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INTRODUCTION

This section presents the use of statistical techniques to control processes. Historically, the
processes controlled statistically were manufacturing processes; however, in recent years, other
processes such as those used by organizations dealing primarily in services have recognized the
power of these techniques. The section starts with a few definitions and comments on notation.
Where possible, the definitions used are those found in the most common terminology standards.
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These standards are identified here as American National Standards; however, there are also inter-
national standards with the same numerical designations. The standards used are

● ANSI/ISO/ASQC A8402-1994, Quality Management and Quality Assurance—Vocabulary
● ANSI/ISO/ASQC A3534-1993, Statistics—Vocabulary and Symbols

Part 1: Probability and General Statistical Terms
Part 2: Statistical Quality Control

The reader is referred to these standards for definitions of additional terms. ANSI/ISO/ASQC
A8402-1994 has replaced ANSI/ASQC A3 and ANSI/ISO/ASQC A3534-2 has replaced
ANSI/ASQC A1 and A2 that were referenced in earlier editions of this handbook.

Definitions
● Process: Set of interrelated resources and activities that transform inputs into outputs. [Note:

Resources may include personnel, finance, facilities, equipment, techniques, and methods
(ANSI/ISO/ASQC A8402-1994, clause 1.2).]

● State of statistical control: State in which the variations among the observed sampling results
can be attributed to a system of chance causes that does not appear to change with time. [Note:
Such a system of chance causes generally will behave as though the results are simple random
samples from the same population) (ANSI/ISO/ASQC A3534-2-1993, clause 3.1.5).]

● Process in control, stable process: Process in which each of the quality measures (e.g., the aver-
age and variability or fraction nonconforming or average number of nonconformities of the prod-
uct or service) is in a state of statistical control (ANSI/ISO/ASQC A3534-2-1993, clause 3.1.6).

● Chance causes: Factors, generally many in number but each of relatively small importance, con-
tributing to variation that have not necessarily been identified. [Note: Chance causes are some-
times referred to as common causes of variation (ANSI/ISO/ASQC A3534-2-1993, clause 3.1.9).]

● Assignable causes: Factors (usually systematic) that can be detected and identified as contribut-
ing to a change in a quality characteristic or process level. [Notes: (1) Assignable causes are some-
times referred to as special causes of variation; (2) many small causes of change are assignable,
but it may be uneconomic to consider or control them; in this case they should be treated as chance
causes (ANSI/ISO/ASQC A3534-2-1993, clause 3.1.8).]

● Control chart: Chart with upper and/or lower control limits on which values of some statistical
measure for a series of samples or subgroups are plotted, usually in time or sample number order.
The chart frequently shows a central line to assist detection of a trend of plotted values toward
either control limit. [Note: In some control charts, the control limits are based on the within-sample
or within-subgroup data plotted on the chart; in others, the control limits are based on adopted
standard or specified values applicable to the statistical measures being plotted on the chart
(ANSI/ISO/ASQC A3534-2-1993, clause 3.3.1).]

Notation. The standard statistical notation will be used wherever possible. That is, a measure-
ment of a quality characteristic will be denoted by an x, parameters will be denoted by Greek letters,
and statistics by Roman letters. An overbar will denote an average, and double overbars will indicate
an average of averages. Other symbols will be defined as they are used.

THEORY AND BACKGROUND OF STATISTICAL PROCESS 
CONTROL

Concern over variation in manufactured products produced by the Western Electric Company and
studies of sampling results led Dr. Walter A. Shewhart of the Bell Laboratories to the development
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of the control chart as early as 1924. An unpublished memorandum by Shewhart dated May 16, 1924
contains the first known control chart. In subsequent papers, Shewhart developed the concept more
completely. See Shewhart (1926a, 1926b, 1927, and 1931) for more details about these early efforts.
In 1931 Shewhart published his classic book, Economic Control of Quality of Manufactured Product.
The first applications of the control chart by Shewhart were on fuses, heat controls, and station appa-
ratus at the Hawthorne Works of the Western Electric Company. By 1927–1928, many other appli-
cations throughout the Western Electric Company were initiated by another member of the Quality
Assurance Department of Bell Laboratories, Harold F. Dodge. These applications were as an adjunct
to sampling inspection plans and as a basic device for demerits-per-unit charts for periodic quality
assurance ratings.

