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Products with high product variety are often made in a manufacturing process (or a supply
chain) consisting of multiple stages, with products taking certain features or ““personalities”
at each stage. The product may start as a common single engine. As the product moves along
manufacturing process, more features are added, and the product assumes more identities of
the final end product. When demands of the end products are variable from period to period,
the production volumes of the intermediate stages in the manufacturing process are also vari-
able. It is widely recognized that variabilities of production volumes may add cost to the process.
This paper is motivated by our observations in industry, where some companies have reengi-
neered the manufacturing process by reversing two consecutive stages of the process. Such
changes could lead to variance reduction, thereby improving the performance of the process.
We develop formalized models that characterize the impact of such changes: operations reversal.
These models are used to derive insights on when such reversal would be advisable.
(Restructuring; Process Design; Operations Sequencing)

1. Introduction

Today's market of industrial and consumer products is
characterized by a proliferation of product variety.
Product variety, however, can add significant manufac-
turing costs to the product (see, for example, Child et
al. 1991). To compete successfully, companies need to
develop manufacturing capabilities that would allow
them to be able to offer a high degree of product variety
but with low supply chain cost. Recently, we begin see-
ing concepts such as “mass customization,” “‘agile man-
ufacturing,” and “flexible processes” as critical ways for
companies to gain control of product variety (see Pine
et al. 1993, and Fisher et al. 1993).

Product variety usually follows a product structure
that is often arborescent in nature. Fisher et al. (1993)
labeled this product structure as the “product hierar-
chy.” In describing such product structure in automo-
biles, Fisher et al. (1993) started the hierarchy with a
platform, which then branched out to multiple models
and body styles, which in turn branched to multiple
packaged options, followed by stand-alone options. Lee
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and Billington (1994) described how product fanout can
occur for high technology products. Products are often
made in a supply chain consisting of multiple stages,
with products taking certain features or “personalities”
at each stage. These stages can be described as (1) man-
ufacturing, (2) integration, (3) customization, (4) local-
ization, and (5) packaging (see Lee and Billington 1994).
The product thus starts as a common single engine. As
the product moves along the manufacturing process (or
a supply chain), more features are added, and the prod-
uct assumes more identities of the final end product.

Figure 1 depicts the product structure or hierarchy.
Demands of the end products are highly variable
from period to period. Consequently, production vol-
umes of the intermediate stages in the manufacturing
process are also variable. It is widely recognized that
variabilities of production volumes may add cost to the
process (Lee and Billington 1993). Such variabilities can
.be significantly reduced by standardization of the inter-
mediate processes and components, a concept known
as “form postponement” in industry (see Lee and Bil-
0025-1909 /98 / 4402/ 0162505.00

Copyright © 1998, Institute for Operations Research
and the Management Sciences



Dr Lozano
Resaltado

Dr Lozano
Resaltado

Dr Lozano
Resaltado

Dr Lozano
Resaltado


LEE AND TANG
Variability Reduction Through Operations Reversal

Product Hierarchy

O

e

lington 1994, and Lee and Tang 1996). There are, how-
ever, potentially other ways in which variabilities can
be controlled by reengineering the manufacturing pro-
cess, leading to better operational performance in the
form of lower inventories, higher customer service, and
lower operating costs. One such reengineering effort is
reversing the sequence of two consecutive stages in a
manufacturing process or a supply chain. The classic,
and by now well-known, Benetton case (Harvard Busi-
ness School Case 1986, Dapiran 1992) is an example of
such an effort.

As a major apparel manufacturer, Benetton used to
manufacture its product by first dyeing yarns into dif-
ferent colors, and then knitting the colored yarns into
different finished products (different styles and sizes).
Mismatch of inventory of finished garments with dif-
ferent colors had resulted in costly end-of-season mark-
downs. Luciano Benetton, the chairman of Benetton,
was credited with his innovative reengineering of the
supply chain by reversing the “dyeing”” and “knitting”
stages (see Harvard Business School case 1986, and
Bruce 1987). Hence, bleached yarns are knitted into the
different styles and sizes, and then dyed into the differ-
ent colored end products when the season’s fashion
preferences become more established. For this change,
the yarns have to be treated in a strong chemical solu-
tion to increase their receptiveness to dye. Such a
change was considered to be a major breakthrough for
Benetton to significantly improve its operational perfor-
mance. Inventory reduction, better customer service, in-
creasing sales, and fewer write-downs were reported
(Dapiran 1992). Figure 2 illustrates such operations re-
versal innovations at Benetton.

