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The State of Statistical Process Control as
We Proceed into the 21st Century

Zachary G. STOUMBOS, Marion R. REYNOLDS, JR., Thomas P. RYAN, and William H. WOODALL

1. INTRODUCTION

Statistical process control (SPC) refers to some statistical
methods used extensively to monitor and improve the qual-
ity and productivity of manufacturing processes and service
operations. SPC primarily involves the implementation of
control charts, which are used to detect any change in a
process that may affect the quality of the output. Control
charts are among the most important and widely used tools
in statistics. Their applications have now moved far beyond
manufacturing into engineering, environmental science, bi-
ology, genetics, epidemiology, medicine, finance, and even
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law enforcement and athletics (see Lai 1995; Montgomery
1997; Ryan 2000). C. R. Rao (1989) stated: “It is not surpris-
ing that a recent book on modern inventions lists statistical
quality control as one of the technological inventions of the
past century. Indeed, there has rarely been a technological
invention like statistical quality control, which is so wide in
its application yet so simple in theory, which is so effective
in its results yet so easy to adopt and which yields so high
a return yet needs so low an investment.”

The first control charts were developed by Walter A.
Shewhart in the 1920s (see Shewhart 1931). These sim-
ple Shewhart charts have dominated applications to date.
Much research has been done on control charts over the
last 50 years, but the diffusion of this research to applica-
tions has been very slow. As Crowder, Hawkins, Reynolds,
and Yashchin (1997) noted, “There are few areas of statis-
tical application with a wider gap between methodological
development and application than is seen in SPC.”

An examination of what is used in practice and what ap-
pears in the SPC literature shows that there are actually two
gaps. There is one gap between applications and applied re-
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search in journals such as the Journal of Quality Technology
and Technometrics and another gap between this applied
research and the research in some of the more theoretical
statistics journals. The existence of these gaps is disturb-
ing, because it means that most practitioners have received
little of the potential benefit from the technical advances
made in SPC over the last half-century. Here we discuss
in detail the current state of SPC and give our views on
some important future research topics. These topics have
good potential to narrow the gaps between applications and
applied and theoretical SPC research.

2. THE PROCESS-MONITORING PROBLEM

The process-monitoring problem can be described in gen-
eral terms as follows. Let X represent a quality variable of
interest, and suppose that fg(z), the distribution function
of X, is indexed by 6, a vector of one or more parameters.
A stable process that is operating with 8 = 6, is said to
be in statistical control. The value of 8, may or may not
correspond to an ideal (or target) value.

“Murphy’s law” explains the purpose of process mon-
itoring; over time, something will inevitably change and
possibly cause deterioration in process quality. Something
that affects process quality is assumed to be reflected by a
change in 6 from the value 6y, so the basic goal of pro-
cess monitoring is to detect changes in @ that can occur at
unknown times. Many types of changes in € could occur,
such as brief self-correcting changes or shifts and drifts that
persist over long periods if undetected.

Control charts for monitoring € are based on taking sam-
ples from the process and observing the values of X. A
control statistic, say Y, is computed after each sample and
plotted in time order on a control chart. Control limits are
constructed such that a value of Y is very unlikely to fall
outside of them when 8 = 6. A value of Y that falls out-
side the control limits is taken as a signal that a change in 8
has occurred, and that some appropriate action is required.

At the start of the process, the values of some or all of the
components of 8, may be unknown, and thus a preliminary
phase of collecting process data, estimating parameters, and
testing for process stability may be required. Process mon-
itoring can begin after 6y is estimated in this preliminary
phase.

The crisis and subsequent quality revolution in U.S. in-
dustry in the 1980s triggered an increasing emphasis on
actively working to improve quality (Deming 1986). Thus,
in addition to detecting undesirable changes in 6, control
charts also should be used to identify improvements in
the process. For example, if X is normally distributed and
0 = (p,0), then improving quality might correspond to
making process adjustments that will reduce o (Reynolds
and Stoumbos 2000a).

