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In most statistical process control (SPC) applications, it is assumed that the quality of a process or
product can be adequately represented by the distribution of a univariate quality characteristic or by the
general multivariate distribution of a vector consisting of several correlated quality characteristics. In many
practical situations, however, the quality of a process or product is better characterized and summarized by
a relationship between a response variable and one or more explanatory variables. Thus, at each sampling
stage, one observes a collection of data points that can be represented by a curve (or profile). In some
calibration applications, the profile can be represented adequately by a simple straight-line model, while in
other applications, more complicated models are needed. In this expository paper, we discuss some of the
general issues involved in using control charts to monitor such process- and product-quality profiles and
review the SPC literature on the topic. We relate this application to functional data analysis and review
applications involving linear profiles, nonlinear profiles, and the use of splines and wavelets. We strongly
encourage research in profile monitoring and provide some research ideas.
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Introduction common in practical applications. For each profile,
we assume that n (n > 1) values of the response vari-
able (Y') are measured along with the corresponding
values of one or more explanatory variables (the Xs),
the latter of which often include variables that reflect
the location of the measurement on a manufactured

item.

E CONSIDER the use of control charts for cases
W in which the quality of a process or product
is better characterized by a relationship between a
response variable and one or more explanatory vari-
ables than by the standard use of the distribution of a
single quality characteristic or a general multivariate

quality vector. These cases appear to be increasingly Jin and Shi (2001) used the term waveform sig-

nals to refer to what we call profiles. These signals
are often collected by sensors during manufacturing
processes. Their examples included tonnage stamp-
ing in stamping, torque signals in tapping, and force
signals in welding. Gardner et al. (1997) used the
term signature in place of our use of profile.
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Kang and Albin (2000) presented two examples
of situations for which product profiles are of in-
terest. One example was a semiconductor manufac-
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performance of a mass flow controller was character-
ized by a linear function. Calibration processes are
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FIGURE 1. A Location Chart from Boeing (1998, p. 91).

often characterized by linear functions, as discussed
by Mestek et al. (1994), for example. Hemsch et al.
(2000) gave an interesting application of profile data
arising from the quality monitoring of the accuracy
of wind tunnel results. In this application, Y is the
axial force coefficient and X is the angle of attack.

The profile framework also includes applications
in which numerous measurements of the same vari-
able, e.g., a dimension such as thickness, are made at
several locations on each manufactured part. Boeing
(1998, pp. 89-92) proposed a location control chart
approach for this situation, but the control limits
used for each location depend only on the responses
at that location. Thus, the method does not make full
use of the data because their multivariate structure is
ignored. An illustration of a location chart from Boe-
ing (1998) is shown in Figure 1, where the response is
the upper flange angle measured at n = 15 locations
for 13 parts. The LSL and USL are the lower and up-
per specification limits, respectively. The LNTL and
UNTL are the natural tolerance limits that are three
standard deviations from the sample mean at each
location.

The profile application is very similar in some
respects to the monitoring of multiple stream pro-
cesses, e.g., multihead filling operations, as discussed
by Runger, Alt, and Montgomery (1996) and Mortell
and Runger (1995), but the nature of the effects of
assignable causes of variation are likely to be differ-
ent. Most often with multiple stream processes, it
is assumed that there is only a shift in the mean re-
sponse corresponding to one stream or that the mean
responses for all streams shift to a common level.
If assignable causes affect the patterns of measure-
ments in known ways, the approaches of Barton and
Gonzalez-Barreto (1996-1997) or Runger and Fowler
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(1998) can be applied, but we believe it may often
be more efficient to summarize the in-control perfor-
mance with a linear regression or other parametric
model and monitor for shifts in the parameters of this
model. For nonparametric models, one can alterna-
tively monitor metrics that reflect the discrepancies
between observed profiles and a baseline profile es-
tablished using historical data.

The use of linear and other types of functions as
responses in designed experiments has been studied.
For recent work, see Miller (2002) and Nair et al.
(2002). Also, profile data are frequently used in clas-
sification, pattern recognition, and signal discrimi-
nation. See, for example, Hall, Poskitt, and Presnell
(2001). We do not consider these types of applica-
tions in our paper.