It is probably intuitive as to why Benetton’s opera-
tions reversal could lead to improvements when there
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Figure 2 Operations Reversal at Benetton
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is only one single style and size, but multiple colors of
the end product. Suppose the total aggregate demand
is constant, but there exists uncertainties regarding the
color of the end product demanded by the customers.
While the demand variabilities of the end products re-
main unchanged by this reversal, the reversal of the two
operations would then effectively reduce the produc-
tion variability of the first operation, since we are essen-
tially knitting a single product at that stage (instead of
dyeing multiple colored yarn at the first stage). In this
case, the reversal of the operations delays the point of
product differentiation. Figure 3 illustrates this point.
This is true even if knitting and dyeing take the same
amount of time. Of course, if knitting is a longer oper-
ation, then the reversal of the two operations would
vield even greater benefits.

Figure 3 Operations Reversal at Benetton: Single Product Style with
Four Color Choices
Knit

Dye

Dye
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One question that one might ask is: if the aggregate
demand of the end products is not constant, but highly
variable, would the same result hold? Moreover, when
Benetton's product variety is due to features like style,
size and color, and when there are multiple options for
each of the features, it is also not at all clear why the
operations reversal as shown in Figure 2 would give bet-
ter operational performance. With the advances in au-
tomation in the knitting operation, it is also no longer an
operation that takes a much longer time to complete, so
that the time postponement effect may not be there
anymore as well. Why, then, is “knit before dye” better
than “dye then knit"’? Well, the answer could very well
be that it is sometimes better, and sometimes not. As
Bruce (1987) reported, Benetton only made 20% of its
woolen production using the reengineered process. A
better question is then, under what circumstances should
“knit before dye” be better than “dye before knit”?

There are other examples similar to the Benetton case
where the answer to whether operations reversal should
be carried out is not obvious. Consider the manufactur-
ing of the hard drive for a personal computer. One fea-
ture of the hard drive could be the memory size and
another feature of the hard drive could be the ““pre-
loaded” software. In this case, the options with respect
to memory size could be 80 MB or 120 MB, and the
options with respect to preloaded software could be
software for WINDOWS applications or DOS applica-
tions. In this example, a hard drive as an end product
has four options: 80 MB with WINDOWS applications,
80 MB with DOS applications, 120 MB with WINDOWS
applications, and 120 MB with DOS applications. It is
possible to insert the hard drive into the motherboard
first, and then install the software afterward. However,
it is also possible to install the software onto the hard
drive by using a “dummy”’ motherboard before insert-
ing the hard drive into the motherboard. The question
here is: which is better? If both installations take negli-
gible times and are inexpensive, then it is probably im-
material as to which should be installed first. However,
if extensive testing is required for the installations, and
with capacity constraints, then the variabilities of pro-
duction matter, and the sequencing of the two opera-
tions would also be important.

Hewlett-Packard (HP) Company’s Deskjet Printer Di-
vision also faces a problem similar to the one described
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above. The variety of the end product is a result of sev-
eral key features: MAC versus DOS, color versus mono,
and the country options. The sequencing of the manu-
facturing stages in a supply chain in which production
differentiation by these features requires some engi-
neering design efforts, but it is not at all clear as to
which sequence would give superior operational per-
formance.

Gupta and Krishnan (1995) also described how rese-
quencing the steps in the assembly of a fountain pen
can lead to process improvements. In one sequence, the
nib is first assembled to the nib-head, followed by the
assembly of the inner and outer bodies. In another se-
quence, the nib-head is first assembled to the inner and
outer bodies, before adding the nib. Gupta and Krish-
nan showed how these two sequences can have very
different process flexibility and efficiency in the manu-
facturing of fountain pens.

This paper is motivated by our observations in in-
dustry, where some companies have reengineered the
manufacturing process by reversing two consecutive
stages of the process. Under what circumstances would
such changes lead to variance reduction, thereby im-
proving the performance of the manufacturing process?
What are the key drivers? To address these questions,
we developed formalized models that characterize the
impact of such changes: operations reversal. These
models are used to derive insights on when such rever-
sal would be advisable.

We have used the Benetton example to motivate this
study. Although we do not have detailed data to per-
form a complete analysis of the Benetton case, we will
be referring to this example merely as a means to illus-
trate the insights and results. Without a complete anal-
ysis, we are not in a position to make strong statements
on the exact applicability of the results to the specific
case of Benetton.

