Effects of Parameter Estimation on
Control Chart Properties:

A Literature

eview

WILLIS A. JENSEN
W. L. Gore & Associates, Inc., Flagstaff, AZ 86003-2400
L. ALLISON JONES-FARMER
Auburn University, Auburn, AL 36849-5247
CHARLES W. CHAMP
Georgia Southern University, Statesboro, GA 80460-8098

WILLIAM H. WOODALL
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0439

Control charts are powerful tools used to monitor the quality of processes. In practice, control chart
limits are often calculated using parameter estimates from an in-control Phase | reference sample. In Phase
It of the monitoring scheme, statistics based on new samples are compared with the estimated control limits
to monitor for departures from the in-control state. Many studies that evaluate control chart performance
in Phase Il rely on the assumption that the in-control parameters are known. Although the additional
variability introduced into the monitoring scheme through parameter estimation is known to affect the
chart performance, many studies do not consider the effect of estimation on the performance of the chart.
This paper contains a review of the literature that explicitly considers the effect of parameter estimation
on control chart properties. Some recommendations are made and future research ideas in this area are

provided.

Key Words: ARL; Conditional Distribution; Marginal Distribution; Phase |; Phase 1l; Run-Length Perfor-
mance; Sample Size; Shewhart Chart; Statistical Process Control.

Dr. Jensen is a Statistician Associate in the Medical Prod-
ucts Division. He is a Member of ASQ. His email address is
wajensen@vt.edu.

Dr. Jones-Farmer is an Associate Professor in the Depart-
ment of Management. She is a Senior Member of ASQ. Her
email address is ajones@auburn.edu.

Dr. Champ is a Professor in the Department of Mathemat-
ical Sciences. He is a Member of ASQ. His email address is
cchamp@georgiasouthern.edu.

Dr. Woodall is a Professor in the Department of Statistics.
He is a Fellow of ASQ. His email address is bwoodall@vt.edu.

Vol. 38, No. 4, October 2006

349

ONTROL charts are known to be effective tools for
monitoring the quality of processes and are ap-
plied in many industries. When the parameters rep-
resenting some quality characteristic of the process
are unknown, control charts can be applied in a two-
phase procedure. In Phase I, control charts are used
retrospectively to study a historical reference sam-
ple. This use of charts includes defining the in-control
state of the process and assessing process stability to
ensure that the reference sample is representative of
the process. Once an in-control reference sample is
established, the parameters of the process are esti-
mated from this Phase T sample and control limits
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are estimated for use in Phase II. In Phase II, sam-
ples from the process are prospectively monitored for
departures from the in-control state. If the succes-
sively observed chart statistics are plotted within the
control limits, the process is deemed stable or in con-
trol. Chart statistics that are plotted outside of the
control limits are signals that the process may be out
of control and corrective action on the process may
be needed.

Most of the research that involves the develop-
ment and evaluation of Phase II control charts is
based of the assumption of some stochastic model
that serves as an approximation. In addition, the in-
control process parameters are assumed to be known.
For example, when univariate process data are as-
sumed to follow a normal distribution, the process
parameters of interest are the in-control mean, pq,
and in-control standard deviation, og. For serially
correlated data, parameters include time series model
coefficients. The assumption that the in-control val-
ues of parameters are known simplifies the develop-
ment and evaluation of control charts. In practice,
the parameters are rarely known, and control charts
are usually based on estimated parameters. When es-
timates are used in place of known parameters, the
variability of the estimators can result in chart per-
formance that differs from that of charts designed
with known parameters.

The potential weakness of using limited amounts
of data or using sample information that is not rep-
resentative of the process to determine control lim-
its has long been recognized. Shewhart (1939, p. 76)
wrote, “In the majority of practical instances, the
most difficult job of all is to choose the sample that
is to be used as the basis for establishing the toler-
ance range (control limits).” Collecting a represen-
tative sample of sufficient size will ensure accurate
control limits. However, much of the literature con-
tains underestimates of the amount of data needed
to obtain sufficiently accurate estimates of the con-
trol limits. For example, a typical recommendation
for X charts is to take 20-30 small samples in Phase
I (Montgomery, 2005, p. 168).

Woodall and Montgomery (1999) identified the ef-
fects of parameter estimation on control chart prop-
erties as an important research topic. Prior to 1999,
there was relatively little research done in this area
and only for a few types of charts. Since that time,
there has been much more research done on the is-
sue. In the recent articles, three major questions of-
ten arise: “Just how poorly (or well) might a chart
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perform if designed with estimates in place of known
parameters?”, “What sample size is needed in Phase
I to ensure adequate performance in Phase II?”,
and “How should the Phase II limits be adjusted
to compensate for the size of the Phase I sample?”
Research related to these three questions is consid-
ered in this review. It should be noted that some
procedures, such as self-starting control charts and
changepoint methods, avoid the distinction of Phase
I and Phase IT altogether and provide alternative ap-
proaches when process parameters are not known.

An important issue related to the effect of param-
eter estimation on control chart performance is the
selection of the best parameter estimator(s). There
has been considerable work published on what makes
for appropriate estimator(s) for various types of con-
trol charts. In the case of Shewhart charts, see, for
example, Cryer and Ryan (1990), Cruthis and Rig-
don (1991), and Derman and Ross (1995). In the case
of estimation in multivariate control charts, see Sul-
livan and Woodall (1996, 1998) and Vargas (2003).
These authors generally considered properties of esti-
mators such as the mean squared error or the ability
to detect various kinds of process changes in Phase
I, rather than the Phase II performance of the con-
trol chart. While an important issue, this work is not
explicitly reviewed in this paper.

Control Chart Performance Measures

Performance measures are needed to study and
compare the performance of control charts. Aroian
and Levene (1950) considered several performance
measures in the case of known parameters and rec-
ommended aspects of the run length distribution to
evaluate control chart performance. The run length
(RL) of a control chart is a random variable that rep-
resents the number of plotted statistics until a signal
occurs. If the plotted statistics are independent and
identically distributed (i.i.d.) random variables and
the control limits are known constants, such as can be
the case for Shewhart charts, the RL is a geometric
random variable with parameter Pr(signal), repre-
senting the probability that a single chart statistic
falls outside of the control limits. Furthermore, the
RL follows a geometric distribution no matter the as-
sumed distribution of the data, as long as the plotted
statistics are i.i.d. random variables. If the process is
in control, the probability of a signal is related to the
frequency of false alarms. However, when parameters
are estimated, the RL distribution is not geometric
and thus the probability of a signal does not have a
meaningful interpretation.
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An intuitively appealing and more widely applica-
ble measure of control chart performance is the av-
erage run length (ARL). The ARL is the expected
number of plotted chart statistics before a signal
is observed. A typical X chart with 3-sigma limits
based on known parameters has an in-control ARL
of 370 under the assumption of normally distributed
data. This indicates that a practitioner can expect
to obtain a signal, on average, once in every 370
plotted statistics. The out-of-control ARL is a mea-
sure of how quickly an out-of-control situation will
be detected. If the RL of a chart is a geometric
random variable, the chart’s in-control and out-of-
control ARLs are computed as 1/(Pr(signal)). The
ARL is the most common measure of control chart
performance, and much of its popularity is due to its
intuitively appealing interpretation. Thus, it is often
used to design and to compare the performance of
control charts.