We consider some general issues and recommenda-
tions for using control charts to monitor profiles in
the next section. We then consider the simplest case,
where the profile can be represented by a straight
line. In the following section, we discuss process mon-
itoring topics involving more complicated models.
We review statistical process control (SPC) applica-
tions involving the use of nonlinear regression mod-
els, splines, and wavelets. Relationships to other SPC
methods are then discussed. We give our concluding
discussion and some ideas for further research in the
last section.

Some General Issues

In this section, we discuss some of the issues to be
addressed when monitoring profiles.

Phase 1 vs. Phase 11 Applications

In many applications of control charting, it is use-
ful to distinguish between Phase I and Phase IT meth-
ods and applications. See ANSI/ASQC (1996) and
Woodall (2000), for example. In Phase I, one ana-
lyzes an historical set of process data. The goals in
Phase [ are to understand the variation in a process
over time, to evaluate the process stability, and to
model the in-control process performance. This latter
step is usually accomplished by the estimation of the
parameters of a parametric model. Assignable causes
of variation are considered to correspond to unusual
and preventable events that disrupt the process and
could, for example, cause a change in the parameters
of the underlying model of the profile. Samples asso-
ciated with assignable causes are removed from the
data if the sources of the assignable causes can be
determined and they can be prevented in the future.
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In Phase II, one is concerned with process monitor-
ing using on-line data to quickly detect shifts in the
process from the baseline established in Phase 1. Dif-
ferent types of statistical methods are appropriate
for the two phases, with each type requiring different
measures of statistical performance.

Under the SPC framework, one compares Phase
I methods by assessing the probability of deciding
that the process is out of control, i.e., unstable. In
Phase II, the emphasis is on detecting process trends
or shifts as quickly as possible. The latter is usually
measured by parameters of the run-length distribu-
tion, where the run length is the number of samples
taken before an out-of-control signal is given. The av-
erage run length (ARL) is often used to compare the
performance of competing control chart methods in
Phase 11, usually under the assumption of trends or
sustained step shifts in the parameters of the model
estimated from Phase I. Under the SPC framework,
the emphasis is on controlling the false-alarm rate in
Phase I and the in-control ARL in Phase II and us-
ing methods that have been demonstrated through
the use of statistical performance measures to be ef-
fective in detecting specified trends or shifts in the
distribution of the quality variable over time.

With profile data collected for Phase 1, one should
examine the fit of the hypothesized model for each
profile. One should check, for example, for outliers.
In some cases, it may be more appropriate to delete
specific points within a profile dataset rather than to
discard the entire profile sample. In this case, some
of the formulas corresponding to the proposed pro-
file methods require modifications to account for the
changes in the sample size and the values of the ex-
planatory variable(s).

Principal-Components and Functional Data
Analysis

The principal-component analysis, as described by
Jones and Rice (1992), can be very useful in sum-
marizing and interpreting a set of Phase I profile
data with identical, equally spaced values of a de-
pendent variable X for each profile. If the X-values
are not naturally equally spaced, one can smooth the
data and use interpolation to obtain fitted response
values for a set of equally spaced values. With this
approach, one treats each profile as a multivariate
vector of n response Y-values and identifies a few
mutually orthogonal linear combinations of the Y-
variables that explain as much variation in the pro-
files as possible. If these principal components are
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FIGURE 2. Vertical Density Profile Data from Walker
and Wright (2002).

interpretable, this approach can be very effective in
understanding process performance. Jones and Rice
(1992) recommended plotting the average profile and
the profiles with the largest and smallest principal-
component scores for aiding in the interpretation of
the principal components. We strongly recommend
the use of these plots in Phase 1.

As an illustration, consider the data used by
Walker and Wright (2002) shown in Figure 2. For
several engineered wood boards, each vertical-density
profile consists of n = 314 measurements taken 0.002
inches apart. These data are available at http://bus.
utk.edu/stat/walker/VDP /Allstack. TXT. The pro-
files corresponding to the largest and smallest prin-
cipal component scores for the first two principal
components are shown in Figures 3 and 4, respec-
tively. The first two principal components account
for 84.0% and 10.7% of the variation in the profiles,
respectively. Principal components are often difficult
or impossible to interpret, but in this example, it is
clear that the first principal component corresponds
to shifts in the profiles along the vertical direction
and the second to the flatness of the profile.