In the next section, we present the model formulation
for the case of two stages, representing two distinct fea-
tures of the product, and where there are two options
for each feature. Section 3 gives results for the special
case when the choices for the options of the two features
are independent, which help our understanding of the
questions posed before. Section 4 describes how the in-
dependent choice case can be extended to more general
settings, as well as some corresponding results and their

MANAGEMENT SCIENCE/ Vol. 44, No. 2, February 1998



Dr Lozano
Resaltado

Dr Lozano
Resaltado


LEE AND TANG
Variability Reduction Through Operations Reversal

insights. We conclude the paper with summary of re-
sults and a description of how the independence as-
sumption of feature option choices can be relaxed.

2. The Basic Model

Consider a manufacturing process with two stages. At
each of these stages, a particular feature of the product
is defined through an installation or customization pro-
cess. Hence, there are two features under consideration
for these two stages. For each feature, there are two
choices. As a result, there are four distinct end products,
each being characterized by the choice defined on the
two features. Let A and B denote the two features. The
question is: should we sequence the supply chain so that
A is installed first, followed by B, or vice versa?

Suppose that the production control of the two stages
is as follows. The process operates like a pull system.
Hence, in each time period, the production volumes for
the second stage are such that they equal the demands
for the end products of the previous period. Similarly,
the production volumes for the first stage correspond to
the requirements of the previous period. Such a pro-
duction control rule is actually used by Benetton, which
calls such a system “consumer-pull,” as opposed to the
build-to-forecast alternative of “buyer-pull” (Zakon
and Winger 1987). When the stages of the production
system operate under order-up-to point type of inven-
tory policies (see Clark and Scarf 1960), then indeed the
production volume for every stage would correspond
to the demand of the previous period, and so the as-
sumption of pull operating policy is valid. Order-up-to
point type of inventory policies are commonly used in
practice, and indeed have been shown to be optimal for
serial inventory systems under some general assump-
tions (Clark and Scarf). For this reason, we will concen-
trate on pull type systems here, and will not consider
more complex production planning systems such as
production smoothing.

For example, suppose we start with a process where
the two stages correspond to feature A being installed
before feature B. Let X,; denote the demand of the end
product with choice i of feature A, and choice j of feature
B, i, j = 1, 2. The production volumes for the second
stage (B) would correspond to the demands of the four
end products in the previous period, i.e., the Xjs. The
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production volumes of the first stage, which corre-
sponds to the installation of feature A, would then be
X + Xip, for i = 1, 2. The production volume for the
basic engine, before the installation of features A and B,
would then be Xn 4% XIZ =4 X21 i Xzz.

There are many dimensions in which operations re-
versal could be evaluated upon. For example, one needs
to consider cost (engineering cost to retool, and variable
processing cost), quality (e.g., process yield), and speed
(e.g., manufacturing lead time) associated with the two
alternatives. These basic factors relate to the processing
technologies, the complexity of different processes, the
labor cost, and other factors. In this paper, we assume
that the cost consequence of operations reversal can be
evaluated off-line, and focus on the value of variance
reduction in operations reversal. Specifically, we focus
on the variability of production volumes in the process.

Why are we concerned with the variability of pro-
duction volumes in the manufacturing process? First,
variability drives buffer inventory. If there are buffer
inventories, then these buffers are often set as a function
of the variability of downstream requirements. Our pull
system means that the production volumes are the same
as the requirements, and therefore the variabilities of
production volumes are the same as the variabilities of
requirements. Second, high variability of production
volumes are often associated with degradation of qual-
ity, process yields, machine downtimes, and other effi-
ciency measures. Third, high variability also makes staff
planning more troublesome. Often associated with high
variability are overtimes, use of subcontractors, tem-
porary workers, as well as additional costs of other ex-
pediting services.

For the two-stage case under consideration, it is clear
that the variabilities of the four end product options
would not be affected by operations reversal. Similarly,
the variability of the production volumes of the input
base engine would also be unaffected. Hence, we can
concentrate on the variabilities of the intermediate stage,
namely, that of the first stage. With two choices, we have
the variabilities of two production volumes, one for each
choice. Here, we simplify our consideration by defining
the sum of the variabilities, i.e,, the total variability at the
first stage, as our key variability measure.

The total variability as a key performance measure
certainly has its limitations. Ideally, one would like to
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model the exact consequences of variabilities in the
form of inventory, overtimes, expeditions, capacity, and
other costs. We use the total variability measure for sim-
plicity. Moreover, it has often been used in the literature
as a way to mimic the nonlinear nature of production
costs. For example, Johnson and Montgomery’s classic
text (1974, p. 227, 231) uses the sum of quadratic costs
on production level changes and inventory level
changes to highlight the nonlinear nature of such cost
impacts.