3. TRADITIONAL SHEWHART CONTROL CHARTS

The first control charts proposed by W. A. Shewhart in
the 1920s remain in widespread use today. The Shewhart
charts were designed to make it relatively easy for process
personnel without statistical training to set up, apply, and
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interpret the charts using only a pencil and paper for cal-
culations. Although it is not often explicitly stated, these
charts are based on the assumption that fg(x) is one of a
few standard distributions (normal for continuous data, and
binomial or Poisson for discrete data), and that successive
observations of X are independent. The control statistic Y},
computed after sample £ is a function of the data in sample
k only. Ease of computation is emphasized, so, for example,
the sample range is typically used as the measure of disper-
sion. The design of Shewhart charts is traditionally based
on simple heuristics, such as using samples of four or five
observations at suitable sampling intervals, say every hour,
and using “three-sigma” limits set three standard deviations
away from the in-control mean of Yj.

Shewhart charts have functioned as simple graphical tools
in a wide variety of applications. It is not surprising, how-
ever, that such simple charts are usually far from optimal
(see Secs. 4 and 5) and may even be inappropriate. For ex-
ample, with three-sigma limits, the false-alarm rate is not
adjusted to suit the specific conditions of different applica-
tions, and anomalies arise such as lack of lower control lim-
its for nonnegative statistics. The use of the sample range
has continued long after computational ease ceased to be a
primary concern.

Modifying a Shewhart chart can alleviate some of the
aforementioned problems, but a greater disadvantage is that
these charts are inefficient for detecting all but relatively
large changes in 6. The increasing emphasis today on high-
quality products increases the importance of detecting small
changes in 6.

4. MORE EFFICIENT CONTROL PROCEDURES

Efficient detection of small and moderate shifts in 6 re-
quires that the control statistic in some way accumulate in-
formation across past samples. Runs rules, which are based
on patterns of points in a Shewhart chart, help to improve
the ability of Shewhart charts to detect small shifts in 6
(Champ and Woodall 1987), but using these rules is not the
best method of detecting small shifts in 6.

A much better method of accumulating information
across samples uses a control statistic that is an exponen-
tially weighted moving average (EWMA) of current and
past sample statistics. In particular, if Ij is the individual
statistic for sample k, then the EWMA control statistic com-
puted after sample £ is

k
By =(1=M\FE+> (1=NF\ = (1= M) Er_1 + My,
i=1

where Ey is the starting value and A > 0 is the smoothing
parameter that determines the weight given to current data
relative to past data. A signal is given if Ej, falls outside of
control limits.

The cumulative sum (CUSUM) chart is another highly ef-
ficient control chart that accumulates information over cur-
rent and past samples. The CUSUM statistic for detecting
a shift from 6, to a specified alternative 6y can be written
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as

Cr = max{0, Cx—1} + In(fo, (xx)/ fo, (zx)),

where Cj is the starting value. A signal is given if Cj, ex-
ceeds a control limit. Two-sided CUSUM charts are usu-
ally constructed by running two one-sided CUSUM charts
simultaneously.

For a given false-alarm rate, both the EWMA and
CUSUM charts are much better than a Shewhart chart for
detecting small sustained shifts in 8. The CUSUM chart
is optimal for detecting a shift from 6y to a specified 6,
in that it minimizes the worst mean signal delay for a
large class of signal rules with appropriately constrained
false-alarm rates (Lorden 1971; Moustakides 1986; Ritov
1990). A good broad exposition on CUSUM charts from
a more applied perspective was given by Hawkins and Ol-
well (1998), and discussion of some recent developments
on CUSUM charts have been provided by Reynolds and
Stoumbos (1999, 2000b). For the problem of monitoring
the process mean pu, several studies have shown that the
EWMA and CUSUM charts generally have similar detec-
tion efficiencies over a range of shifts in u (see, e.g., Lu-
cas and Saccucci 1990). The EWMA and CUSUM charts
date from the 1950s (Page 1954 for the CUSUM and
Roberts 1959 for the EWMA), but usage of these efficient
charts in applications was very infrequent for many years.
Their usage is steadily increasing, although still relatively
low.