The profile-monitoring application can be viewed
as falling into the general area of functional data
analysis. See Ramsey and Silverman (2002). The
principal-component approach of Jones and Rice
(1992) is a standard technique of functional data
analysis. Most of the current work on the topic of
profile monitoring, however, still relies fundamentally
on standard ideas from classical regression and mul-
tivariate analysis.
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FIGURE 3. Vertical Density Profiles with Largest (+
+ + + +) and Smallest (— — — — — ) First Principal-
Component Scores. (Solid line represents average profile.)

Model Selection

Any model selected for a particular application
should be as simple as required to adequately model
the profile data. Thus, standard recommendations
regarding model selection apply. The sample size re-
quired for each profile will depend on the model used.
Also, advantages and disadvantages of various mod-
els in the single-sample case carry over to our mul-
tiple sample application. With any model, however,
it must be determined how to design a monitoring
procedure to detect profile changes over time most
effectively, preferably in a way that allows for the
interpretation of out-of-control signals.

Profile-to-Profile Common-Cause Variation

It is critically important to assess variation be-
tween profiles in Phase I as well as variation within
profiles. Common-cause variation is that variation
considered to be characteristic of the process and
that cannot be reduced substantially without funda-
mental process changes. It must be determined how
much of the profile-to-profile variation is common-
cause variation and should be incorporated into the
determination of the control chart limits to be used
in Phase II. If a parametric model is used, we refer
here to variation in the values of the parameters but
not variation in the form of the model itself. There
is common-cause variation between profiles if it is
not reasonable to expect each set of observed profile
data to be adequately represented using the same set,
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Component Scores. (Solid line represents average profile.)

of parameters for the assumed model. Woodall and
Thomas (1995), for example, discussed this issue of
determining the most relevant variance estimates in
the standard case of monitoring the mean of a uni-
variate quality characteristic when there is said to be
legitimate batch-to-batch variation. Process knowl-
edge is always required in the decision whether or
not to include profile-to-profile variation as common-
cause variation. From our experience, it is often un-
realistic to expect that process improvement can be
used to remove all profile-to-profile variation.

The Control Chart Statistic(s)

In Phase II, it is often recommended to monitor
the profiles using a separate control chart for each
parameter of a parametric model, provided the esti-
mators of the parameters at each sampling stage are
independent. The interpretation of out-of-control sig-
nals would be enhanced, however, if assignable causes
tended to affect the parameters individually. If the
estimators of the parameters of the model for the
profile are dependent, as is more often the case, one
can use a T2-chart based on the successive vectors of
estimators obtained at the sampling stages. As dis-
cussed by Sullivan and Woodall (1996) and Vargas
(2003), however, it is important to use an appropri-
ate estimator of the variance-covariance estimator in
Phase I in order to account for common-cause vari-
ation. In particular, if the vectors of estimators are
pooled in order to estimate the variance-covariance
matrix, then the resulting 72 chart will tend to be
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quite ineffective in detecting outlying profiles or sus-
tained shifts in the profiles over time. The method
of estimating the variance-covariance matrix based
on the differences of successive vectors, proposed by
Hawkins and Merriam (1974) and later by Holmes
and Mergen (1993), is usually preferred. This rec-
ommendation is analogous to the standard use of
the average moving range in Phase I to estimate the
standard deviation when applying an individuals X-
chart to monitor the mean in the univariate case,
as opposed to pooling all of the data and using the
pooled standard deviation as the estimator. Vargas
(2003) studied the performance of other estimators
of the variance-covariance matrix that are also more
robust to shifts in the mean vector.

[f the approach used is nonparametric, then a rea-
sonable approach is to base control charts on met-
rics that measure the departures of observed process
profiles from a baseline profile model developed in
Phase I. One such metric is the average deviation of
the observed profile from the baseline profile calcu-
lated over a grid of X-values. Gardner et al. (1997)
recommended this approach. From a statistical pro-
cess control point of view, however, it is important to
develop control chart limits for the charts based on
these metrics such that the overall false-alarm rate is
controlled.

One should make sure that the choice of statistics
to monitor does not result in methods that are unable
to detect certain types of profile shifts. For example,
if one chooses to monitor only a subset of the princi-
pal components or a subset of the wavelet coefficients
that were determined using only in-control data, then
certain types of out-of-control profile shifts may be
undetectable. In both of these cases, the statistics
monitored are linear combinations of the response
variables for each profile. Unless a full set of n mu-
tually orthogonal linear combinations of the data is
monitored, one loses the ability to detect some types
of profile shifts. If one monitors only a few of the lin-
ear combinations, then a chart such as the SPE-chart
discussed by MacGregor (1997) can be used to check
for shifts in other directions.