In most cases, the demands for the end product op-
tions are negatively correlated. To capture these corre-
lations, we assume that the demands for the end prod-
uct options (X, X2, X21, X22) are random variables that
are multinomially distributed with parameters (N; 6,;,
B2, B2y, 02), where N is the size of the demand, i.e., the
number of customers who will buy the product in each
period with one of the four options. Assume that N is a
random variable with mean x and standard deviation
a. We also assume that the total demands in different
periods are independent.

Here, 6 represents the probability that the customer
will purchase the product that has choice i of feature A
and choice j of feature B. Such a demand model would
result in:

E(X;|N) = N8;, Var(X;|N) = N1 - 6;), and

Cov(Xy, Xm|N) = —=NO;,,,, forij =mn. (1)

Thus, the negative correlations among the options are
captured.

Instead of trying to estimate #; directly, we use the
following intermediate parameters. Let:

p = probability that a customer will purchase a prod-
uct with choice 1 of feature A, given that he/she will
purchase a product. Hence, 1 — p is the conditional
probability of a customer buying the product with
choice 2 of feature A.

f(p) = Prob(B1|Al) = conditional probability that
the customer buys the product with choice 1 of feature
B, given that the customer has decided to purchase the
product with choice 1 of feature A.

g(p) = Prob(B1|A2) = conditional probability that
the customer buys the product with choice 1 of feature
B, given that the customer has decided to purchase the
product with choice 2 of feature A.
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Note that the conditional probabilities f(p) and g(p)
enable us to model the interactions between product
features and between choices. The probability of a cus-
tomer purchasing product with different options is de-
picted in the following diagram (Figure 4).

Given such a probability structure, we can derive:

fu = pf(p), b =p[l - f(p)l, 6xn=(1-p)gp),

0 = (1 = p)I1 - g(p)l-

We will use the well-known probability relationship
that, for two random variables X and N, then:

Var(X) = E[Var(X |N)] + Var[E(X |N)].

We refer to E[Var(X | N)] as the expectation of the con-
ditional variance, and Var[E(X|N)] as the variance of
the conditional expectation.

Denote A-B as the sequence of a process whereby the
feature A is installed before feature B, and B-A as one
with feature B installed before feature A. As discussed
before, we focus on the variances of the intermediate
stage. It can be easily verified that, for A-B, the total
conditional variance is 2Np(1 — p), so that the expec-
tation of the conditional variance is 2up(1 — p). The sum
of the variances of the conditional expectation is o*[p*
+ (1 = p)*]. The total variance measure is thus

2up(1 — p) + a*(p* + (1 = p)’]
=2(u — o?)p(1 — p) + o

For B-A, the expectation of the total conditional vari-
ance is

2ulpf(p) + (1 = p)g(P)I1 = [pf(p) + (1 = p)g(P)]).

The sum of the variances of the conditional expectation
is

A Two-Stage Model: 2 Features = 2 Choices System

(Demand)
X11

Figure 4
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a*lpflp) + (1 = p)e(p)I?
+ {1 = [pflp) + (1 = p)g(IP).

The total variance measure is now:

2(u = o)[pflp) + A1 = p)g(p)]
A1 = [pf(p) + (1 = p)g(P} + 0.

Taking the difference, we observe that the sequence A-
B has a smaller total variance than B-A if C(p) < 0, where:

C(p)=(u—a®)p(1 —p) = [pfip) + (1 = p)g(p)]
=[pfi(p)+A=pgItt.  (2)

Note that, when p = o, the sequencing of the features
is immaterial. This would be the case of Poisson demands.

3. Independent Feature Choices

In §§3 and 4, we consider the case in which the choice
selection of one feature is independent of that of the
other feature, i.e., f(p) = g(p) = q, where g is the prob-
ability of a customer selecting choice 1 of feature B and
is a constant that is independent of p. We will come back
to the general case in §5.

3.1. Two Choices, Two Features

Here, C(p) = (u — o?)[p(1 — p) — 4(1 — q)]. Hence, for
stable total demand so that u > o?, then condition (2)
is reduced to p(1 — p) < g(1 — q). Observe that, for 0
= x = 1, the function x(1 — x) is first increasing in x,
attains its maximum at x = 0.5, and is decreasing in x
thereafter. Hence, when u > o?, sequence A-B has a
lower variance as long as the choice probabilities asso-
ciated with feature A (i.e., p) are more “distinctive” than
those of feature B (i.e., ). This implies that one can
lower the total variance of the system if the feature with
more “distinctive” or “imbalanced” choice probabilities
is processed first. There is more “risk-pooling” by se-
quencing stages this way. Note that this result applies
to the case with two distinct choices for each feature,
and the more general case of multiple choices will be
discussed in §5.