Fortunately, it is usually true that the in-control
ARL is larger than the out-of-control ARL for any
size shift in the process. A control chart for which this
property holds is defined as an ARL-unbiased chart.
Krumbholz (1992) developed a method for obtaining
an R chart with this property. Champ and Lowry
(1994) gave a method for designing an ARL-unbiased
S chart, which was used by Champ (2001) to design
an R chart with this property. ARL-unbiased charts
were also discussed by Acosta-Mejia and Pignatiello
(2000) and Zhang and Chen (2002). In some cases,
the maximum ARL occurs when there has been some
small shift rather than when there is no shift. A con-
trol chart with this property is called an ARL-biased
chart. The ARL-biased chart is usually undesirable,
especially if its difference from the ARI-unbiased
chart is extreme.

‘When the process parameters are unknown and
estimates from Phase I are used to construct the con-
trol chart, the properties of the run length, including
the ARL, must be interpreted carefully. Before the
data are gathered in Phase I, the run length of a
control chart is dependent on the random parameter
estimators. Let the run length be the random vari-
able denoted by T" and assume that the unknown in-
control process mean and standard deviation, pg and
0o, are to be estimated using the sample estimators V
and W, the observed values of which will be denoted
by v and w. The capital letters V and W are used to
distinguish the random variables from their observed
values, v and w, respectively. Because of the depen-
dence of T’ on the random variables V and W, it is
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often useful to consider the conditional probability
mass function, frjvw(t | v,w) = P(T =t | v,w),
which implies that the run length has a different
distribution for each possible value of V = v and
W = w. Similarly, moments and percentiles of this
conditional distribution take different values for each
value of v and w; for example, Ex(T | v,w) is a ran-
dom variable which depends on v and w. Once the
Phase 1 data are gathered and the values v and w
have been observed, the conditional RL distribution
(mass function) of the chart will be frv,w(t | v, w)
and the ARL of the chart will be E(T" | v, w).

Unfortunately, it is often impossible to tell a prac-
titioner how a specific control chart constructed with
estimated parameters will perform using the condi-
tional distribution. In order to evaluate specific chart
performance in this case, one needs to know g and
op in addition to v and w. Of course, if one had
the parameter values, then the parameter estimates
would not need to be computed, and evaluation of
the chart performance would be done via traditional
methods for known parameters. However, one can
consider hypothetical cases of this conditional distri-
bution in order to gain insight about the best and
worst case performance scenarios for charts with es-
timated parameters. For example, Jones et al. (2001)
rewrote the chart statistic and the RL distribution of
an exponentially weighted moving average (EWMA)
chart with estimated parameters in terms of the ran-
dom variables

V — o
Zo = /m——12
0 mO‘Q/\/ﬁ’ (1)
and W
Zy = — 2
1 O_O’ ()

where m is the number of subgroups and n is the
number of observations per subgroup. Here, Zp is
a random variable that represents the standardized
difference between the in-control mean and the es-
timated mean, and Z; represents the ratio of the
estimated standard deviation to the in-control stan-
dard deviation. Hypothetical values of Zy and Z; can
be assumed and substituted into the conditional RL
distribution, which can be rewritten as friz,,z, (¢ |
20,21) = P(T' =t | Zg = 29, Z1 = #1). For example,
the RL performance of a chart constructed with a
sample mean that under- or overestimates 1o by one,
two, or three standard errors can be studied. Simi-
larly, the performance of a chart constructed with a
sample standard deviation that under- or overesti-
mates og by a factor of one half or two can be evalu-
ated. This approach was used by Hawkins and Olwell
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(1998, pp. 159-160), Jones et al. (2001, 2004), and
Shu et al. (2004).

In contrast with the conditional RL distribution,
the marginal RL distribution, fr(t), takes into ac-
count the random variability introduced into the
charting procedure through parameter estimation
and does not require knowledge of the observed es-
timates. The marginal RL distribution is the con-
ditional RL distribution averaged over all possible
values of the parameter estimators and can be used
before the Phase I data are gathered to make deci-
sions regarding the sample size requirements neces-
sary to achieve desired performance. The marginal
RL distribution is computed by integrating the con-
ditional distribution over the range of the parameter
estimators and if V and W are independent, is given
by

T(t) = /Om/—f: Fryv,w (t | v, w) fv (v) fiv (w) dv dw.

3)
Many authors, including Burroughs et al. (1993,
1995), Chen (1997), Chakraborti (2000), and Jones
et al. (2001), have used the marginal RL distribution
and its moments to evaluate the performance of con-
trol charts with estimated parameters. When fr(t),
its moments, or its percentiles are used to measure
chart performance, it is important to keep in mind
that the marginal distribution does not describe the
RL performance of any specific chart, but rather is
averaged over all possible charts constructed using
sample estimates from an in-control Phase I sample
of the same size. Thus, the marginal distribution will
not inform a practitioner how a specific chart will
perform, but it does measure how charts computed
using a given design procedure perform on average.

The marginal and conditional RL distributions
serve different purposes in evaluating the perfor-
mance of control charts with estimated parameters.
‘While some authors have advocated the use of either
the marginal or the conditional RL distributions to
evaluate the performance of control charts with esti-
mated parameters, both should be considered to gain
a complete understanding of chart performance. The
marginal RL distribution can be used for general per-
formance evaluations, and, because it is meaningful
before the data are gathered in Phase I, it can be used
for design recommendations, including the necessary
sample size to achieve desired performance. The con-
ditional RL distribution allows practitioners to gain
specific information about best- and worst-case es-
timation scenarios and lets one know how badly a
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chart with poorly estimated parameters could per-
form. Note that, after observing the preliminary sam-
ple, no more is known about the conditional RL dis-
tribution than before these data are observed.