In some cases, however, it may be possible to tar-
get control charts to detect specified types of pro-
cess faults. This can be done by inducing the process
faults and observing the effect on several profiles. The
control chart statistic can then be determined, per-
haps using discriminant analysis, to be most effective
in detecting a specific fault. Gardner et al. (1997),
for example, use this type of approach. This strat-
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egy reduces the dimensionality of the problem and
increases the power of the charts, but one must be
careful not to overlook important types of process
faults.

Analysis of Linear Profiles

In this section, we review the work done on the
simplest case, the one in which the profile is ade-
quately represented by a straight line. Although the
profile may be curved, a linear approximation may
be accurate for a restricted region of the X-variable.

Phase II Methods

Several researchers have studied Phase II control
charting methods for monitoring a process for which
the in-control quality of a product is characterized by
a simple linear regression relationship with assumed
known values of the Y-intercept, slope, and variance
parameters. The data were assumed to consist of suc-
cessive samples of size n, although the methods could
be generalized to handle unequal sample sizes. One
approach of Kang and Albin (2000) involves a mul-
tivariate T2-chart based on the successive vectors of
the least squares estimators of the Y-intercept and
slope. Their second method uses statistics based on
the successive samples of n deviations from the in-
control line. They recommended the combination of
an exponentially weighted moving average (EWMA)
chart to monitor the average deviation and a range
(R-) chart to monitor the variation of the deviations.
It is well known that the EWMA chart, which com-
bines information from the samples over time, can
be used to detect more quickly small- and moderate-
sized sustained process changes than a Shewhart-
type decision rule that is based on only the infor-
mation in the current sample.

Kim, Mahmoud, and Woodall (2003) proposed al-
ternative control charts for monitoring in Phase II.
They used the estimated regression coefficients, i.e.,
the estimates of the Y-intercept and slope of the
linear function, from each sample to construct two
separate EWMA charts. Because they recommended
coding the X-values so that the estimators of the
Y-intercept and slope are independent, they moni-
tored each of the two regression coefficients using a
separate chart. Also, they proposed replacing the R-
chart of Kang and Albin (2000) by one of two EWMA
charts for monitoring a process standard deviation,
including one developed by Crowder and Hamilton
(1992). The ARL performance of the combined use
of these three EWMA charts to monitor separately
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the Y-intercept, the slope, and the variation about
the regression line was shown to be superior to that
of the Phase II methods of Kang and Albin (2000) for
sustained shifts in the regression parameters. Their
method is also much more interpretable because each
parameter in the model is monitored with a separate
control chart. These methods are now being applied
in semiconductor manufacturing at Intel Corpora-
tion, as discussed by Ajmani (2003).

Phase I Methods

Kang and Albin (2000) recommended that their
Phase II methods be used in Phase I with esti-
mates substituted for the values of the unknown pa-
rameters. Their EWMA chart approach, however, is
not appropriate in Phase [. The advantages of the
EWMA chart regarding its statistical performance
in Phase II to detect sustained shifts in a parameter
do not apply in Phase I in which other types of shifts
are often of interest. Also, quick detection is not an
issue in Phase I because one is working with a fixed
set of baseline data, all of which should be used in
the analysis.

Mestek et al. (1994) and Stover and Brill (1998)
also considered the Phase I problem. Stover and Brill
(1998) proposed two methods in Phase I for which
k samples of bivariate historical data are available.
One is a Hotelling’s 72 approach based on vectors
containing estimates of the Y-intercept and slope.
This method is similar to the Phase I 72 method of
Kang and Albin (2000), although the given marginal
distribution of the control statistic is different due
to the use of a different estimator for the variance-
covariance matrix. Kang and Albin (2000) made the
implicit assumption that there is no common-cause
variation befween profiles. Their assumption is that
there is only random variation about a fixed line for
in-control profiles. Stover and Brill (1998) pooled
the Phase I vectors of estimated regression coeffi-
cients in estimating the variance—covariance matrix.
Thus, they implicitly assumed that all variation be-
tween profiles is part of the common-cause varia-
tion and that no assignable causes of variation were
present in Phase 1. Neither set of authors acknowl-
edged, however, the fact that successive values of
their Phase I 77 values are dependent because each
is based on the same estimator of the vector of in-
control model parameters and the same estimator
of the variance—covariance matrix. Thus, the overall
probability of a signal by these methods cannot be
determined exactly using the marginal distributions
of their 72 statistics. This dependence between the
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plotted statistics grows weaker with an increasing
number of profiles, however, and close approxima-
tions to the overall false-alarm probability can be ob-
tained as shown by Mahmoud and Woodall (2004a).

