis includes specific rules for
drawing an oval over the plotted points that can be
used to numerically estimate the ratio of process to
measurement variation, called the discrimination
ratio. While plotting the data is a good idea, an analy-
sis of variance (AIAG, 1995) is the preferred standard
way to estimate the two variance components.

MULTIVARI

In a multivari investigation, we systematically sam-
ple from the process to capture the effect of various
time and location based families of variation. Seder
(1950a, 1950b, 1990) proposed a multivari chart to
display such data. See also Snee (2001). A multivari
is an excellent tool early in the progressive search
for a dominant cause. It can be used at the beginning
of the project to determine the Green Y distribution
and simultaneously look for clues. Figure 3 shows
a multivari chart using the diameter of a shaft as

the output. The shaft diameters are measured at four
locations (left and right sides at different two orienta-
tions) for three shafts produced consecutively each
hour. In Figure 3, we see there is little variation from
shaft to shaft within an hour, some variation within
shafts, and substantial variation from time-to-time,
suggesting that the dominant cause must be an input
that varies slowly, that is, that acts in the time-to-time
family. This conclusion may be incorrect if we have
not see most of the fall range of diameter variation
established in the baseline investigation (i.e., the
Green Y distribution).

A multivari chart provides a visual display of the
components of variation associated with each family.
However, when there is no obvious dominant fam-
ily, it is useful to augment the plot with an appropri-
ate analysis of variance to numerically estimate
the variance components due to each family (see
De Mast et al., 2001).

COMPONENT SEARCHTM AND
VARIABLE SEARCHTM

Component Search (Shainin and Shainin, 1988) is
used when units can be disassembled and
reassembled without damage or change to any of
the components or subassemblies. For ease of dis-
cussion, we do not distinguish between subassemblies
and components. The goal is to compare the families
of variation defined by the assembly operation and
individual components. We start with two units, one
‘‘best of the best’’ (BOB) and one ‘‘worst of the worst’’
(WOW) with output values at the two extremes of
the Green Y distribution. That is, we use leveraging

FIGURE 2 Scatterplot of measurement results.

FIGURE 3 Multivari chart for diameter by position, part
and hour.
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to ensure that we have the fall range of output
variation. We eliminate families of causes by disassem-
bling and reassembling, and possibly swapping
components between the WOW and BOB parts.
Applying component search, we first partition causes
into two groups, the assembly and components
families. If the assembly family can be eliminated
(i.e., if repeated disassembly and reassembly of the
BOB and WOW yield consistent results), the remain-
ing causes are further subdivided into families defined
according to individual components. There is a
detailed four-stage investigation (confirmation, elimin-
ation, capping, and analysis, see Bhote and Bhote,
2000) to sort out which component family (or in the
case of interactions, sets of families of components)
is the home of the dominant cause. Component search
is an experimental plan because we deliberately
manipulate the inputs, i.e., the components. However
it is performed off-line to avoid disruption of the
production process.

We give an illustration of the results of a compo-
nent search with four components in Figure 4. On
the plot, the Xs correspond to the results for
Assembly 1 and the Ys to the results for Assembly 2.
Two units with extreme initial output values, given
by the two left-most plotted points, were chosen to
guarantee the full range of variation in the output.
Then, the team disassembled and reassembled each
unit two times. Since little change was observed in
the output values in either the BOB or WOW, the
results suggest that the dominant cause acts in the
components family and not in the assembly family
of causes. The dashed lines in Figure 4 give the per-
formance averages for the first three output values.
Next, by swapping components between the two

assemblies one at a time and then pairwise, the
dominant cause was identified as an interaction
between varying inputs in components C and D.

The graphical analysis is effective when there is a
dominant cause. However, since the order in which
components are swapped is under the control of
the investigators, the length of the search depends
on their judgment regarding which component fam-
ily is the likely home to the dominant cause. Amster
and Tsui (1993) provide somewhat extreme artificial
examples where component search yields incorrect
conclusions. An alternative to the component swap-
ping stage of component search is a 2k factorial or
2k-p fractional factorial experiment using the compo-
nents as factors with levels defined by the WOW and
BOB assemblies. An even more efficient process for
eliminating component families, when feasible, is to
proceed sequentially; that is, at each stage divide the
remaining suspect components into only two subas-
semblies and swap one of the subassemblies—see
Steiner and MacKay (2005).

In the first stage of Component Search, we must
be careful that the off-line assembly=disassembly
process matches normal production. Otherwise we
may come to incorrect conclusions about the impact
of the assembly family of causes.