What kind of inference can we draw from this result?
Let us use the garment example again. Suppose that the
total demand of a certain type of garment is fairly stable,
but the product mix in terms of style and color is variable.
If the choice probabilities of style is more distinct than
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those of color, then our result says that by processing the
style feature before the color feature, then the total vari-
ance would be reduced. This implies that the knitting op-
eration should be performed before the dyeing operation.

The reverse, however, is true if u < o This is a sur-
prising result. It states that the nature of total demand
uncertainties is very critical in determining whether op-
erations reversal is an effective means to reengineer the
supply chain. When the total demand is highly variable,
then by installing the feature with more imbalanced
choice probabilities first, the production volume fluctu-
ations could be magnified, leading to such a sequence
being undesirable this time. In the Benetton example, it
seems like the total demand for apparel items like sweat-
ers is fairly stable, but it is the color, style, and size option
mixes that are highly variable. On the other hand, there
are other cases, like high technology products such as
computer workstations, where the basic demand itself is
highly variable. To copycat the Benetton-like operations
reversal without understanding the nature of total de-
mand variabilities could thus be dangerous.

Amazingly, it turns out that this condition p > o on
the nature of total demand variability is a very impor-
tant one, as will be shown below. To gain some more
understanding as to why such a condition would lead
to such contrary result, we consider the following spe-
cial example. Suppose we have one style and two colors:
red and blue. Let the probability of red being chosen be
p. If we knit before we dye, then the total variance after
the knitting operation is simply o*. Now, if we dye be-
fore we knit, then the variance of red yarns after dyeing
is up(1 — p) + o°p*, whereas that of blue yarns is up(1
= p) + o*(1 = p)*. The covariance of blue and red yarns
is given by [Var(red and blue yarns) — Var(red yarns)
— Var(blue yarns)]/2 = (¢ — p)p(1 = p). If u > o2,
then the covariance is negative, and as expected, the
variance of the aggregate demand is smaller than the
sum of the individuals. On the other hand, if the reverse
is true, then the covariance is positive, leading to the
variance of the aggregate demand being greater than the
sum of the individuals!

3.2, Multiple Choices, Two Features

The above analysis can be extended to the case when the
number of choices for each feature/stage exceeds two,
as long as the number of stages in the process (and the
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corresponding number of features of the product) re-
mains at two. Let p; be the probability that choice i of
feature A would be chosen by the customer, and let g, be
the probability that choice j of feature B would be chosen
by the customer, wherei=1,...,a;andj=1,..., b.

We can easily show that total variability measure for
sequence A-B is given by:

p2p(l=p)+o Zpl=p—(u=0a) % pi
i=1 i=1 i=1
The corresponding result for the sequence B-A can be
easily derived. For sequence A-B to have lower total
variance, we need:

a b
(u — az)(Z pr—3 qf) >0, (3)
i=1 j=1
If 4 > o7, then essentially the same conclusion as before
holds, i.e., sequence A-B has lower total variability

when =, p? > =, ¢7. The reverse is true otherwise.

Note that the p;s and the gs sum to one, and that Zf.,
p? attains its minimum when all the p;s are equal. If a = b,
then we can obtain a qualitative interpretation of the result
here. When we have stable total demand, then the feature
with less “balanced” probabilities of the choices should be
sequenced first to reduce system variabilities. When we
have highly variable total demand, then the reverse is true.
This result is certainly in line with that of §3.1.

Suppose further that the choice probabilities of the
choices for each feature are equal. Hence, the choice
probability of a particular choice of feature Ais 1/a, and
the corresponding probability for B is 1/b.

Using the same definition of #; and X;, as before, note
thatf; =1/abforalli=1,...,aandj=1,...,b. Using
(1), we get: E(X;|N) = N/ab, Var(X;|N) = N(1/ab)(1
— 1/ab), and Cov(Xjj, Xum|N) = —N(1/ab)* for ij # mn.

Under the sequence A-B, the conditional production
volume variance for each choice of A is given by N(1/
a)(1 — 1/a). This result can be obtained from standard
probability theory, or can be obtained as:

Var()'i X N)

j=1
=} Var(X,,) 3 b(b e l)COV(X,'j, X,n)
=BN(1/ab)(1 —1/ab) + b(b — 1)[—N(1/ab)?]
= N(1/a)(1 - 1/a).
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Hence, the expectation of the total conditional variance
for the first stage production is au(1/a)(1 — 1/a) = p(1
— 1/a). For each choice of feature A, the expected pro-
duction volume, for a given N, is N /a. Hence, the vari-
ance of this expectation is ¢*/a’. Since there are a such
choices, the total is o / a. The total variance measure for
the first stage is now: (1 — 1/a) + e*/a = p = (u
— a*)/a. The corresponding variability measure for the
sequence B-A is u — (u — o?)/b. If p > 0%, i.e, stable
total demand, then the sequence A-B has lower total
variance if @ < b.