In 1935, Dodge prepared the ASTM Manual on Presentation of Data, which addresses many
types of control charts. This document is currently known as ASTM MNL 7 (1990). It has been used
extensively by industry over the years. In 1941–1942, Dodge served as chairman of the American
Standards Association Committee Z1, which published ASA standards Z1.1, Z1.2, and Z1.3 on con-
trol charts. Widespread use of control charts followed the initial publication of these standards.
Revised versions of these three standards are now available from ANSI and ASQ (see ANSI/ASQC
1985a, 1985b, 1985c). Training courses on quality control principles (including the use of control
charts and acceptance sampling plans) were sponsored by the Office of Production Research and
Development of the War Production Board during World War II as a means for maintaining quality
and promoting continual improvement. There have been many extensions and modifications of the
basic control charts of Shewhart over the years. Control charts are now widely used in every indus-
try. They are the principal tools of statistical process control (SPC).

In his studies, Shewhart observed that variation occurs in all things in nature as well as in manu-
factured goods. The study of this variation and its reduction are the principal vehicles of quality
improvement. The control chart is the most important tool available to do this. Even though no two
items are alike (variation), groups of observations form either predictable patterns or no patterns at
all. The latter indicate that process improvement is necessary. This led Shewhart to conclude two
important principles: (1) variation is inevitable, and (2) single observations form little or no basis for
objective decision making. In order to determine patterns of observations, they may be plotted in
several ways. One way is to form a histogram of the observations that presents a picture of the distri-
bution. Another way is to plot the observations in the order in which they were obtained. This forms
a line chart and is useful for observing trends or cycles in the data.

Shewhart recommended the use of a line chart to observe the data. He further indicated that there
are two causes of variation. One he called chance causes. These are events that cause relatively
minor fluctuations in the data. Each may be so small that its occurrence is not important or may be
uneconomic to correct. Even though each contributes relatively minor fluctuations, together they
form a pattern. Shewhart concluded from the central limit theorem and from empirical observations
that they often formed approximately a normal distribution. The second cause of variation he called
assignable; that is, a cause can be assigned for the fluctuations observed. These are sources of vari-
ation that cause a significant departure of the data from the pattern formed by the chance causes. The
control chart developed by Shewhart contains a set of limits around the hypothesized normal distri-
bution of chance causes. Any observation falling outside these limits indicates the presence of an
assignable cause. In addition, because the observations are plotted in order of occurrence, trends or
other unnatural patterns may be readily observed.

A control chart, then, is a graphic representation of the variation in the computed statistics being pro-
duced by the process. It has a decided advantage over presentation of the data in the form of a histogram
in that it shows the sequence in which the data were produced. It reveals the amount and nature of vari-
ation by time, indicates statistical control or lack of it, and enables pattern interpretation and detection
of changes in the process. The basic charts developed by Dr. Shewhart consisted of charts for averages
and standard deviations. Other charts were developed for sample ranges, percentage nonconforming, and
number of nonconformities per item or hundred items. Further improvements and modifications to the
basic charts also have been made over the years. Such charts as cumulative sum charts and exponentially
weighted moving average charts have allowed for quicker detection of small shifts in the parameter
being followed. All these types of control charts will be reviewed briefly in this section.
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STEPS TO START A CONTROL CHART

1. Choose the quality characteristic to be charted. In making this choice, there are several things to
consider:
a. Choose a characteristic that is currently experiencing a high number of nonconformities or

items that do not conform. A Pareto analysis is useful to assist the process of making this
choice.

b. Identify the process variables contributing to the end-product characteristics to identify poten-
tial charting possibilities.

c. Choose characteristics that will provide appropriate data to identify and diagnose problems. In
choosing characteristics, it is important to remember that attributes provide summary data and
may be used for any number of characteristics. On the other hand, variables data are used for
only one characteristic on each chart but are necessary to diagnose problems and propose
action on the characteristic.

d. Determine a convenient point in the production process to locate the chart. This point should
be early enough to prevent nonconformities and to guard against additional work on noncon-
forming items.