A number of generalized CUSUM schemes proposed
over the last three decades allow for 6; to be any un-
known value in a given interval. These schemes are based
on a generalized likelihood ratio (GLR) or on integrat-
ing the likelihood ratio with respect to a probability dis-
tribution of @ (Basseville and Nikiforov 1993; Lai 1995;
references therein). The latter are quasi-Bayesian schemes
akin to the procedures discussed in Section 5. Most gener-
alized CUSUM schemes proposed to date are of mainly
theoretical interest, because they cannot be easily ex-
pressed by computationally convenient recursive forms
(Lai 1995).

5. BAYESIAN PROCEDURES AND
ECONOMIC MODELS

Bayesian procedures appear to be naturally suited for
process monitoring. The application of Bayesian procedures
requires recognition that the form of the a priori informa-
tion about @ is not simply a prior distribution, as would be
the case in traditional estimation. In process monitoring, it
is assumed that 8 will eventually change from the value 8,
while monitoring is conducted. Thus the prior distribution
must reflect when a change in 8 will occur, as well as the
type of change that will occur.

Bayesian methods for process monitoring have been
available since the works of Girshick and Rubin (1952),
Shiryaev (1963), and Roberts (1966), who placed a geo-
metric prior distribution with parameter p on the unknown
time 7" of the change in 6 (changepoint), and independently
derived what is commonly termed the Shiryaev-Roberts (S-
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R) procedure. The S-R control statistic for detecting a shift
from 6y to a specified alternative 0; can be expressed in
terms of the log-likelihood ratio as

Ry =In(p +e™-1) = In(1 — p) + In(fo, (1)/ fo, (2x)),

where Ry is the starting value. A signal is generated if Ry
exceeds a control limit, which in the original work was
determined to minimize a cost-based loss function.

Pollak (1985) proved the S-R signal rule to be asymptoti-
cally Bayes risk efficient as p — 0. Basseville and Nikiforov
(1993) and Lai (1995) provided good discussions of the S-R
control chart. Bayesian procedures for process monitoring
appear to be unknown to most applied statisticians and in-
dustrial engineers and thus are rarely used in SPC applica-
tions.

There is a relatively large volume of applied SPC liter-
ature on economic models (starting with Duncan 1956) re-
lated to Bayesian approaches. These economic models aim
to find the optimum control chart design (sample size, sam-
pling interval, and control limits) to minimize long-term
expected costs. The control statistics used in these mod-
els are from standard control charts, such as Shewhart or
CUSUM charts, and thus are not based on a posterior dis-
tribution. These models use prior distributions for the time
and size of change in 6 and a loss function that accounts
for the costs of sampling, false alarms, and operating out
of control. Thus these models have the key elements that
would be used in a Bayesian approach to the problem, ex-
cept that the control statistics are not based on a posterior
distribution.

Economic models appear to provide a natural approach
for process engineers to use in control chart design and
application, because decisions are put into terms that man-
agers understand (dollars), and the problem is framed in
terms of designing traditional control charts. But, like many
purely Bayesian methods, these models are rarely used by
SPC practitioners. There is disagreement among SPC re-
searchers about the general usefulness of the economic
modeling approach. Some researchers (e.g., Woodall 1986)
criticize these models and feel that future SPC research
efforts would be more fruitful in other areas. Other re-
searchers are actively working on these models and feel
that they provide the best approach to control chart design
for many applications (e.g., Keats, Del Castillo, von Collani,
and Saniga 1997).