To simplify comparisons and give a more complete
picture of the RL distribution, summary values from
both the marginal and conditional RL distributions
can be used to effectively evaluate the performance
of charts with estimated parameters. For example,
the ARL, the standard deviation of the run length
(SDRL), and the percentiles of the RL distribution
are often used. If the RL distribution is geometric, as
is the case for the conditional run length distribution
of Shewhart charts, then the ARL (and consequently
the probability of a signal) completely characterizes
the distribution and is the accepted measure of per-
formance. However, conditional and marginal distri-
butions are often more strongly right skewed than the
geometric distribution, as is usually the case when
parameters are estimated. For this reason, it is rec-
ommended to supplement the ARL with the SDRL
and various upper and lower percentiles to effectively
evaluate these charts. For examples of authors who
consider both the marginal and conditional RL dis-
tributions and supplement the ARL with other mea-
sures to evaluate chart performance when estimates
are used, see Jones et al. (2004) or Shu et al. (2004).

Some authors have suggested other performance
measures for control charts with estimated param-
eters. Albers and Kallenberg (2004a, ¢, 2005) sug-
gested the use of exceedance probabilities to study
Shewhart Individuals (X) and X charts with esti-
mated parameters. The exceedance probability mea-
sures how much larger the probability of a signal
would be when compared to the desired probability
of signal when the parameters are assumed known.
This exceedance probability is then used to study the
performance of the charts and to recommend adjust-
ments to the control limits. A limitation is that this
measure is only useful for Shewhart charts based on
independent observations.

Shewhart Charts

In this section, it is assumed that the process to be
monitored yields some quality characteristic values,
X;5,i1=1,...,m,j=1,...,n, that are normally dis-
tributed with in-control values of the mean, pg, and
standard deviation, og. In Phase I, a sample of size
n at each of m time intervals is taken and pg is esti-
mated by the overall sample mean, which is denoted
by fip- The in-control value of the standard devia-
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tion, og, can be estimated in a variety of ways, such
as by the average sample range (63), the average
standard deviation (G3), the pooled standard devi-
ation (7's,), or an overall standard deviation (7's,, ).
‘When n =1, as in the case of Individuals charts, T
is still the sample mean and oy is estimated using an
average moving range (Gasg) or the sample standard
deviation (7).

For discussion of the relative merits and proper-
ties of the above estimators for Shewhart charts, see
Cryer and Ryan (1990), Cruthis and Rigdon (1991),
Derman and Ross (1995), Del Castillo (1996a), Tri-
etsch (2001), Champ and Jones (2004), and Mont-
gomery (2005). In general for Phase I applications,
Oumr is preferred for Individuals charts and G, for X
charts. Robust estimators will be preferable for sit-
uations where outliers are present, but their benefit
is primarily for Phase I applications. The choice of
estimator has an impact on the control chart proper-
ties in Phase II, as will be seen in later discussion. It
should be noted that the estimator used in the Phase
I analysis does not necessarily have to be the same
one used to construct control limits for use in Phase
I

Early Investigation

In several early studies, it was recognized that,
when using estimated parameters, the probabilities
of a signal are different than in the known-parameters
case. The usual strategy was to adjust the control
limits so that the desired unconditional probability
of a false alarm was maintained and the appropri-
ate sample size could then be determined. This ap-
proach was taken by King (1954), Proschan and Sav-
age (1960), Hillier (1964, 1967, 1969), and Yang and
Hillier (1970) for various Shewhart charts. However,
as noted by Ghosh et al. (1981) and Quesenberry
(1993), the approach of these earlier papers has lim-
ited practical value because the unconditional proba-
bility of a signal is treated as a constant (rather than
arandom variable) to determine control chart perfor-
mance. In addition, the earlier research ignores the
dependence between successive Phase IT in- or out-
of-control decisions that arises from the use of Phase
I estimates to compute the control limits. Tables 1
of Quesenberry (1993) and Maravelakis (2002) show
that this dependence is positive and decreases as m
and n increase.

X Charts

Ghosh et al. (1981) considered the marginal dis-
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tribution of the RL for one-sided and two-sided X
charts when T, is used. They showed that the lower
bound on the in-control ARL is the value of the ARL
for the known-parameter case, and that the RL dis-
tribution converges to a geometric distribution as
m — oo. Using numerical integration to evaluate
the marginal RL distribution, they found for a lim-
ited number of sample sizes and shifts, that both
the in-control and out-of-control ARLs for the esti-
mated parameter case are higher than for the known-
parameter case. This result was confirmed in an em-
pirical study by Ng and Case (1992) of the in-control
ARL for an X chart based on Gp rather than 85p.
Furthermore, Ng and Case (1992) showed that, as
m increases, the in-control ARL for the estimated
parameter case converges to the ARL value for the
known-parameter case.

An influential paper by Quesenberry (1993) con-
tained a more comprehensive simulation study that
showed similar results for X charts based on 7.
When n_= 5, he recommended m > 100 in order
for the X chart to behave almost like the equiva-
lent X chart with known parameters. Just as was
shown for G and 7g,,, both the in-control and out-of-
control ARL and SDRL were higher for the estimated
parameters case. Quesenberry (1993) made the im-
portant observation that a higher in-control ARL is
not necessarily better because the RL distribution
will reflect an increased number of short RLs as well
as an increased number of very long RLs. In other
words, the distribution of the RL with estimated pa-
rameters will be flatter, with heavier tails than the
RL distribution with known parameters (a geomet-
ric distribution) even though both distributions are
right skewed.

Del Castillo (1996a) did a similar study and
showed that improved performance of the X chart
can be obtained by using 7’5, rather than o'z or 73.
The X chart based on Gs, performs more like the
known-parameter case; thus the out-of-control ARL,
as well as the quantiles of the RL distribution, were
improved by using 7', . Del Castillo (1996b) provided
a program that can be used to numerically estimate
the marginal ARL of X charts with estimated pa-
rameters.

Chen (1997) considered X charts based on g,
05, and an adjusted version of g, and made simi-
lar sample size recommendations as those of Quesen-
berry (1993). He found that the impact of parameter
estimation on out-of-control performance is more se-
vere for smaller shifts in the process than for larger
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shifts and that the impact is greater on the SDRL
than the ARL. Thus, a larger sample size is required
for the SDRL to be sufficiently close to the SDRL
for known parameters. Similar results were obtained
by Chakraborti (2000), but he recommended much
larger sample sizes (about 500-1000) than did Que-
senberry (1993) and Chen (1997).