2. Choose the type of control chart.
a. The first decision is whether to use a variables chart or an attributes chart. A variables chart is

used to control individual measurable characteristics, whereas an attributes chart may be used
with go no-go type of inspection. An attributes chart is used to control percentage or number of
nonconforming items or number of nonconformities per item. A variables chart provides the
maximum amount of information per item inspected. It is used to control both the level of the
process and the variability of the process. An attributes chart often provides summary data that
can be used to improve the process by then controlling individual characteristics.

b. Choose the specific type of chart to be used. If a variables chart is to be used, decide whether
the average and range or the average and standard deviation are to be charted. If small shifts
in the mean are important, a cumulative sum or exponentially weighted moving average chart
may be used. The disadvantage of these two latter charts is that they are more difficult for the
practitioner to use and understand. If subgroups are not possible, individual readings may be
used, but these are to be avoided if possible. For attributes charts, the percentage noncon-
forming or number of nonconforming items may be charted. In some cases, the number of
nonconformities per inspection item may be preferable. All these charts will be discussed later.

3. Choose the center line of the chart and the basis for calculating the control limits. The center line
may be the average of past data, the average of data yet to be collected, or a desired (standard)
value. The limits are usually set at ±3 standard deviations, but other multiples of the standard
deviation may be used for other risk factors. The use of 3 standard deviations results in a negli-
gible risk of looking for problems that do not exist, i.e., false alarms. However, this multiple may
result in an appreciable risk of failing to detect a small shift in the parameter being studied.
Smaller multiples increase the risk of looking for a false alarm but reduce the risk of failing to
detect a small shift. The fact that it is usually much more expensive to look for problems that do
not exist than to miss some small problems is the reason that the ±3! limits are usually chosen.

4. Choose the rational subgroup or sample. It should be pointed out that the term sample is usually
used, but sample could mean an individual value, and samples of more than one are desirable for
control charts if feasible. For variables charts, samples of size 4 or 5 are usually used, whereas
for attributes charts, samples of 50 to 100 are often used. Attributes charts in fact may be used
with 100 percent inspection as a reflection of the underlying process involved. In addition to the
size of the sample, the samples should be selected in such a way that the chance of a shift in the
process is minimized during the taking of the sample (thus a small sample should be used);
whereas the chance of a shift, if it is going to occur, is at a maximum between samples. This is
the concept of rational subgrouping. Thus it is better to take small samples periodically than to
take a single large sample. Experience is usually the best method for deciding on the frequency
of taking samples. That is, the known rate of a chemical change or the known rate of tool wear
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should be considered when making these decisions. If such experience is not available, samples
should be taken frequently until such experience is gained.

5. Provide a system for collecting the data. If control charts are to become a shop tool, the collec-
tion of data must be an easy task. Measurement must be made simple and relatively free of error.
Measuring instruments must give quick and reliable readings. If possible, the measuring instru-
ment actually should record the data, since this will eliminate a common source of errors. Data
sheets should be designed carefully to make the data readily available. The data sheets must be
kept in a safe and secure place, free from dirt or oil.

6. Calculate the control limits and provide adequate instruction to all concerned on the meaning and
interpretation of the results. Production personnel must be knowledgeable and capable of per-
forming corrective action when the charts indicate it.