Let us revisit our garment case, For illustrative pur-
poses, suppose that the total demand is fairly stable, and
suppose the features of style and color have choices that
are roughly equal in attractiveness to customers. If the
number of style choices is smaller than the number of
color choices, then knitting before dyeing would give
lower variabilities to the supply chain. On the other
hand, if the total demand is highly variable, then the
“knitting before dyeing” strategy would not be effective.

3.3. Two Choices, Multiple Features

For this case, let p; be the probability of a customer
choosing choice 1 of feature k, where k = 1, ..., m and
that m is the number of the stages / features. By using a
simple interchange argument, it can be easily shown
that, if u > o, then the total variance of the production
volume at the intermediate stages is minimized by se-
quencing the stages / features in ascending order of p;(1
— p:). This is equivalent to sequencing the stages/ fea-
tures in descending order of [0.5 — p,|. We omit the
details for this proof.

34. Multiple Choices, Multiple Features

The result of §3.3 can be easily generalized to the case
of multiple choices and multiple features. In this case,
suppose p; denotes the probability that choice j will be
chosen for feature i, then, when p > ¢?, the total vari-
ance of the production volumes at all the intermediate
stages is minimized by sequencing the stages/ features
in descending order of Z; pj, where the summation is
over j, the possible choices of feature i. The proof is
straightforward, and is omitted here.

4. Incorporating Leadtimes

So far, we have considered the variabilities of produc-
tion volumes of each period. Implicitly, we have as-
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sumed that the production in each period is completed
within the same period. When this is not the case, and
in particular, when the leadtimes for the two stages un-
der consideration are not equal, then we need to expand
our definition of variabilities. This is especially impor-
tant when we are considering operations reversal in a
supply chain, where the two stages can be located at
different sites and therefore the leadtimes would in-
clude the transportation times into the sites, which
could often be very different.

Consider a stage. In each period, there is of course the
production initiated in this period. When production
leadtime is greater than one, than we also have volumes
that are work in process. Suppose that demands over
time are independent. Then, since we initiated a pro-
duction volume in each period equal to the demand of
the previous period, the total work in process should be
equal to the total demand of the past periods that is of
exactly the duration of the leadtime. Hence, the variance
of the total work in process is the variance of demand
in leadtime. With unequal leadtimes for the two stages,
we will thus concentrate on this measure of variability
in our analysis in this section. Such a measure is also
useful if we are concerned with having to use invento-
ries at the end of the stages to buffer against uncertain-
ties. It is well known that the key driver to buffer in-
ventories is leadtime demand variabilities.

This time, we cannot just focus on the variabilities of
the first stage. The variances at both stages have to be
accounted for. Moreover, it is likely that the impacts of
variability at the two stages of the supply chain are dif-
ferent. In other words, variabilities at one stage may be
more harmful than the other. For example, if safety
stocks at the end of the two stages are of key manage-
ment concern, and since inventory value for stocks at
the end of the second stage would presumably be
greater than that of the first stage, then variability, a
driver of safety stock, at the second stage may be of
greater significance than that of the first one. In this sec-
tion, we consider the case when the measure of total
variability is obtained by applying some stage-specific
weights to the variabilities of two stages. Let w; be the
weight associated with the variability of stage i, i = 1,
2, if feature j is the first feature in the sequence, j = A,
B. For example, w,, corresponds to the weight applied
to the variability observed at the second stage for the
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sequence A-B. In this case, the second stage corresponds
to the stage where feature B is installed (and that feature
A would have already been installed prior to the second
stage.)

Let T, and T be the respective leadtimes (in periods)
for the two stages for feature A and B.

Consider the sequence A-B first. We refer to the der-
ivation in §3.1, and the total conditional variance for the
first stage is given by 2Np(1 = p)T 4. The variance of the
conditional expectation for the first stage is given by
a®[p* + (1 — p)*]T4. Using (1), the total conditional vari-
ability for the second stage, X;; Var(X;|N), can be sim-
plified to

N{1 = [p* + (1 - p)llg* + (1 — @)*liTs.

The corresponding variance of the conditional expec-
tation at the second stage is

o’[p* + (1 - pYllg* + (1 — 9)°]Ts.