6. MORE EFFICIENT SAMPLING

The standard approach to sampling for a control chart is
to use a fixed sampling rate (FSR) in which samples of fixed
size are obtained using a fixed-length sampling interval. In
recent years, variable sampling rate (VSR) control charts
have been developed. VSR charts allow the sampling rate to
vary as a function of the process data. When the data exhibit
no evidence of a change in 6, a low sampling rate is used,
but as soon as there is evidence of a possible change in 6,
a high sampling rate is used. If the evidence of a change in
0 is strong enough, a VSR chart signals in the same way as
a traditional FSR chart. Using a high sampling rate when
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there is evidence of a change in @ results in much faster
detection of most shifts in @, compared to an FSR chart
with the same average in-control sampling rate.

There are several ways to allow the sampling rate to
vary as a function of the process data. One way is to allow
the sampling interval to vary (Reynolds, Amin, and Arnold
1990; Reynolds and Stoumbos 2000a; references therein).
Another way is to allow the sample size to vary. A par-
ticularly efficient way to allow the sample size to vary is
to apply a sequential probability ratio test for testing 8
versus 6; at each sampling point (Reynolds and Stoumbos
1998; Stoumbos and Reynolds 1997, 2000a). Tagaras (1998)
presented a review of VSR charts.

The great majority of VSR control charts in the literature,
including those mentioned herein, have been developed for
discrete-time models. Recently, several VSR control charts
have been developed for the continuous-time problem of
monitoring the drift coefficient of a Brownian motion pro-
cess (Assaf, Pollak, and Ritov 1992; Assaf and Ritov 1989;
Srivastava and Wu 1994). Assaf et al. (1992) and Srivastava
and Wu (1994) noted that these continuous-time VSR con-
trol charts are quite complicated to implement in practice
and were considered mainly from a theoretical viewpoint,
using diffusion theory.

The disadvantage of VSR charts is, of course, the admin-
istrative inconvenience of the varying sampling rate. How-
ever, the ability to make better use of sampling resources by
selectively allocating them to the time periods in which they
will be most effective provides a powerful method for sig-
nificantly increasing the efficiency of process monitoring.

7. MULTIVARIATE CONTROL CHARTS

In many SPC applications, the quality of the process will
be characterized by multiple correlated quality variables,
and in this situation both the quality characteristic X and
parameter 6 will be vectors. In multivariate SPC applica-
tions, the most common approach to process monitoring is
to apply separate univariate control charts for each variable,
ignoring the issue of their joint performance.

One approach to constructing a multivariate control chart
is based on forming a single control statistic from the mul-
tivariate data in each sample. This control statistic would
usually be a quadratic form involving summary statistics
for each variable, and would be plotted on a Shewhart-type
chart (Hotelling 1947). The resulting control chart has the
disadvantage of all Shewhart-type charts; it is inefficient for
detecting small and moderate-sized sustained shifts in 6.

A much better approach is to compute an EWMA or
CUSUM statistic for each variable, and then use a quadratic
form to combine these separate univariate statistics into
a single control statistic to be plotted on a control chart
as usual (Lowry, Woodall, Champ, and Rigdon 1992; Ma-
son, Champ, Tracy, Wierda, and Young 1997; references
therein).

8. AUTOCORRELATION

A basic assumption usually made in constructing and
evaluating control charts is that the process data are in-
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dependent. But autocorrelation is present in many applica-
tions, particularly in cases in which data are closely spaced
in time. Relatively low levels of autocorrelation can have a
significant impact on the statistical properties of standard
control charts designed under the assumption of indepen-
dence. For example, estimates of 6y can be severely biased,
resulting in a much higher false-alarm rate than expected. It
is not uncommon in applications for standard control charts
to be applied to autocorrelated data. When these control
charts do not work properly, ad hoc adjustments are made
to the charts to try to compensate for the autocorrelation.
This clearly is not the best approach to use for the problem
of autocorrelation.