CONSTRUCTING A CONTROL CHART FOR VARIABLES FOR
ATTAINING A STATE OF CONTROL (NO STANDARD GIVEN
CHARTS)

In this case we assume that we know nothing about the process, but we wish to determine if it is in
a state of statistical control, i.e., to see if there are only chance causes of variation present. The pro-
cedure for all types of charts is

1. Take a series of 20 to 30 samples from the process.

2. During the taking of these samples, keep accurate records of any changes in the process such as
a change in operators, machines, or materials.

3. Compute trial control limits from these data.

4. Plot the data on a chart with the trial limits to determine if any of the samples were out of control,
i.e., if any plotted points are outside the control limits.

If none of the plotted points are outside the trial control limits, we can say the process is “in con-
trol,” and these limits may be used for maintaining control. If, on the other hand, some of the plot-
ted points are outside the trial control limits, we say the process is “not in control.” That is, there are
assignable causes of variation present. In such a case we must determine, from the records in step 2
above if possible, the cause of each out-of-control point, eliminate these samples from the data, and
recalculate the trial control limits. If some points are outside these new limits, this step must be
repeated until no points are outside the trial control limits. These final limits may then be used for
future control.

X! and R Charts. This set of two charts is the most commonly used statistical process control
procedure. It is used whenever we have a particular quality characteristic that we wish to control,
since we can use the charts with only one characteristic at a time. In addition, the data must be of a
measurement or variables type. Most users of process control are interested in individual items of
product and the values of a few quality characteristics on these items. Averages and ranges comput-
ed from small samples or subgroups of individual items provide very good measures of the nature of
the underlying universe. They permit us to control and otherwise make decisions about the process
from which the items came. The chart for averages is used to control the mean or central tendency
of the process, whereas the chart for ranges is used to control the variability. In place of the range,
the sample standard deviation is sometimes used, but the range (the largest minus the smallest val-
ues in the sample) is easier to calculate and is easier to understand by the operators.

Using the convention of control limits set at ±3!, the control limits for the X! chart will be set at

" ± 3!X! # " ± 3!/ "n!
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where ! " the process mean
# " the process standard deviation
n " the sample size

Since the parameters ! and # are unknown, we must estimate them from the data. The best estimate
of ! is

=
X, where

=
X is the average of the sample averages X!, and X! is calculated as

X! " " x/n

The process standard deviation may be estimated by a function of the average of the sample ranges
R!. The average range provides a good estimate of the standard deviation for small samples, say, less
than 12. The estimate of the standard deviation is the average range divided by a constant d

2
, where

d
2

is a function of the sample size. Thus the control limits for the X! chart are calculated as

UCLX! "
=
X $ 3 R!/(d2 #n! ) "

=
X $ A2 R!

LCL X! "
=
X %3R!/(d2 #n! )" =

X %A2 R!

where A2 " 3/(d2#n! ).

The range chart will be calculated similarly as !R ± 3#R, where !R and #R are the mean and stan-
dard deviation of the distribution of the sample ranges, respectively. The mean range is estimated by
R!, and the standard deviation of the range is #R " d3# & This may be estimated by d3R!/d2. Therefore,
we calculate the control limits for the range chart as

UCLR " R! $ 3d3(R!/d2) " (1 $ 3d3/d2)R! " D4 R!

LCLR " R! % 3d3(R!/d2) " (1 % 3d3/d2)R! " D3 R!

where the factors A2, D3, and D4 are functions of the sample size n and are tabulated in Table 45.1
along with d

2
, d

3
, and some other factors that will be used later in this section. A more extensive table

will be found in Appendix II, Table A.
To use these two charts, 20 to 25 samples of the same size n are taken from the process. Samples

of 4 or 5 are usually used for these charts. The average and range are calculated for each sample.
The 20 to 25 averages and ranges are then averaged to find the grand average and the average range.
The upper and lower control limits may then be calculated for each of the charts. It will be noticed
in Table 45.1 that for n " 6 or less, the value for D3 is 0. This is so because if the lower control limit
were to be calculated, it would be negative. This does not make sense because the range is always
positive. The fact that the value for this factor is 0 does not mean that the lower control limit for the
range is 0. It means that there is no lower control limit for the range for these small samples.