In summary, for X charts, the in-control and out-
of-control ARL and SDRL are higher when esti-
mated parameters are used than when parameters
are known, no matter the estimator of op. The use
of Gg, is preferred because it results in chart behav-
ior most like the known-parameter case, although it
should be noted that use of Gs, is simply choosing
the lesser evil when m is small.

Burroughs et al. (1993) studied the effect of using
runs rules on X charts. They considered three com-
mon rules, C; (one point beyond 3 standard devia-
tions from the center line), Cjo = C1 UCs (Co =2
out of 3 points beyond 2 standard deviations from
the center line), and Cios = C1UC2 UC3 (C3 = 4
out of 5 points beyond 1 standard deviation). Note
that C; is the simple Shewhart chart with no runs
rules while Cis and Cios are combinations of mul-
tiple rules. They used numerical integration to eval-
uate the marginal ARL and found, when Cj or Cio
are used, both the in-control and out-of-control ARLs
are higher than the known parameter case, but when
Cia3 is used, the in-control ARL is actually lower
than would be expected and the out-of-control ARL
is higher than expected. Thus, while additional runs
rules improve the sensitivity of the chart (Champ and
Woodall, 1987), they cause the chart performance to
differ more from the known-parameter chart perfor-
mance. However, the study of Burroughs et al. (1993)
is not comprehensive enough to make a complete de-
termination.

Wu et al. (2002) considered robust estimators to
obtain the control limits for X charts. They studied,
via simulation, seven different estimators of go: Gz,
T3, Os,, one based on the absolute deviations from
the mean, and three others based on deviations from
the median. The three estimators based on deviations
from the median were found to be biased, but correc-
tion factors found via simulation were provided. For
normally distributed data, the four estimators based
on deviations give comparable in-control and out-of-
control ARL performance to the three classical esti-
mators. For data coming from a contaminated nor-
ma) distribution (2 mixture of two normal distribu-
tions), the in-control ARL performance for all seven
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estimators worsened, indicating an increased num-
ber of signals when the data are not normally dis-
tributed. This emphasizes the need to use some other
appropriate control chart scheme when the data are
not normally distributed. Out-of-control ARL per-
formance for the estimators based on the median
is slightly better than the classical estimators, but
this performance is negated by the corresponding de-
crease in the in-control ARL.

Individuals (X) Charts (n = 1)

Quesenberry (1993) considered the effects of pa-
rameter estimation on Individuals charts. Through
simulation he found that, just as in the case of X
charts, the in-control ARL increases when parame-
ters are estimated. The sample size recommended to
achieve similar performance to that of a chart with
known parameters is larger than the number of sub-
groups needed for X charts, although the total num-
ber of observations is smaller. Rigdon et al. (1994)
did a similar study and found the RL distribution
approaches the known-parameter case as the sample
size increases. They concurred with the conclusions
of Quesenberry (1993) and made a rough recommen-
dation that at least 100 observations are needed in
Phase I.

In a recent paper, Albers and Kallenberg (2004a)
studied the Individuals chart using exceedance prob-
abilities and the ARL as performance measures.
Their strategy consisted of applying corrections to
the control limits to reduce the number of samples
needed to ensure that the exceedance probabilities
are sufficiently small. However, they presented lim-
ited results on the out-of-control performance by
studying only larger shifts in the mean. Because cor-
rections to the control limits improve the in-control
ARL, but likely have an adverse effect on the out-
of-control ARL, these limited results do not give a
complete picture of the performance of the control
chart scheme. One who uses these corrections will
have good in-control performance, but it is likely that
ability to detect shifts quickly will be reduced. The
related paper of Albers and Kallenberg (2004c) con-
tained a larger study of out-of-control performance.
However, their calculation of the ARL is based on
an approximation that requires large sample sizes to
be useful. For example, the approximate ARL was
calculated to be a negative number for very small
sample sizes, which is obviously problematic. Thus,
one should be wary of their sample size recommen-
dations because their determination of the needed
Phase I sample size is based on an approximation of
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the ARL. It is not clear if the approximation is accu-
rate unless the sample size is large enough. Correc-
tions to the control limits are useful in maintaining
in-control performance, but they also result in a neg-
ative impact on out-of-control performance that has
not been studied adequately.

Maravelakis et al. (2002) studied Individuals
charts to monitor changes in the variability. Their use
of the Individuals chart to monitor variability instead
of the traditional moving range chart is consistent
with the recommendation of Rigdon et al. (1994) and
others to use a single chart to monitor both the mean
and the variability. Maravelakis et al. (2002) did not
consider decreases in the standard deviation, as this
cannot be detected by the Individuals chart unless a
specific runs rule is used (such as 15 points in a row
all within 1 standard deviation of the mean). For de-
tecting increases in variation, a sample size of at least
300 was recommended because of the higher marginal
in-control and out-of-control ARL and SDRL values
than for the known-parameter case. This recommen-
dation is consistent with that of Quesenberry (1993)
for Individuals charts for monitoring the mean.

Charts for Dispersion (R, S, and $? Charts)

Chen (1998) studied the marginal RL distribution
of R, S, and S? charts, where the R chart was based
on Gg; the S chart on Gg; and the S2 chart on Ts,-
For all three charts, the in-control ARL is lower in
the estimated parameter case, suggesting that more
short RLs will occur, but the out-of-control ARL is
higher, suggesting that changes in variability will not
be detected very quickly. He concluded that this de-
teriorating performance is worse for increases in the
variability than for decreases, although the deterio-
ration is lessened as the magnitude of the shift gets
larger. Thus, the impact of parameter estimation is
more pronounced for Shewhart charts that are used
to monitor the variability than for those that are used
to monitor the mean. To achieve adequate perfor-
mance for detecting changes in the standard devia-
tion with 4 < n < 10, he recommended that at least
75 Phase T samples be taken.

Maravelakis et al. (2002) performed a similar
study on the S chart and made similar conclusions as
those of Chen (1998). Although their sample size rec-
ommendations are larger (m > 100 for n > 20), this
may be due to the fact that they used o5 rather than
Esp. In addition, their results show that the S chart
based on estimated parameters can be ARL biased.
This agrees with the result of Champ and Lowry

Vol. 38, No. 4, October 2006

(1994), who showed that S charts can be ARL biased
in the known-parameter case. Zhang et al. (2005)
studied modifications of the S? chart, resulting in an
ARL-unbiased chart and two versions of ARL-biased
charts. They considered the appropriate sample size
to achieve adequate performance and found that the
ARL-bijased charts have slightly smaller sample size
requirements than the ARI-unbiased chart.