In recent years, two basic approaches to dealing with
autocorrelation have been studied in the applied SPC lit-
erature. Under both approaches, an underlying time series
model is assumed. The first approach uses the original data
in a standard control chart, but adjusts the control limits to
account for the autocorrelation. The second approach advo-
cates plotting the residuals from the time series model on
a standard control chart (Faltin, Mastrangelo, Runger, and
Ryan 1997; Lu and Reynolds 1999; references therein).

Both of these approaches tend to make the problem of
process monitoring appear simpler than it actually is. If a
time series model really captures the in-control behavior of
the process, then the parameters of this time series model
become elements of 8. Thus the complexity of the process-
monitoring problem is increased due to the increase in the
number of parameters to estimate and monitor.

Several interesting extensions of CUSUM, GLR, and
nonlikelihood control chart schemes for autocorrelated data
have appeared in the engineering literature over the last
three decades. Basseville and Nikiforov (1993) gave a com-
prehensive overview of these algorithms in the context of
univariate as well as multivariate process-monitoring appli-
cations.

9. STATISTICAL PROCESS CONTROL AND
AUTOMATIC PROCESS CONTROL

The basic philosophy of SPC for improving quality is to
detect process changes, so that the cause(s) of the changes
can be investigated. Another approach to improving qual-
ity, sometimes called automatic process control (APC), has
been developed in the engineering literature. APC can be
used in situations in which there is autocorrelation in the
data and a mechanism is available to adjust the process
when it appears to be deviating from the desired state. The
approach used in APC is to forecast the next observation,
and then use the adjustment mechanism to adjust the pro-
cess so that the observation will be closer to the desired
state. In APC the process is assumed to be wandering in
some sense, and the adjustment mechanism compensates
for this wandering. Thus the basic philosophy of APC is to
compensate for undesirable process changes, rather than to
detect and remove them as in SPC.

The determination of the best adjustment to make in APC
requires a model for process behavior. The optimal adjust-
ment chosen for this model may not work well in the pres-
ence of a process change that alters the model. The need to
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detect changes in the underlying model suggests combining
SPC monitoring with APC adjustment to exploit their indi-
vidual strengths. There has been recent work on combining
SPC and APC, but more work is needed (Box and Luceno
1997; Tsung, Shi, and Wu 1999; references therein).

10. DIAGNOSTICS

Monitoring, in either the case of a time series model or
the case of multiple variables, involves monitoring multi-
ple parameters. When a control chart signals in this situa-
tion, the parameter(s) that have changed may be difficult to
determine. In addition, with small parameter changes, pin-
pointing the time of the change may also be difficult. Thus
an important issue with multiple parameters is the ability
to diagnose the type and time of the parameter change that
has occurred.

In the case of multivariate data, some work has been done
on diagnostics, but little has been done in the case of time
series models. The literature on estimating changepoints in
a sequence of observations is substantial (Basseville and
Nikiforov 1993 and references therein). But the problem of
estimating the changepoint in process monitoring is differ-
ent from the problem for a fixed sequence of observations
because in process monitoring the estimation is done only
after a signal by the control chart (Nishina 1992; Nishina
and Peng-Hsiung 1996; references therein). The problem
of diagnostics is one area where the use of Bayesian mod-
els, nonlinear filtering theory, and stochastic calculus seem
quite natural and may prove very useful (Lai 1995; Stoum-
bos 1999; Yashchin 1997).

11. PARAMETER ESTIMATION AND
NONPARAMETRIC PROCEDURES

Control chart performance is very sensitive to errors in
estimating 6y. For example, the false-alarm rate may be
much higher or lower than expected unless the dataset used
in the initial phase of estimating 6 is quite large. The situ-
ation is even worse in more complex situations when multi-
ple parameters must be estimated (Adams and Tseng 1998;
Lu and Reynolds 1999). The effect of errors in estimating
6, in complex models awaits additional study, and methods
for compensating for these effects remain to be developed.