There are many examples of these charts in the literature. The book Statistical Quality Control
Handbook (AT&T 1984) contains many illustrations of control charts used by the Western Electric
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TABLE 45.1 Control Chart Factors

n d2 d3 c4 c5 A A2 A3 B3 B4 B5 B6 D3 D4

2 1.13 0.85 0.80 0.60 2.12 1.88 2.66 0 3.27 0 2.61 0 3.27
3 1.69 0.89 0.89 0.46 1.73 1.02 1.95 0 2.57 0 2.28 0 2.58
4 2.06 0.88 0.92 0.39 1.50 0.73 1.63 0 2.27 0 2.09 0 2.28
5 2.33 0.86 0.94 0.34 1.34 0.58 1.43 0 2.09 0 1.96 0 2.11
6 2.53 0.85 0.95 0.30 1.23 0.48 1.29 0.03 1.97 0.03 1.87 0 2.00
7 2.70 0.83 0.96 0.28 1.13 0.42 1.18 0.12 1.88 0.11 1.81 0.08 1.92
8 2.85 0.82 0.97 0.26 1.06 0.37 1.10 0.19 1.82 0.18 1.75 0.14 1.86
9 2.97 0.81 0.97 0.25 1.00 0.34 1.03 0.24 1.76 0.23 1.71 0.18 1.82

10 3.08 0.80 0.97 0.23 0.95 0.31 0.98 0.28 1.72 0.28 1.67 0.22 1.78



Company. Other books with excellent descriptions of control charts and examples of their use are
Grant and Leavenworth (1996), Ott and Schilling (1990), and Wadsworth et al. (1986).

Example 45.1: Figures 45.1 and 45.2 illustrate the use of X! and R charts. The figures are
self-explanatory in that they follow all the procedures outlined earlier. It may be observed
that the range chart is in control, but the sequence of points in the X! chart starts low and
after an adjustment exhibits good control for awhile. However, the last eight points are
above the center line, and three of these points are above the upper control limit.

s Charts. The sample standard deviation s may be used with the X! chart in place of the sample
range to measure the process dispersion. In such cases we would calculate the standard deviation of
each sample, find the average of the sample standard deviations, and calculate the control limits from
the equations below:

UCLs ! B4s!

LCLs ! B3s!

where values of B3 and B4 may be found in Table 45.1 and in Appendix II, Table A.
The standard deviation has superior mathematical properties over the range, and with present

hand calculators and computers, it is relatively simple to calculate. However, the range is much eas-
ier for the operator with limited statistical training to understand, and for this reason, the range chart
is the most often used chart to control process variability.

INTERPRETATION OF CONTROL CHARTS

It is customary to place the X! chart directly above the range (or standard deviation) chart. Thus the
two statistics computed from each sample are easily located, and the relationship between them is
obvious. We look for any unusual points or patterns in the plotted data for either chart. In order to
consider this, let us first understand natural patterns for control chart data. A stable process, i.e., one
under statistical control, generally will not produce a discernible unnatural pattern. It will produce a
random array of data that possesses several underlying characteristics. We have observed previously
that the control limits are established at the extremities of the underlying distribution of the statistic
being studied. Hence the data from a controlled process should have the following characteristics
when plotted on a control chart:

● Most of the plotted points occur near the centerline.
● A few of the points occur near the control limits.
● Only an occasional rare point occurs beyond the control limits.
● The plotted points occur in a random manner with no clustering, trending, or other departure from

a random distribution.

Having considered natural patterns, we now consider unnatural patterns of plotted points on a
control chart. Certainly, a pattern lacking one or more of the preceding characteristics would be an
unnatural pattern, but let us consider each of them in turn and consider possible reasons for data to
not behave according to these rules.