Hence, combining these results, we see that the total
variability measure for sequence A-B is given by:

(4 = a*){2p(1 = p)Tawia
+ {1 =[p* + (1= p)llg* + (1 — 9)*1Twaall
=+ 62(T,1wm + TBTU:M). (4)

Similarly, for the sequence B-A, the corresponding mea-
sure is:

(1 = a®)29(1 = q)Tgwyp
+{1 =[P+ (1 = pFllg* + (1 = 9)*]Tawas))
+ o*(Tgwip + Tawzs). (5)

Consequently, sequence A-B would have a lower to-
tal variance if (5) is greater than (4). To isolate the im-
pact of leadtime and the relative weights applied to the
two stages, we make the assumption that p = g so as to
gain more insights.

Suppose wy; = w, i.e., equal weights are applied to the
variabilities at the first and second stages. Then the con-
dition for (5) to be greater than (4) becomes:

(p = o) (Ts — Ty)
=[P+ Q- pPP - 2p(1-p)} >0 (6)

In the appendix, we show that the expression
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1—[p* + (1 = p)’]* = 2p(1 = p) is always nonnegative,
for p € [0, 1]. Consequently, in a stable demand situa-
tion, i.e., u > o7, condition (6) is always satisfied when
T, > Tp. This is an intuitive result, i.e., when the choice
probabilities of the two features are similar and when
the total demand is fairly stable, then sequencing the
stage with the longer leadtime first would result in
lower total variability.

Back to our garment example. If style and color have
similar choice probabilities from customers, then per-
forming the knitting operation first is desirable, as knit-
ting takes relatively longer time than dyeing,

When p < o?, then interestingly, the reverse is true.

Earlier in this section, we argued that a motivation
for having differential weights for the two stages of the
supply chain could be that the value of buffer invento-
ries used to hedge against the variabilities at these two
stages are different. Because of this reason, one way to
define these differential weights is to apply the inven-
tory values at the end of the stages. Let v, and v be the
value added of feature A and B, respectively, and v be
the inventory value of the item entering the two stages
under consideration. Then, under the sequence A-B, the
inventory value at the end of the first stage after feature
A is added, is v + v,. The inventory value at the end of
the second stage, after feature B is added, is v + v,
+ . The corresponding values for sequence B-A are v
+ vg and v + v, + vy respectively. Hence, we can define:
Wa=T0+0s W =0+ vg and Wy = Wag = 0V + U4y
+ vp.

Again, consider p = ¢. Taking the difference of (5)
and (6) gives the following condition for sequence A-B
to have a lower total variability measure:

(1 = a®)(Ta — Tp)(v + va + vg)

{1 =[p* + (1 - pVP - 2p(1 - p)}
+ [2(n — o*)p(1 = p) + 0*)(Tavs — Tsva) > 0. (7)

Note that 2(u — o*)p(1 — p) + o is always positive.
Hence, if T4 = T, then (7) holds as long as u — o > 0
and v, < vg. This is probably a well-known result: se-
quence the stage with the smaller value-added first.
Similarly, if v, = vg, then (7) also holds as long as T,
= Ty

In addition, we have a simple sufficient condition for
(7) to hold. Suppose we have stable demand, i.e., u

170

> g*. The first term on the left-hand side of (7) has been
established to be positive if T, > Ty. Now, if we also
have vy /Ty > v4/ Ty, then (7) would hold. Hence, if
stage A takes longer time to process, and if the value-
added per leadtime for stage A is smaller than that of
stage B, then stage A should be performed before stage
B. Thus, an operation that takes longer and one that
builds up value of the product at a smaller pace is the
one that should be sequenced first. In a special case, if
the value-added of a stage is proportional to the lead-
time, then we have vy /Ty = v4/T,4, and (7) is always
satisfied if T4 > Tj.

5. Extensions

Sections 3 and 4 describe insights from analysis of the
case when the choice probabilities of the two features
are independent, i.e., f(p) = g(p) = q. More general cases
can be analyzed, although at the expense of increased
complexity. Several such examples are illustrated.

(i) Choice Interaction. To capture some interactions
of the choice probabilities of feature B as a function of
the choice of A, we can define f(p) = g, g(p) = rq, where
r € [0, 1/4g]. The parameter r represents the impact of
the choice selection of feature A on the choice selection
of feature B. To see that, suppose r > 1. Then the cus-
tomer would have a higher probability to choose choice
1 of feature B had he selected choice 2 of feature A.