Traditional Shewhart-type charts are usually based on
the assumption that if fg(x) is continuous, then it will be
normal. Almost all work on multivariate control charts is
based on the assumption that fs(z) is multivariate normal.
In some cases, the central limit theorem can be used to jus-
tify approximate normality when monitoring means, but in
numerous cases normality is an untenable assumption and
one is unwilling to use another parametric model. A num-
ber of nonparametric methods are available for use in these
cases. A more prominent role is expected for nonparamet-
ric methods. As data availability increases, nonparametric
methods seem especially useful in multivariate applications
where most methods proposed thus far rely on normality.
Nonparametric multivariate control charts have been stud-
ied only very recently and much more research is needed
(e.g., Liu 1995; Stoumbos and Jones 2000; Stoumbos, Jones,
Woodall, and Reynolds 2000).
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12. FUTURE DIRECTIONS

Advances in automated manufacturing systems coupled
with advances in sensing and automatic inspection technol-
ogy will continue to increase the volume of data available
for drawing inferences about many processes. In some ap-
plications, this will change the inference problem from one
dependent on scarce data to one based on plentiful data.
However, the emphasis on higher quality will often require
measuring more variables, which in some cases may be ex-
pensive and/or time-consuming. Thus we foresee no reduc-
tion in the need for efficient procedures for process moni-
toring.

In the future, we expect problems to be more diverse,
with specialized monitoring methods required. Multiple
quality variables, along with possible autocorrelation in
these variables, will require more complex models with a
large increase in the number of parameters to monitor.

The increasing complexity of problems encountered pro-
vides an opportunity to narrow the gaps between applica-
tions and applied and theoretical SPC research. The She-
whart charts that have dominated industrial applications
over the past 75 years were designed to be extremely sim-
ple, with a one-size-fits-all approach to their design and
implementation. In the case of relatively simple problems,
arguments that CUSUM or EWMA charts have much better
statistical properties convinced only some industrial practi-
tioners to move beyond using the familiar Shewhart charts.
As problems become more complex, the need for more so-
phisticated monitoring procedures will become critical and
more obvious to all. Theoretical and applied research that
addresses this need can have a major impact on applications.

The following are some additional research areas that we
feel have very good potential for impacting applications (for
some other research topics, see Montgomery and Woodall
1997 and Woodall and Montgomery 1999):

* Basic and applied research is needed on methods for
monitoring multiple parameters that arise in models
for the cases of single or multiple process variables
and/or autocorrelation.

* When multiple parameters are to be monitored, meth-
ods are needed for diagnosing both the changepoint
(Nishina 1992; Nishina and Peng-Hsiung 1996) and
the specific parameter or parameters that have changed
(Reynolds and Stoumbos 2000a). The application of
monitoring procedures to complex problems may re-
quire sophisticated efforts in model fitting and param-
eter estimation, and the effects of the fitting and es-
timation on the procedures awaits much more study.
We foresee that VSR approaches can significantly im-
prove the effectiveness of change-point estimation.

+ The robustness of fitted process models and monitor-
ing procedures to model misspecification needs fur-
ther study (Stoumbos and Reynolds 2000b). Nonpara-
metric procedures for multivariate problems is an open
field with great potential.

+ Additional basic and applied research is needed on
procedures that integrate SPC and APC methodology.
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» The scope of SPC methods should be expanded to in-
clude the study of all variation over time throughout
the entire production process (tracking), which usu-
ally includes numerous stages of process steps and
product measurement (Agrawal, Lawless, and Mackay
1999; Hawkins 1991; Lawless, Mackay, and Robinson
1999).

* A greater synthesis of the theoretical changepoint and
applied SPC literatures is very desirable. Moreover,
excellent opportunities exist for cross-fertilization of
ideas from other areas of statistics and stochastic mod-
eling, including epidemiology, outlier detection, and
especially stochastic calculus and financial mathemat-
ics (Stoumbos 1999).