Building on the study of Burroughs et al. (1993),
Burroughs et al. (1995) studied S charts with runs
rules and found similar results. Just as with X charts,
use of multiple runs rules worsens the performance
more than a single runs rule.

Other Types of Charts

Much of the work on the effects of parameter es-
timation has been performed on Shewhart charts.
Some of the conclusions will hold for other types
of charts; such as, larger sample sizes are needed
to ensure performance similar to charts based on
known parameters. However, not all of the conclu-
sions concerning Shewhart charts hold for other types
of charts, so it is important to evaluate each type of
chart individually.

EWMA Charts

Jones et al. (2001) studied the marginal and con-
ditional RL performance of the EWMA chart with
estimated mean and standard deviation. Based on
properties of the conditional RL distribution, they
showed that overestimating the variance leads to a
chart that signals less frequently, whether the process
is in or out of control. Similarly, underestimating the
variance leads to a chart that signals more frequently
in all cases. When the mean is estimated, the EWMA
chart always signals more frequently when the pro-
cess is in control; however, the out-of-control chart
performance depends on the direction of the process
shift relative to the estimated mean. The marginal
RL distribution of the EWMA chart was used to
make sample size recommendations in order for the
chart based on estimates to perform similarly to one
based on known parameters. A common recommen-
dation is to make the smoothing constant (A\) small
for EWMA charts in order make them more sen-
sitive to small process shifts. However, the smaller
the value of A, the larger the sample size needs to
be to ensure performance similar to that of a chart
based on known parameters. Jones et al. (2001) rec-
ommended 100 samples of size 5 for A = 0.5 and 400
samples of size 5 for A = 0.1. Thus the required Phase
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1 sample size is strongly dependent on the value of A
used.

When it is difficult to obtain the large number
of samples recommended, Jones (2002) considered
modifying EWMA charts so that they have a spec-
ified in-control ARL. Rather than design optimal
charts for given shifts with the parameters assumed
to be known, it is better to design the charts so that
they will perform well in the estimated-parameters
case. The latter charts will have slightly worse per-
formance than charts with known parameters for de-
tecting shifts of a given size, but will be much better
in terms of in-control performance.

The dependence of the out-of-control ARL per-
formance of EWMA charts on the type of shift can
also be seen in the results of Zhang and Chen (2002).
They showed that EWMA charts are ARL unbiased
when the variance is estimated; but when the mean
is estimated, EWMA charts are ARL biased. They
also gave a formula for the sample size needed to
have a specified probability that the mean estimator
will be within an acceptable range of the parameter
value. For example, their worst-case scenario showed
that, to have a 90% chance of the estimated mean be-
ing within 0.1 standard deviations of the parameter
value, at least 55 samples of size 5 are needed.

CUSUM Charts

Bagshaw and Johnson (1975) studied the marginal
and conditional ARL performance for CUSUM
charts when the standard deviation is estimated.
When the standard deviation is overestimated, they
found that the conditional in-control ARL is larger
than it would be if the standard deviation were
known, and smaller when the standard deviation is
underestimated. As the size of the mean shift in-
creases, the difference in the out-of-control ARL from
that of the known-parameter case becomes negligible.
They also studied the effect of subtracting from the
CUSUM statistic a reference value (k) equal to one
half of the magnitude of the desired change in the
mean to detect. The marginal ARL evaluation was
only considered for 7 = 10, where there is a tremen-
dous amount of variability, but they concluded that
a positive reference value leads to a better chart on
average. Because of the small size of their study and
their focus only on the ARL, their conclusions are
better supported by the extensive analytical study
of Jones et al. (2004).

Yang (1990) found that the reference value im-
pacts the performance of one-sided CUSUM charts
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when the process mean is estimated and the vari-
ance is known. He found that the marginal ARL is
not a sufficient measure and proposed an alternative
measure based on the ratio of the ARL to the SDRL.

Hawkins and Olwell (1998) discussed briefly the
effect of parameter estimation on CUSUM charts
for individual data points collected over time. For
the particular one-sidled CUSUM chart studied, it
appears that estimation of the mean causes bigger
changes in the conditional ARL than estimation of
the standard deviation. They concluded that 100 ob-
servations in the Phase I sample are not sufficient.
They noted that a chart tuned to be more sensitive to
small shifts is affected by parameter estimation more
than one tuned to large shifts and that a one-sided
CUSUM is more severely impacted than a two-sided
CUSUM chart.

Using an approach similar to that of Jones et al.
(2001), Jones et al. (2004) studied CUSUM charts
when the mean and standard deviation are esti-
mated. Just as was found for EWMA charts, the
ARL, SDRL, and percentiles can either increase or
decrease relative to the known-parameter case, de-
pending on the direction and magnitude of the es-
timation error. They found the same “flattening”
of the marginal RL distribution that was found for
X charts. Further, they showed that a two-sided
CUSUM chart with estimated parameters does not
have as skewed of a marginal RL distribution as a
one-sided CUSUM chart.

Charts for Autocorrelated Data

When considering control charts for autocorre-
lated data, there are two basic approaches. The
first approach (called the residuals control chart) is
to model the data with an appropriate time-series
model, such as an AR(1) or ARIMA(1,0,1), and then
plot the residuals of the data from the one-step-ahead
forecasts. If the model has been specified correctly,
the in-control residuals will be i.i.d. observations,
and standard control charts are used on the residu-
als rather than the observations themselves to detect
changes in the process. The second approach (the
modified control chart) uses the actual observations
and adjusts the control limits to account for the auto-
correlation. If autocorrelation is present, it is prefer-
able to first try to remove the source of autocorre-
lation, if possible, or to use some form of feedback
control to remove the variability in the process. Con-
trol charts for autocorrelated data (both the residu-
als and modified control chart) should only be used
as a last resort.
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Schmid (1997) considered briefly the effects of pa-
rameter estimation on EWMA and CUSUM charts
for autocorrelated data. Based on simulation, he
calculated the relative efficiency of the ARL of
the estimated-parameters chart to the ARL of the
known-parameters chart and found that the estima-
tion impact is more severe for smaller shifts than
for larger shifts. A modified EWMA chart seemed to
be most robust to parameter estimation, but this is
difficult to state generally because the specification
of the smoothing constant has an impact on per-
formance. The problem can be simplified by using
an Individuals chart for autocorrected data, as was
done by Kramer and Schmid (1997, 2000). Kramer
and Schmid (1997, 2000) concluded that the ARL is
robust to amounts of autocorrelation less than 0.5;
thus, standard charts for uncorrelated data can be
used when the autocorrelation is low. In the presence
of positive autocorrelation, they recommended that
the modified control charts be used and for negative
autocorrelation the residuals control chart should be
used. Larger Phase I sample sizes are needed to en-
sure that the in-control AR is as desired.