Another Phase I method, proposed by Stover and
Brill (1998), was a univariate chart based on the
first principal component corresponding to the vec-
tors containing the Y-intercept and slope estimators.
We agree with the advice of Kim et al. (2003), how-
ever, against using this principal-component chart
because, with it, one will not be able to detect combi-
nations of shifts in the Y-intercept and the slope in
the direction perpendicular to the major axis cor-
responding to the first principal component. Kim
et al. (2003) recommended the use of the Shewhart
type T?-chart for the Y-intercept and slope but also
recommended a Shewhart chart to monitor the er-
ror variance. If one codes the X-values as they rec-
ommend, so that the average X-value is zero, then
it seems reasonable to use separate Shewhart-type
charts for monitoring the Y-intercept and slope be-
cause the estimators of the Y-intercept and slope are
independent for each sample. The interpretation of
signals from this approach is much more straightfor-
ward than using a 7%-based method.

Mahmoud and Woodall (2004a) proposed a Phase
I method based on the standard approach of testing
collinearity using indicator variables for each profile
in a multiple regression model. The performance of
several competing methods was compared for differ-
ent numbers of shifts of a specified size in the regres-
sion parameters. The authors showed that Phase I
methods proposed by Brill (2001) and Mestek et al.
{1994) are ineffective in detecting shifts in the pro-
cess parameters due to the ways in which the vectors
of estimators were pooled to estimate the variance—
covariance matrix. Mahmoud and Woodall (2004a)
illustrated several of the Phase I methods using a
calibration dataset given by Mestek et al. (1994).

Linear Calibration Applications

Although Rosenblatt and Spiegelman (1981)
pointed out the potential usefulness of control chart
procedures to decide if recalibration is needed, rel-
atively little work seems to have been done on this
topic. Ciminera and Tukey {1989) proposed a control
chart method based on successive differences when a
fixed standard is measured periodically. Other simi-
lar control charting methods were given in ISO 5725-
6 (1994). These methods are based on deviations of
measurements from a single fixed standard and do
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not rely on the simultaneous evaluation of several
standards. Thus, there seems to be an implicit as-
sumption that any assignable cause would affect only
the Y-intercept of a linear calibration curve and not
the slope.

As discussed by Kim et al. (2003), once the pa-
rameters are established in a baseline linear calibra-
tion study, one would want to detect any change in
the Y-intercept or slope and any increase in the vari-
ation about the regression line because such shifts
could correspond to greater inaccuracies in the mea-
surement process. A change in the Y-intercept could
indicate the introduction of bias, and a change in the
slope indicates a dilation or contraction of the mea-
surement scale. A decrease in the variation about
the line would correspond to an improvement in the
measurement, process, as long as the other param-
eters do not change. An increase in this variation
could indicate more variation in the measurements
or an introduction of nonlinearity into the measure-
ment process. One could easily test for nonlinearity,
if this was considered to be a potential problem. The
effect of assignable causes in general, however, will
vary from application to application. Sometimes, for
example, one may wish to detect isolated outliers.

Croarkin and Varner (1982) proposed a method
for monitoring a linear calibration curve based on
the measurement of three standards at each time pe-
riod. These are at low, medium, and high values, re-
spectively. The three deviations of the measured val-
ues from these standards are plotted simultaneously
for each sample on a Shewhart-type control chart.
Although performance comparisons have not been
completed, we expect that the use of control charts
based on the estimated regression parameters will be
more effective. This latter approach would certainly
be much more interpretable, particularly as the num-
ber of standards measured at each time period in-
creases. The NIST/SEMATECH e-Handbook of Sta-
tistical Methods, which is available online at http://
www.itl.nist.gov/div898 /handbook/, contains a dis-
cussion of the methods proposed by Croarkin and
Varner (1982).