Variable Search is similar to the component swap-
ping stages in Component Search. It is used to ident-
ify a dominant cause, when the progressive search
produces a list of four or more suspects, and no other
simple investigation can rule out any of these poss-
ible dominant causes. With three or fewer suspects,
SS recommends a full factorial experiment to identify
the dominant cause. In Variable Search, the first steps
are to list the suspects in order of expected impor-
tance and to determine two levels for each, based
on their range of variation in normal production.
Next, through trial and error, the two levels of each
input are assigned labels ‘‘high’’ and ‘‘low’’ so that
the two runs with all inputs at the same level (all high
or all low) produce output levels that are at the
extreme ends of the Green Y distribution. Finally,
the levels of each suspect are varied one at a time
or pair wise as in component search to find the
dominant cause.

Variable Search is an online experiment, with all
of the difficulties of setting or holding the varying
inputs at their extreme levels. The ordering of the
suspects and the determination of their levels canFIGURE 4 Component swap results.
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be difficult and take substantial time and effort. The
experiment cannot be successful if these levels are
not correctly determined. It may be difficult to assign
the high and low labels, especially if the dominant
cause is an interaction. The length of the search
depends on how well the suspects are ordered and
the complexity of the dominant cause. See Ledolter
and Swersey (1997b) for a critical view of variable
search. We agree with their conclusion that fractional
factorial designs are generally a better approach than
Variable Search. This situation in which there is a
long list of specific suspects seems ideally suited to
an observational plan that uses multiple regression,
a tool that does not appear to be part of SS, to reduce
the number of possible dominant causes.

GROUP COMPARISON

Group comparison has two uses. If the problem is
defined by a binary output (such as defective or not),
we can use group comparison to try to identify a
continuous output to reformulate the problem. This
is especially useful if the defect is rare where group
comparison is akin to a case control study. We can
also use group comparison to identify specific sus-
pect causes late in the progressive search after other
investigations have eliminated many large families of
causes of variation from consideration.

With group comparison (Bhote and Bhote, 2000),
we select two groups of three or more parts with dif-
ferent values of the binary output or with extreme
values of a continuous output. This is another appli-
cation of leveraging. We measure the parts on as
many input characteristics as possible, consistent
with previously generated clues. If a measured input

is a dominant cause, the values of this input will be
systematically different between the two groups of
parts.

The recommended analysis for each measured
input is a two sample nonparametric test that
requires either complete separation of the BOBs
and WOWs or a minimum ‘‘endcount’’ (Bhote and
Bhote, 2000) to identify a suspect dominant cause.
Endcount is due to Tukey (1959) who dubbed the
test ‘‘compact’’ because the test statistic can be calcu-
lated easily; the critical values are essentially inde-
pendent of sample size and can be carried in the
analyst’s head. We suggest a standard analysis based
on plots and t-tests. If there is a large effect (i.e., one
of the inputs measured is a dominant cause), we can
find the cause using only the plots of the data. Two
way interactions can be seen by looking at all scatter-
plots of the suspect causes with different plotting
symbols for the BOBs and WOWs. Since the compar-
isons are usually based on small sample sizes, there
is a risk of confounding and also a strong possibility
of identifying spurious causes because of the
multiple testing.

Figure 5 illustrates the typical analysis. The data
arose from a group comparison to help find a domi-
nant cause of leaks in the rear intake wall of engine
blocks. The output was binary; there was no mea-
sure of the size of the leak. Whenever the team
found an intake wall leaker, they also set aside a
non-leaking block. They collected 50 leaking and
50 nonleaking blocks. Then, for each of the sampled
blocks, they measured thickness (in inches) at
six locations in the left rear intake wall. To analyze
the data, we construct side-by-side boxplots of
wall thickness at each location for leakers and

FIGURE 5 Boxplots of locations 3 and 4 wall thickness by block type.
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non-leakers. We show the results for two locations in
Figure 5. The right-hand plot shows a clear differ-
ence in median wall thickness between leakers and
non-leakers at location four. There was little differ-
ence for the other locations as in the left-hand plot.
The team concluded that wall thickness at location
four was a dominant cause of rear intake wall leaks.