Adams and Tseng (1998) considered the effect of
parameter estimation on the residuals control charts
for individual observations. In their study, there were
four types of charts: Individuals, Individuals with
runs rules, EWMA, and CUSUM. The conditional
ARL was evaluated by simulation. For an AR(1)
model, underestimation of the time series parameter
leads to substantial decreases in the in-control ARL
for all four charts. Overestimation leads to decreases
in the in-control ARL for the two Individuals charts
and dramatic increases in the in-control ARL for the
EWMA and CUSUM charts. The reverse situation is
true when an IMA(1, 1) model is used. The in-control
ARL performance of the Individuals charts is more
consistent than for the EWMA and CUSUM charts
in the sense that underestimation or overestimation
leads to a more drastic change in the ARL for EWMA
and CUSUM charts. They did not study the out-of-
control ARL performance nor did they consider the
SDRL or percentiles of the RL distribution, but rec-
ommended that these charts only be used when a
Phase I sample size of at least 400 is available.

Limited simulation studies of control chart per-
formance of EWMA and CUSUM charts based on
residuals for autocorrelated data using an ARMA(1,
1) model appeared in Lu and Reynolds (1999, 2001).
They found that there is more variability in the time-
series parameter estimates for smaller sample sizes.
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This causes the in-control ARL to be much higher
than for the known-parameter case; therefore, larger
amounts of data are needed to set good control limits
when autocorrelation is present than when there is
no autocorrelation.

Apley (2002) and Apley and Lee (2003) pro-
posed widening the control limits for residual EWMA
and Individuals charts for autocorrelated data. The
widened control limits protect against an increase in
the rate of false alarms at the expense of a small in-
crease in the out-of-control ARL. This loss of per-
formance that occurs when the control limits are
widened is more drastic when the autocorrelation is
higher. While an Individuals chart is more robust
to parameter estimation (because it is equivalent to
the EWMA chart with the maximum value of the
smoothing constant), the EWMA chart with widened
control limits still outperforms the Individuals chart
for shifts of less than 4 standard deviations. The
recommended sample size requirements for EWMA
charts of autocorrelated data are dependent on the
value of the smoothing constant but are larger than
those of Jones et al. (2001) for EWMA charts based
on independent data.

Multivariate Charts

Lowry and Montgomery (1995) made sample-size
recommendations for multivariate T2 control charts
to ensure that control limits based on estimated pa-
rameters would be sufficiently close to the control
limits for the known-parameter case. Their recom-
mended sample sizes are too small, however, because
they did not consider the performance measures of
the RL distribution for the studied charts.

A more detailed study on the effects of param-
eter estimation on multivariate 72 charts with x2-
based control limits was done by Nedumaran and
Pignatiello (1999). In considering shifts in the mean
vector, they used simulation to show that the ARL
and SDRL for both an in-control and out-of-control
process are substantially lower than the ARL under
the assumption of known parameters. They recom-
mended Phase 1 sample sizes of at least 200 when
n = b and the number of quality characteristics mon-
itored is 3. Their recommended sample size is much
larger than that of Lowry and Montgomery (1995),
and it increases as the number of quality character-
istics increases.

Champ et al. (2005) studied the T2 chart with
corrected control limits based on the F' distribu-
tion. They showed that, when estimating the param-
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eters used in the T2 statistic, both the in-control and
out-of-control ARLs are higher than in the known-
parameter case. However, unlike univariate charts,
there is not an increase in the number of short RLs
because the lower percentiles of the RL distribution
are similar to the known-parameter case. Thus, the
increase in the ARL is due to an increase in the
number of larger RLs. Their sample size recommen-
dations to achieve in-control performance similar to
charts with known parameters are closer to those
of Nedumaran and Pignatiello (1999) than those of
Lowry and Montgomery (1995), but in contrast, they
decrease as the dimension of the data vector in-
creases. This is due to the fact that Nedumaran and
Pignatiello (1999) determined how large a sample is
needed for the control limit to be close enough to the
appropriate quantile of the x? distribution, whereas
Champ et al. (2005) determined how large a sample
is needed for the control chart to behave like it would
if the parameters were known.

Attribute Charts

Braun (1999) considered the effects of parameter
estimation on ¢ and p charts for attribute data. Con-
ditional values of the ARL and SDRL were calcu-
lated, and just as is the case for X and Individu-
als charts, the in-control ARL and SDRL are higher
when parameters are estimated. He states that the
probability of a signal should be used as a measure
of performance instead of the ARL when the pro-
cess is in control, but there is not a clear explanation
or justification of this statement. Nor is there any
evaluation of the out-of-control performance, so the
overall impact of parameter estimation is not clear.
In addition, marginal performance measures were not
considered; thus, he made no recommendation of the
needed sample size to ensure adequate performance.

To justify the use of a Bayesian approach to set
control limits for np, p, ¢, and u charts, Hamada
(2002) briefly studied the effect of using parameter
estimates. He concluded that the conditional prob-
ability of a signal for attributes charts can differ
from the nominal value of the known-parameter case,
but he did not evaluate the RL distribution of these
charts nor their out-of-control performance.

Yang et al. (2002) considered geometric charts
that involve plotting the number of samples between
nonconforming units. These charts require a large
number of observations and are most appropriate
for high-quality situations where the proportion non-
conforming is very low. While they did use the rate of
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false alarms as a performance measure, it is not very
useful because of the dependence between the events
of successive observations falling outside the con-
trol limits. Thus, it is more appropriate to base ac-
tion on their conclusions from the ARL calculations
where the in-control ARL for geometric charts with
estimated parameters is higher than for the known-
parameter case if the proportion nonconforming is
overestimated and lower if underestimated. The ge-
ometric chart is ARL-biased, which means that they
would not detect increases quickly until the magni-
tude of the shift in the proportion nonconforming be-
comes sufficiently large. This problem is minimized
as the sample size increases, but very large Phase I
samples (at least 50,000 observations) are needed to
ensure adequate performance.

Charts for Other Situations

Most control charts for continuous data are based
on the assumption that the quality characteristic of
interest follows a normal distribution. While this as-
sumption is reasonable for many cases, recent re-
search on the effect of parameter estimation has
considered charts for nonnormal distributions. For
example, Sim (2003a) investigated the performance
measures of a synthetic control chart when the data
follow a gamma distribution. Sim (2003b) studied
control charts for monitoring the variability of a
process that follows an inverse Gaussian distribu-
tion, and Sim and Wong (2003) studied R charts
to monitor changes in variability for data that fol-
low an exponential, Laplace, or logistic distribution.
Just as with charts for normally distributed data,

larger Phase I sample sizes are needed, particularly

for charts used to monitor variability.