Other Linear Profile Approaches

Change point methods can also be very useful in
Phase I if one suspects that instability can be mod-
eled adequately by step shifts in the underlying pa-
rameter(s). Andrews et al. (1996) and many oth-
ers have discussed change point methods for linear
regression models. Mahmoud and Woodall (2004b)
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generalized these methods to reflect our assumed
sampling scheme and to allow for shifts in the error
variance.

As a natural extension of the simple linear regres-
sion model used as a profile, one can consider using
control charts to monitor profiles that can be rep-
resented by a polynomial regression model or some
other multiple linear regression relationship. Jensen,
Hui, and Ghare (1984) considered Phase [1 meth-
ods for this situation and Gardner et al. (1997) men-
tioned this approach in passing as an option. Box and
Draper (1969, p. 171) showed a plot of quadratic re-
sponse surface curves that changed over time due to
the effect of a decaying catalyst, but with an empha-
sis on process adjustment, not process monitoring.

Other Profile Models and Approaches

The modeling of process or product profiles has
been approached with other methods. For example,
Walker and Wright (2002) used additive models to
represent the curves of interest in the monitoring
of vertical density profiles of particleboard, although
they do not consider the time order of the data. In
this section, we cover the use of nonlinear models,
wavelets, and splines to represent profiles.

Nonlinear Profiles

In some cases, a nonlinear regression model is use-
ful for modeling a profile. The form of the model
may follow from scientific principles underlying the
process of interest. Brill {(2001) mentioned, as one
option in an example involving chemical processing,
using a 72 monitoring approach based on the esti-
mated regression coefficients in the nonlinear regres-
sion model. His example was based on an unnamed
chemical property referred to as “umph.” Williams,
Woodall, and Birch (2003) studied the use of T2-
control charts to monitor the coefficients of the non-
linear regression fits to the successive sets of profile
data. They gave several general approaches to the
formulation of the T2 statistics and the determina-
tion of the associated upper control limits in Phase
I applications. The choice of method primarily de-
pends on the extent to which common-cause varia-
tion includes variation between profiles. The various
approaches were illustrated using the vertical board
density profile data provided by Walker and Wright
(2002). Young et al. (1999) also considered a ver-
tical density profile application. In their approach,
however, the data for each profile were summarized
into a top-face, bottom-face, and core average den-
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sity. Then a T2 approach was used for the result-
ing three-dimensional quality vectors. We prefer the
nonlinear modeling approach to their averaging ap-
proach in this application because much more in-
formation is retained about the shape of each pro-
file. In general, however, it may be useful to break
the range of the X-variable into intervals and to
model the profile within each interval. Each subpro-
file could be monitored separately or a T? method
could be used. This approach seems most promis-
ing when assignable causes tend to affect the profile
only within certain intervals. It is related to the use
of nonparametric methods based on the Haar wavelet
system.

Methods Based on Wavelets

Jin and Shi (2001) used wavelets to monitor wave-
form signals for diagnosis of process faults. They rec-
ommended using 72-charts in Phase I and Phase
II, where the T? statistics are based on the n-
dimensional response vectors. Brill (2001) noted that
this type of approach is inefficient. Treated as a
multivariate normal vector, the response variables
are very highly correlated and thus the approach
leads to overparameterization. This approach also
requires much more data because a large variance-
covariance matrix must be estimated. Jin and Shi
(2001) also used the pooled variance—covariance esti-
mator, which was shown by Sullivan and Woodall
(1996) and Vargas (2003) to be ineffective at de-
tecting shifts in the mean vector. As stated earlier,
using the successive differences in vectors to esti-
mate the variance-covariance matrix or another ro-
bust method is often much more effective.

Jin and Shi (1999) used wavelets to model stamp-
ing tonnage signals. An example of this type of profile
is shown in Figure 5. They recommended Shewhart
charts to monitor changes in wavelet coefficients. A
general framework for monitoring wavelet coefficients
is yet to be developed, although some additional work
was reported by Lada, Lu, and Wilson (2002), and
Sun, Zhou, and Shi (2003, unpublished manuscript).
Lada et al. (2002) proposed Phase II methods for a
selected set of wavelet coefficients, with control limits
based on a resampling approach under the assump-
tion that the Phase I data were in control. The sta-
tistical performance of their proposed methods was
not studied.