A version of group comparison called Paired Com-
parisonsTM (Shainin, 1993b, and Bhote and Bhote,
2000) involves pairing or matching of the defective
and non-defective units. In the proposed analysis,
the BOBs and WOWs are paired, usually based on
time of production. Shainin (1993b) writes ‘‘Paired
Comparisons are appropriate when the largest family
of variation is part to part.’’ In this context, since we
are looking for a dominant cause, pairing adds to the
complexity of the plan and little value. In statistical
experiments we use pairing to eliminate the risk of
confounding and to increase the precision of the
conclusions about the experimental factor in the
presence of other varying inputs that have a large
impact on the output. If the dominant cause acts in
the part-to-part family, paired comparisons will pro-
duce pairs that are similar only with respect to other
inputs that have little influence. Thus, unless a Pink X
(a second large cause) acts time to time, pairing will
decrease the precision of the conclusions. This loss
may be important due the recommended small sam-
ple sizes.

A paired comparison conducted on arbitrary con-
structed pairs has been suggested in Bhote and Bhote
(2000). With arbitrary pairs, the conclusions of the
analysis depend on the way pairs are produced
and, on average, the sensitivity of the procedure will
be lower than that of the unpaired analysis. In gen-
eral, pairing seems a bad idea in this context.

TOLERANCE PARALLELOGRAMTM

A tolerance parallelogram is used to establish
appropriate specification limits for a dominant cause.
We select a number of parts with output values that
cover the full range of variation and measure the
value of the output and the dominant cause on each
selected part. Constructing a scatterplot and, using a
specified proprietary procedure, we derive the toler-
ance limits for the dominant cause from the output
specifications taking into account the residual
variation in the output. See Figure 6 where we used

prediction intervals from a simple regression model
for this task. The idea is that if we control the domi-
nant cause within its derived tolerance range, the
output will be controlled with the desired specifica-
tions. At this stage, there is no effort to determine
how to exert the required control of the dominant
cause. If the residual variation is too high (e.g., the
cause is not sufficiently dominant), then there will
be no tolerance left for the cause. We can extend
the methodology to the cases where a dominant
cause is an interaction between two inputs or where
there is more than one dominant cause, using a more
complex model.

B VS. CTM AND FACTORIAL
EXPERIMENTS

B vs. C is a simple experimental plan used to com-
pare two treatments or process conditions repre-
sented by the letters B and C. One use in SS is to
verify that an identified cause is dominant after other
clue generation tools have led to a single suspect. A
second use is to validate a solution when, for
example, the goal is to shift the process center or
reduce a defect rate. In the validation application,
the letters B and C denoted the ‘‘better’’ (we hope)
and ‘‘current’’ conditions. Note that for verification
of a suspect cause, the better and current termin-
ology may not be appropriate.

In the simplest recommended plan, three units are
produced under treatment B and three under
treatment C. Bhote and Bhote (2000) call this the
‘‘six-pack test.’’ The levels for the suspect dominant
cause for the B and C runs are selected at the

FIGURE 6 Using regression to set specification limits
(tolerances) for the dominant cause (x) given a tolerance for the
output (y).
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extremes of the variation of the suspect in normal
production. The order of the six runs is randomized.
The recommended analysis is based on the end
count scheme discussed in the group comparison
section. Only if the output values for the three B runs
and the three C runs separate in the expected direc-
tion have we verified the dominant cause. Tukey cre-
ated this test as a one sided test of hypothesis; no
change versus change is a specified direction. A sam-
ple size of six units has low power but, by taking
larger samples, power can be increased. Since we
must see most of the full range of variation in the
output if we have a dominant cause, the formal
hypothesis test is essentially irrelevant here.

When validating a solution, the use of the compact
end count test is undesirable since the loss of power
versus a wide selection of parametric or other non-
parametric tests could lead to the abandonment of
an improved way of operating the process.

SS makes use of full factorial experiments to iso-
late a dominant cause among a short list of suspects
(Shainin and Shainin, 1990). The plan and imple-
mentation of the experiment with its careful attention
to the selection of levels of the suspects and the use
of randomization is highly recommended, as is the
use of plots of the data. Here the formal analysis
based on a sequence of end-count tests leaves much
to be desired. The first step is to calculate the effects,
and then examine the significance of the largest,
ignoring the selection effect, by rank ordering the
output based on the levels of the selected factor.
Next, the second largest effect is formally tested by
rank ordering and determining the end count of
the residuals from the first analysis. In this way, we
have removed the effect of the Red X. And so on
for the smaller effects. This procedure has the color-
ful name Pink XTM shuffle (see Shainin and Shainin,
1990 for a detailed description). It is opaque and suf-
fers from both selection effects and multiple testing
issues. At each stage, the test is not based on the
residual variation as established by the experiment,
but also includes the variation due to the other fac-
tors being studied. This reduces the sensitivity of
the method at the first step and can be devastating
at the second step. To our knowledge, no one has
extended the Tukey method to factorial experiments.
We suggest a standard analysis using effect plots,
probability plots of the effects and an analysis of
variance to complement the excellent design.