Albers and Kallenberg (2004b) studied nonpara-
metric charts that use a function of the largest order
statistic as a control limit. Proposed corrections are
made to the limits when estimated parameters are
used. As would be expected, their examples demon-
strated that these charts require much more data
than the parametric charts to ensure proper perfor-
mance. They should only be used when there is a
clear justification for not assuming approximate nor-
mality and large amounts of Phase T data are avail-
able.

Shu et al. (2004) studied the effect of parame-
ter estimation on regression control charts where the
monitored response is adjusted based on a value of a
covariate. At each time period, a simple linear regres-
sion model can be fit to account for the covariate, so
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in addition to estimating pg and og, there are esti-
mators of the slope () and the intercept (8;). The
resulting residuals from the regression model can ej-
ther be plotted individually (called SheREG) or used
to construct an exponentially weighted moving aver-
age (EWMATREG) chart. If og is underestimated, the
conditional in-control ARL will always be lower than
expected, no matter the values of the estimates of
Bo and B;. When oy is overestimated, the change in
the conditional in-control ARL depends on the error
in estimating fp and f;. The marginal performance
measures suggest a Phase I sample size of at least 300
for the SheREG chart and an even larger sample size
for the EWMAREG chart, especially if the smooth-
ing constant is small. Shu et al. (2005) performed a
related study.

Discussion

From this review, it is clear that more data in
Phase T are needed than is typically recommended
to achieve performance comparable with the known-
parameters case. Every sample size recommendation
discussed in this literature review is greater, and of-
ten much greater, than the typical recommendation
of 20-30 small samples. This concurs with a state-
ment made by Shewhart (1939, p. 63) that, “If we
wish to reduce the chance of making an error in es-
timating the probability associated with chosen tol-
erance limits (control limits), there is no royal small-
sample road for doing this”. Sample size recommen-
dations depend on the type of chart used.

Often it is difficult to make an assessment of the
impact of parameter estimation because it depends
on the direction of the estimation error and the par-
ticular control chart setting. However, this is a poor
excuse for not making better comparisons of both
the marginal and conditional RL distribution perfor-
mance. Nor does it justify not using the SDRL and
other percentiles of the RL distribution to supple-
ment the ARL. The benefit of graphical representa-
tion of the empirical RL distribution for comparative
purposes should not be ignored.

In general, as more parameters are estimated,
larger sample sizes are needed. For example, mul-
tivariate charts require more Phase I data than uni-
variate charts and charts for autocorrelated data will
typically require more data than those based on i.i.d.
data.

As noted by Hawkins and Olwell (1998, p. 161)
and by Hawkins et al. (2003), a chart that has the

Vol. 38, No. 4, October 2006

desirable property of being sensitive to small shifts
in a process has the undesirable property of being
more severely impacted by parameter estimation.
This is true in general of the charts studied here and
nicely summarizes when charts with estimated pa-
rameters need to be used more cautiously. For exam-
ple, Shewhart charts with runs rules, EWMA charts,
and CUSUM charts are sensitive to small shifts and
consequently more readily impacted by parameter es-
timation.

When it is prohibitive to obtain the recommended
number of samples, other approaches are possible.
These other approaches should be considered as tem-
porary stopgap methods until the needed number of
samples are obtained. Many of these methods avoid
the distinction between Phase I and Phase II al-
together. Hawkins (1987) proposed a self-starting
CUSUM procedure and Quesenberry (1991) pro-
posed @ charts, both of which are designed to be
used early on in monitoring univariate processes be-
fore much data are available. Del Castillo and Mont-
gomery (1994) proposed an alternative method to
@ charts based on a Kalman filter that has better
performance that improves as m increases. Nedu-
maran and Pignatiello (1999) considered a method
for updating the limits of multivariate charts fre-
quently as more data become available, and Nedu-

maran and Pignatiello (2001) and Tsai et al. (2004,

2005) considered a similar approach for X charts. In
their methods, prospective control limits are calcu-
lated for a set number of future subgroups to main-
tain a nominal in-control ARL level. Sullivan and
Jones (2002) considered a self-starting EWMA pro-
cedure for multivariate data. Hawkins et al. (2003)
proposed a change-point method based on unknown
parameters as an alternative to estimating parame-
ters. In general, these methods can be used to achieve
specified in-control performance until sufficient data
are obtained. As a result, they have poorer detection
capabilities if the process is out of control in the early
stages of the monitoring scheme.

Future Research Ideas

In recent years, there has been much research con-
sidering the effects of parameter estimation on many
types of charts, such as Shewhart, CUSUM, EWMA,
and multivariate charts. More work is needed, how-
ever, to investigate the issues related to the effect of
parameter estimation and to fill in the gaps of re-
search that has already been done. For example, it
was surprising to find papers that studied thé impact
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of parameter estimation but made no sample size rec-
ommendations because the authors did not consider
the marginal RL distribution. A summary of some
unanswered questions and future research ideas are
listed below.

(1) Control charts for attribute data have not been
investigated very thoroughly, with only a few limited
studies performed. In particular, the marginal distri-
bution has not been considered in order to make use-
ful sample size recommendations. It is believed that,
due to the nature of attribute data, extremely large
sample sizes will be needed when the parameters are
estimated. Methods have not been developed to ad-
just the control limits to account for parameter esti-
mation and obtain desired in-control performance.

(2) The effect of using robust or other alternative
estimators has not been studied thoroughly. Most
evaluations of performance have considered standard
estimators based on the sample mean and standard
deviation and have used the same estimators for both
Phase I and II. However, in Phase I applications, it
seems more appropriate to use an estimator that will
be robust to outliers, step changes, and other data
anomalies. Examples of robust estimation methods in
Phase I control charts include Rocke (1989), Rocke
(1992), Tatum (1997), Vargas (2003), and Davis and
Adams (2005). The effect of using these robust es-
timators on Phase II performance is not clear, but
it is likely to be inferior to the use of standard esti-
mates because robust estimators are generally not as
efficient.

(8) From the studies of Burroughs et al. (1993,
1995), it was shown that use of runs rules causes
Shewhart control charts with estimated parameters
to behave less like the known-parameter case. The
disparity appears to increase as more rules are added
to the standard charts; therefore, a more comprehen-
sive study is needed to determine the properties of
charts incorporating multiple runs rules. It is proba-
ble that a chart using multiple runs rules simultane-
ously will be affected more by parameter estimation
than a chart using a single rule.