A special case here is when r = 0. Here, f(p) = g and
¢(p) = 0. This situation occurs when there is a techno-
logical constraint on the choice selection. For example,
suppose feature A corresponds to the size of RAM in a
PC and feature B corresponds to the “preloaded” soft-
ware in the hard disk. These two features can be added
to the CPU in any sequence. Feature A has 2 choices: 2
MB or 1 MB, and feature B has 2 choices: WINDOWS
3.1 applications or DOS applications, Since WINDOWS
3.1 requires at least 2 MB of RAM, the customer is lim-
ited to only DOS applications if 1 MB RAM is selected.
This limitation is called “bundling,” where the 1 MB
RAM and the DOS applications have to be purchased
as a “bundle.” In this example, r = 0.

When r = 0, the choice probabilities associated with
feature B are perfectly distinctive for choice 2 of feature
A. Under this situation, we can show from (2) that C(p)
> 0 so that when the total demand is stable, it is more
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effective to sequence the stage corresponding to feature
B first in the process.

(i) Choice Reversal. Consider the case where f(p)
=g and g(p) = 1 — q. Thus, the customer’s choice se-
lection of feature B is completely reversed, depending
on the choice selection of feature A. In this case, the
reversal nature of the choice probabilities associated
with feature B causes the choice probabilities associated
with feature B less distinctive. This implies that, with
stable total demand, it is more beneficial to sequence
feature A first.

(iii) Feature Interactions. Suppose the features are
dependent, i.e., both f(p) and g(p) are dependent on p.
A simple way to model this dependence is to let f(p)
= g(p) = sp, where s € (0, 1/p]. The parameter s rep-
resents the impact of the choice selection of feature A
on the choice selection of feature B. If s > 1, then a
customer would have a higher probability to choose
choice 1 of feature B had he selected choice 1 of feature
A. When s is close to zero, we have a situation that is
similar to the “bundling’ case.

(iv) Joint Interactions of Feature and Choice. Suppose
f(p) and g(p) depend on p, and the choice selection of
one feature depends on the choice selection of the other
feature. A simple way to model these dependencies is
to let f(p) = rp and g(p) = sp where r, s € (0, 1/ p]. The
parameters r and s represent the impact of the choice
selection of feature A on the choice selection of fea-
ture B.

6. Conclusion
In summary, operations reversal has been found to be
a powerful means to reengineer a manufacturing pro-
cess or a supply chain. In this paper, we develop simple
models to gain insights as to when would operations
reversal be desirable. Using total variability as a mea-
sure, we note that there are several situations for which
operations reversal would be desirable. When the major
source of demand uncertainty lies in the option mix and
the total demand for all options is fairly stable, then the
resulting sequence should essentially have one or more
of the following properties:

(1) the resulting initial stage has more distinct choice
probabilities for the options of the feature installed by
that stage;
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(2) the choice probabilities are roughly equal for both
features installed by the two stages, but the number of
choices for the feature in the first stage is smaller than
the subsequent one;

(3) the first stage has longer leadtime than the sub-
sequent one, if the value-added of the two stages/ fea-
tures are roughly the same;

(4) the value-added of the first stage is smaller than
the subsequent one, if the leadtimes for the two stages
are the same; and

(5) the first stage takes longer to perform, but the
value-added per unit leadtime for the first stage is
smaller than or equal to the corresponding value-added
for the second stage.

When the total demand itself is highly variable, then
interestingly, the reverse of the above observations is
true, i.e., the properties of the sequence of the two stages
indicated above should be reversed.

A key limitation of the current paper is our use of the
total variability as a performance measure. Future stud-
ies can include the explicit modeling of the cost conse-
quences of variability directly. For example, if we are
concerned with safety stocks, then it may be the stan-
dard deviation instead of the variance that matters. In
that case, the performance measure could be the sum of
(weighted) standard deviations. It would be of interest
to see how, or under what conditions, the current results
would carry over in that case.

Design for supply chain management has been
viewed as a major design principle that could lead to
great savings in logistics costs and improvement in cus-
tomer service (see Lee 1996). This paper shows that the
reengineering efforts require careful planning, and un-
derstanding the nature of demand variabilities, the op-
tion choice probabilities, and the other characteristics of
the manufacturing system or the supply chain are nec-
essary. Our analyses have shed some light on when
such efforts would be worthwhile.

Appendix

PROOF OF 1 — [p* + (1 = p)** = 2p(1 = p) > 0. Let d(p) = 1
= [ + (1 = pPP = 2p(1 = p). It is clear that ¢(0) = ¢(1) = 0,
Moreover, ¢'(p) = 2(1 — 2p)*. Hence, ¢(p) is a function that is increas-
ing in p for p < 0.5, and decreasing in p € (0.5, 1). This shows that
¢(p)>0forp e (0,1). O
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