PRECONTROL

Precontrol (also called stoplight control), first
introduced by Satterthwaite (1954), is used to signal
the need for a process adjustment. In SS, precontrol
is applied to the dominant cause using specification
limits developed with a Tolerance ParallelogramTM

as described above. Shainin (1995) writes ‘‘If the
Red X can’t be controlled with an irreversible correc-
tive action, then precontrol needs to be put on the
Red X. SPC [Precontrol] is always more effective
when it is used on the Red X instead of the Green Y.’’

To implement precontrol, parts are sampled and
measured according to a periodic schedule. The
specification range is divided into three zones as illu-
strated in Figure 7:

. Green is go, and for a two sided tolerance occu-
pies the middle half of the specification range,

. Yellow is the warning zone and covers the outside
quarters of the specification range,

. Red is stop and includes anything outside the
specification range.

Precontrol is conducted using the following rules
(there are many variations on this theme):

i. Set-up or after an adjustment: OK to run when five
parts in a row are green.

ii. Running: Sample and measure two consecutive
parts on a fixed frequency.

. If first part is green, continue to run.

. If first is yellow, check the second part – if it is
yellow or red, stop and adjust.

. If first is red, stop and adjust process.

FIGURE 7 An example of precontrol zones.
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Of all the tools prominent within SS, precontrol
has received the most attention in the research litera-
ture. For example, see Shainin (1984), Traver (1985),
Salvia (1987, 1988), Shainin and Shainin (1989),
Mackertich (1990), Gruska and Heaphy (1991),
Ermer and Roepke (1991), Ledolter and Swersey
(1997a), Steiner (1997–1998).

To be successful, precontrol requires good specifi-
cation limits and a process that operates within these
limits in the short term. Otherwise, it will be difficult
to get five parts in a row in the green zone to start. Since
precontrol is a feedback adjustment scheme, it can only
be effective if the process drifts slowly or jumps and
sticks. Precontrol may result in increased variation if
used on a process that has large part-to-part variation.
Although it is often compared to statistical process con-
trol (SPC), the goal of precontrol is to identify the need
for adjustment. It is not useful for process monitoring
nor for the identification of the action of special causes.
More sophisticated control and feedback schemes,
such as proportional-integral-derivative (PID) control-
lers (see del Castillo, 2002), are alternatives that may
yield better results. Note that, while precontrol signals
the need for an adjustment, it does not include an
adjustment rule which is required to implement the sys-
tem in practice.

SUMMARY

The guiding principles of the Shainin System are
powerful, and, at least in combination, unique. They
include the application of Juran’s Pareto principle to
the contribution of the causes, the emphasis on using
observational investigations in the diagnostic jour-
ney, the search for a dominant cause using the pro-
cess of elimination and the use of leveraging. SS
deals carefully with the problem of possible con-
founding of suspect causes by conducting a small
verification experiment. We think that the principles
and tools related to the diagnostic journey are gener-
ally very strong. Those related to the remedial
journey are much weaker. This may be the case
because once a dominant cause is identified, in some
instances, the remedy is obvious and no further
investigations are needed.

The Shainin System, as reflected by the genesis of
the methodology in manufacturing, is best suited for
medium to high volume production. Most of the
tools implicitly assume that many parts are available

for study. When using leverage, where the investiga-
tions involve only a small number of parts, there
must be a substantial amount of measurement to find
the parts with extreme values. Like many other sys-
tems with strong statistical components, SS does
not handle well situations where there are few parts
to ‘‘talk to’’ such as in the design and development of
new products or processes.

Although our assessment of SS is strongly positive,
there are some unfortunate aspects about its pro-
motion. Most notably, many of the specific tools and
the whole approach have not been subject to a peer
reviewed public discussion. This may be because much
of the specific terminology is trademarked and is thus
legally protected. We feel this is unfortunate since it
has reduced the dissemination of what we think is an
excellent approach. Also, some books that promote
the methodology, such as Bhote and Bhote (2000),
are full of unhelpful hyperbole that limits discussion
of feasible alternatives. In our experience, there is also
a rigidity with which the methodology is presented. In
many situations, other statistical tools, such as
regression, time series, and analysis of variance, could
be very useful, but are not employed because they are
not formally part of the SS tool bag.
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