» The use of complicated models will place even greater
emphasis on the development of software. In many
cases, software will need to be customized for partic-
ular applications.
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Statistics in Preclinical Pharmaceutical
Research and Development

Bert GUNTER and Dan HOLDER

Although most statisticians and the public at large are
familiar with the role of statistics in human clinical drug
trials, advances in the basic science and technology of drug
research and development (R&D) have created equally chal-
lenging and important opportunities in the preclinical arena.
Preclinical pharmaceutical research encompasses all aspects
of drug discovery and development, from basic research
into how cells and organs work and how disease processes
disrupt that work to the development, formulation, and
manufacture of drugs. The activities that fall under this
rubric include biological and biochemical research using
in vitro (“test tube”-based) and in vivo (whole animal) ex-
periments; genomics, the study of gene expression in cells,
organisms, and populations to determine the molecular biol-
ogy of disease; proteomics, the study of protein expression
patterns to understand how normal and disease processes
differ; design, synthesis, and selection of diverse chemical
and natural product “libraries” of compounds to screen for
desirable biological activity, often via high throughput, “in-
dustrialized” drug screening assays; analytical development
for drug research and manufacturing; animal testing of drug
candidates for efficacy and metabolism and to determine
drug toxicity, teratogenicity (fetal and growth effects), and
carcinogenicity; development and scale-up of chemical and
fermentation drug manufacturing processes; and drug for-
mulation and stability testing. This list is far from complete.

To put these activities into perspective, it can easily cost
more than $1 billion and require 10 to 15 years of R&D
to bring out a single new drug, of which only the last 2-3
involve the FDA-reviewed human trials with which statis-
ticians and the public are most familiar. So preclinical ac-
tivities occupy the bulk of the time and scientific effort.
The statistics that support this work cover a broad range
of statistical methods. Sample sizes can range from lon-
gitudinal case-control studies of 10 or fewer animals (al-
though they may produce thousands of data points from

Bert Gunter is Director, Scientific Staff, Merck Research Laboratories,
Rahway, NJ 08540 (E-mail: bert_gunter@merck.com) and Dan Holder is
Associate Director, Scientific Staff, Merck Research Laboratories, West
Point, PA 19486 (E-mail: dan_holder @merck.com).

continuous monitoring using sophisticated instruments and
telemetry) to hundreds of thousands or millions of multi-
variate records in drug screening and structure searches. All
areas of statistics find useful application, but recent oppor-
tunities for nonparametric experimental design, linear and
nonlinear longitudinal data modeling, high-dimensional ex-
ploration and visualization, inference using exact permu-
tation methods and bootstrapping, and pattern recognition,
classification, and clustering of large databases are perhaps
noteworthy.

Clearly, in a brief survey like this we can highlight only
a couple of examples. We have chosen chemometrics and
genomics because they provide good examples of the kind
of interdisciplinary, data-rich, and nonstandard issues that
are increasingly at the forefront of modern pharmaceutical
research. But these examples are just the tip of a vast and
fascinating iceberg.

1. CHEMOMETRICS

Roughly speaking, chemometrics is the statistics of
(analytical) chemistry data, especially spectroscopy data.
Physics and chemistry have developed an arsenal of in-
genious tools to probe chemical composition and struc-
ture. (A nice internet resource for spectroscopy is
www.anachem.umu.se/jumpstation.htm.) These techniques
can produce (one- and two-dimensional) spectra of exquisite
resolution, often with hundreds or thousands of individ-
ual peaks. Digitizing translates them to multivariate vectors
of that dimensionality. Chemometrics arose because classi-
cal multivariate normal statistical methods were inadequate
for such data and related matters of calibration and qual-
ity control.

One typical application will give the flavor of the issues.
Suppose that one has, say, 200 unknown natural chemical
extracts from various biological sources that are tested for
antibiotic activity against 30 different pathogens. (Many an-
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