(4) Very little work has been done on multivariate
charts and existing work has focused on detecting
changes in the mean vector. Control chart perfor-
mance under changes in the covariance matrix pa-
rameters has not been investigated, which would be
analogous to changes in variance for univariate con-
trol charts. If the results of the multivariate case are
consistent with the univariate case, performance will
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be worse for changes in the covariance matrix than
for changes in the mean vector. Use of other esti-
mators, such as the successive difference estimator
or robust estimators, like those discussed in Vargas
(2003), have not been studied. Furthermore, no at-
tention has been given to other multivariate charts,
such as the multivariate EWMA and multivariate
CUSUM charts.

(5) In many applications, the control limits are
updated as more data become available. However,
most research is based on the assumption that there
is a single sample of Phase I data that is used to
calculate the Phase II limits. Nedumaran and Pig-
natiello (1999, 2001), Tsai et al. (2004, 2005) and
the @ charts of Quesenberry (1991) are exceptions,
but their focus is on updating the control limits more
frequently during a startup period as data are avail-
able in order to improve initial performance. These
papers addressed the question of whether it is best
to start Phase II monitoring with fewer data points
and then update the limits frequently or if it is better
to delay the start of Phase II monitoring to preserve
confidence in the performance of the control chart
procedure. Investigation of these issues is needed.
While updating control limits makes the problem
more complex, it is not clear what its impact will
be on the RL properties or detection capabilities.

(6) Related to the previous research question is
the effect on control chart properties when the con-
trol limits are updated in some future time that is
not necessarily during a start-up period. If the pro-
cess is in control, it would be reasonable to use the
data to update control limits during Phase IT and not
continue to use the original limits indefinitely. It is
not clear how control chart performance is impacted,
but it seems that making use of earlier Phase II data
would lead to better control charts. Updating con-
trol limits would fit naturally in a Bayesian control
chart scheme (Hamada, 2002) where prior estimates
are updated resulting in posterior estimates that can
continue to be updated over the life of the monitoring
scheme.

(7) More work has been done on charts for moni-
toring shifts in the mean than charts to monitor the
variance, even though the estimation effect appears
to be more severe for charts monitoring changes in
dispersion than for those monitoring changes in the
mean. For example, EWMA or CUSUM charts for
monitoring the variance have not been studied. It
seems reasonable to expect that the effect of param-
eter estimation would be more severe on charts that
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are used to monitor the variance than for charts to
monitor the mean, as has been shown for Shewhart
charts by Chen (1998).

(8) The effect of parameter estimation has not
been considered for many other types of control
charts. An incomplete list includes control charts
for monitoring profiles discussed by Woodall et al.
(2004), simultaneous charts (such as EWMA charts
with Shewhart limits), and charts using variable sam-
ple sizes and/or sampling intervals (Reynolds et al.
(1988), Prabhu et al. (1994), Costa (1997)). Based
on the general conclusions mentioned earlier, it is
hypothesized that charts for monitoring profiles will
require larger Phase I sample sizes because of the
multivariate nature of the data. It is also hypothe-
sized that charts with variable sample sizes and/or
sampling intervals will be more severely impacted by
parameter estimation because they are more sensi-
tive to smaller shifts. Research for these charts is
needed in order to have good recommendations on
how to best design the charts with estimated param-
eters.

(9) When there are not sufficient Phase I data,
corrections to the control limits are often recom-
mended. There has not been a comparison of these
correction methods to determine which are better,
nor has there been much study of corrections for
charts other than Shewhart charts. A comparison is
needed of the corrections proposed by Nedumaran
and Pignatiello (2001), Tsai et al. (2004, 2005), and
Albers and Kallenberg (2004a, c).

(10) In some cases, model misspecification is an
important issue to consider when designing and set-
ting up control charts. For example, control charts
for autocorrelated data are strongly dependent on
the correctness of the assumed time series model.
The combined effect of model misspecification and
parameter estimation has not been studied.

(11) While the issue of how to effectively complete
a Phase I study seems basic, it is very important.
There is little guidance in the literature on how to do
a Phase I analysis, which is critical to the successful
use of the chart in Phase II. See Champ and Jones
(2004) for more discussion of this issue.

(12) It would be very useful to have good graphi-
cal methods to better assess the impact of parameter
estimation rather than tables of values, as is typically
done. A useful line of research would be to develop
ways to graphically show the impact of parameter
estimation in such a way that it can be more easily
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understood, especially for situations where the im-
pact depends on a number of variables.

(13) The standard estimators that are often used
in control charts are usually unbiased and optimal
with respect to some criteria. However, it does seem
reasonable that, if the restriction of only consider-
ing unbiased estimators were lifted, other estimators
could be found that would yield better control chart
performance. In addition, “optimal” estimators in
Phase I may not continue to be optimal for Phase
IT control chart performance. Tt would be worthwhile
to investigate other estimators than the standard es-
timators to determine if control chart performance
can be improved.

The impact of parameter estimation on control
chart performance should be studied as new types
of control chart procedures are developed. Past re-
search has developed methods under the assumption
of known parameters and separate research in recent
years has analyzed the properties of these methods
when using estimated parameters. Future researchers
who develop new control chart methods should in-
clude assessments of those methods with parame-
ter estimation as part of their results, as did Lu
and Reynolds (1999, 2001). In addition, any assess-
ments should include multiple performance measures
in their evaluations of control chart properties. There
has been too much emphasis on the ARL and not
enough on the SDRL and the percentiles of the RL
distribution. Consideration of the effect of parame-
ter estimation as new methods are being developed
will increase the likelihood that new methods will
be utilized and yield more successful applications of
control chart monitoring schemes.

Conclusions

The effect of parameter estimation on control
chart properties should not be ignored. It is prefer-
able in Phase I to obtain as much in-control data as
possible. To ensure adequate Phase II performance,
many studies on different types of control charts con-
tain Phase I sample size recommendations that are
much larger than has been recommended previously.
‘When adequate data are not available, the resulting
charts will often signal more frequently when the pro-
cess is in control and have reduced ability to detect
process changes. The practitioner should be aware of
this fundamental issue, especially early on in Phase
IT of the monitoring scheme. As more data become
available and the process is still determined to be
stable, the control limits should be updated. Much
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research has been done to determine the properties
of control charts when the parameters are estimated,
but additional work is needed.
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