Methods Involving Nonparametric

Regression

Nonparametric methods do not require a specified
functional form for the profile. In nonparametric re-
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gression methods, one obtains a smoothed curve that
can be expressed as a weighted average of the ob-
served responses. Winistorfer et al. (1996) used this
approach to model vertical density profile data for
pressed wood panels.

In a semiconductor application, Gardner et al.
(1997} modeled the spatial signatures (i.e., profiles)
of wafers using splines and then used various met-
rics to compare the profiles of new wafers to an es-
tablished baseline surface. In these applications, the
response was oxide thickness, and two X-variables
indicated the location of the measurements on a two-
dimensional grid. The metrics used were designed to
detect specific equipment faults. In one of their two
applications, there were only four profiles used to
establish the baseline, and common-cause variation
between profiles was not addressed. The in-control
distributions of the proposed metrics were evaluated
using bootstrapping, based on within-profile varia-
tion, in order to determine the control limits. The
statistical performance of this procedure, however,
was not evaluated. The performance of the boot-
strap method is somewhat suspect, given the rela-
tively poor performance of bootstrapping methods
for determining control limits in the standard uni-
variate case reported by Jones and Woodall (1998).

Spitzner and Woodall (2003) compared classical
multivariate tests with the adaptive Neyman test of
Fan and Lin (1998) applied to a Fourier-transformed
version of the profile data of Gardner et al. (1997).
They recommended further investigation into the use
of the modern techniques of high-dimensional adap-
tive testing.

Boeing (1998, pp. 140-144) also proposed Phase
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II control charting methods using spline fitting. In
this application, there are multiple gap measure-

ments made at several locations on a manufactured
part. Splines are fit to the responses for each part.
The average spline value for the first k& splines ob-
served or nominal values are used as the baseline.
Then some aspect, i.e., metric, is calculated for each
spline relative to the baseline. The metric could be,
for example, either the maximum difference or the
average absolute difference. Individual X-charts and
moving range charts are then based on the values
of the metrics. The statistical performance of this
method, however, was not evaluated. We would ex-
pect the skewness and other properties of the distri-
butions of the metrics to result in statistical perfor-
mance of the control charts that deviates consider-
ably from what one would expect under the assump-
tion of normality.

Relationships with
Other SPC Methods

Kim et al. (2003) pointed out that the monitor-
ing of linear profiles is closely related to the control
charting of regression-adjusted variables, as consid-
ered by Zhang (1992), Hawkins (1991, 1993), Wade
and Woodall (1993), Hauck et al. (1999), and others.
In these approaches, a regression model is often used
to account for the effect of an input-quality variable
X on the output-quality variable ¥ when monitor-
ing a particular stage of a manufacturing process.
The use of regression adjustment of a single quality
variable based on a simple linear regression model is
very similar to the linear profile situation. The Phase
I regression-adjusted data, however, usually consist
of a single sample of nn bivariate data points, not mul-
tiple such samples. Also, in Phase II of regression-
adjusted applications, one typically observes a se-
quence of individual deviations from the predicted
values of Y based on the fitted Phase I regression
model. Thus, one usually has considerably more data
in monitoring profiles. In the regression-adjusted ap-
plications, the values of the variable result from the
output of the previous stage of the manufacturing
process. It is thus usually considered to be a random
variable, not taking fixed values as is often assumed
in the linear profile-monitoring applications, partic-
ularly calibration applications.

The profile-monitoring application is only indi-
rectly related to the use of control charts for monitor-
ing a process to detect linear trends in the underlying
mean of a univariate quality variable, as discussed,
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for example, by Davis and Woodall (1988). One can
view this application in the linear profile context only
if one considers the use of individual observations
that are grouped, perhaps artificially, into samples of
n consecutive and nonoverlapping values, with time
used as the independent variable. Viewing each en-
tire sample successively, one would be interested in a
shift in the slope of the observations as a function of
time from zero to some nonzero value and a change in
the Y-intercept. One should note that any sustained
trend in the mean would likely occur within one of
the samples of size n, resulting in an initial out-of-
control profile pattern not considered in the linear
profile case. We do not recommend this approach in
practical applications, however, because it requires
the artificial grouping of data over time.

Krieger et al. (2003) considered an application
that could be viewed as a case of simple linear regres-
sion profile monitoring. but with n = 1 and where X
corresponds to time. As observations are collected
over time, their goal was to detect a change in the
slope of the regression line. This problem is quite
similar to the one studied by Brown et al. (1975).
In fact, there has been quite a bit of research on
this general topic of detecting changes in regression
models over time, but the assumptions regarding the
data available are quite different than in our profile
applications.

Grimshaw and Alt (1997) proposed a method for
detecting a change in the shape of the probability dis-
tribution of a univariate quality characteristic using
quantile (or inverse cumulative distribution) func-
tions. In this application, the quantile function can
be viewed as a profile that reflects the shape of the
univariate distribution.

Profile-monitoring methods are used in chemo-
metrics. In the use of partial least squares, for ex-
ample, models are fit relating process X-variables to
quality Y-variables. See, for example, Kresta et al.
(1991) and Kourti and MacGregor (1996). Profile-
monitoring methods such as the ones we consider,
however, are not typically used. According to Mac-
Gregor (2003, personal communication), one reason
for this is that the measured quality Y-values are
not generally available all of the time, and usually
are available only well after the process X-variables
are available. Bharati and MacGregor (1998) pro-
posed methods for the analysis of image data, where
the images can be considered to be profiles, although
considerably more complicated profiles than those re-
viewed in our paper.
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Finally, the profile-monitoring application is
somewhat related to standard multivariate profile
analysis. See, for example, Seber (1984, pp. 117-
124 and pp. 424-425). In the profile analysis ap-
proach, however, the data are not observed sequen-
tially. In addition, each of the profiles in profile anal-
vsis consists of a set of sample means, not individual
data values, as is most often the case in our profile-
monitoring applications.

Conclusions

We view the monitoring of process and product
profiles as the most promising area of research in
statistical process control. It expands the area to in-
clude a much broader array of statistical methods
and models and to include a much wider class of ap-
plications. Most of the work we have reviewed has
appeared in the past few years. The topic of pro-
file monitoring was omitted by Woodall and Mont-
gomery (1999) and Stoumbos et al. (2000), for exam-
ple, even as a research area in SPC.

Very little research has been done on the statis-
tical monitoring of process or product profiles with
control charts. Only the simple linear regression pro-
file case has been studied in any detail. There are
many topics that deserve attention by researchers.
Basic issues, such as the appropriate number of pro-
files to include in Phase T and the use of subgroups
of size greater than one, i.e., multiple profiles in each

sample instead of just one, have not been studied.,
In some cases, existing methods can be improved.

Clearly, for example, the multivariate EWMA chart
of Lowry et al. (1992) could be used in Phase II as a
substitute for, or in addition to, the T2-charts in or-
der to detect smaller sustained shifts in profiles more
quickly. As pointed out by a reviewer of our paper,
it is not particularly important that the monitoring
algorithms be simple, as long as the final output is
easy to understand.

In any future research and in applications, it is
important to address the issue of common-cause
profile-to-profile variation and to assess its effects.
If T2-charts are used, we recommend the method
of Holmes and Mergen (1993) or Vargas (2003) to
estimate the variance-covariance matrix. These ap-
proaches may result in the incorporation of some
profile-to-profile variation into the common-cause
variation, but they allow the detection of assignable
causes in Phase I. As illustrated by Sullivan and
Woodall (1996), Vargas (2003), and Mahmoud and
Woodall (2004a), the often-recommended method
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of pooling all of the Phase I data to estimate the
variance—covariance matrix results in inflated vari-
ance estimates if assignable causes of variation are
present in Phase I, which in turn may mask the ef-
fect of the assignable cause(s). Also, if one monitors
only a few of the principal components or a few of
the wavelet coefficients obtained from Phase T data,
one should ensure there is not a profile shift in Phase
1 in some otherwise undetectable direction. In other
words, the statistics used in the control charts must
span the subspace defining the out-of-control states.

Current topics under our study include further
comparisons of the monitoring methods for linear
calibration relationships, change-point methods for
simple linear regression profile data, the performance
of nonparametric regression methods in conjunction
with metric-based control charts, and the use of gen-
eralized linear models to represent profiles. Other
promising research topics include the effect of estima-
tion error and /or measurement error on chart perfor-
mance, the use of other charts such as the cumulative
sum (CUSUM) chart, the incorporation of multiple
response variables, comparisons of competing meth-
ods, the consideration of autocorrelated profile data,
and the development of regression-adjusted profile-
monitoring methods, just to name a few.
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