Most of the data on an X! chart may not occur near the centerline for several reasons. If the mean
changes from time to time, the data may cluster around two lines above and below the centerline.
This might occur when there are, for example, two machines or two persons operating at slightly dif-
ferent levels feeding into the production stream.

The absence of the second of the preceding characteristics of a controlled process, the occur-
rence of a few points near the control limits of an X! chart, may be caused by two processes having
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different means being mixed together in the same sample. The sample averages will then tend to
fluctuate about the centerline, but the range of each sample will be inflated, causing the control lim-
its to be spread apart. In this case, the chart for averages might seem to be in very good control, but
the range chart will show excessive variation. Data patterns lacking the third of the preceding char-
acteristics, an occasional, rare point beyond the control limits, may indicate either frequent changes
in the process average or an increased dispersion.

For the fourth characteristic of natural patterns, examples of unnatural patterns are sudden shifts in
level, trends, bunching, or clustering. A detailed discussion of this topic may be found in the AT&T
Statistical Quality Control Handbook (1984), where a dictionary of control chart patterns is developed.

If the process is “in control,” there is approximately a risk of 0.0013, or 0.13 percent, of investi-
gating a change in the process when there is none because a point falls outside one of the control
limits. There is an equal risk of a point falling outside the other control limit, making a total risk of
0.0026, or 0.26 percent, of searching for an assignable cause that does not exist. This is often called
the risk of a type I error or an ! risk. It is also called the producer’s risk. If the process is really out
of control, the occurrence of a point outside a control limit is much more likely. How likely depends
on how far the process is out of control. The risk of a point not falling outside the control limits and
thus failing to detect a shift of a given size is the risk of a type II error or a " risk. This risk is also
called the consumer’s risk.

The control limits are usually set for a low ! risk. Limits much wider than 3# would save only a
few needless investigations and might cause a delay in investigating out-of-control situations. Limits
much narrower would increase the incidence of needless investigations while not appreciably reduc-
ing delay in the detection of out-of-control situations. The rule of investigating each point that falls
outside the 3# control limits is therefore a compromise.

Once the control limits have been set, there is information that may be obtained from the chart
that is not exploited by the preceding rule. It is rare and about equally likely to have the following
events occur when the process is in control:

1. One point outside one of the 3 standard deviation control limits
2. Two of three successive points outside 2 standard deviations
3. Four of five successive points outside 1 standard deviation
4. Eight successive points on the same side of the centerline

Any one of these should be regarded as a signal of an out-of-control condition that requires attention.
The use of all four of the preceding rules is optional and has proved practical in many cases. They

were advocated in 1956 in the Western Electric Company’s quality control program. The last three
apply only to control charts with symmetric limits. Collectively, their use increases the ! risk when
the process is in control but decreases the " risk when it is not in control.

CONTROL CHARTS FOR INDIVIDUALS

Sometimes it is not practical to take a subgroup from a process. This is particularly true for chemical or
other continuous processes or when studying variables such as temperature or pressure. Other situations
for which a single observation makes the most sense are accounting data, efficiency, ratios, expenditures,
or quality costs. In such a situation, if we took several samples from the process at the same time, we
would really only be checking our measuring device and not the manufacturing process itself. In this
instance we would only take one observation each time we sample. A control chart based on one obser-
vation is called a chart for individuals or an X chart. Since we are not using sample averages, we do not
have the benefit of the central limit theorem, which tells us that the distribution of averages is approxi-
mately normal regardless of the underlying distribution. Therefore, an X chart is much more sensitive to
a lack of normality of the underlying distribution than is an X! chart.

Since we are only taking one observation, we do not have an obvious source of an estimate of the
standard deviation that we can use to determine the control limits for an X chart. We have two pos-
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sible choices: We can use a moving range, e.g., the difference between two successive observations,
or we can calculate the standard deviation of 20 or more successive observations. If the process does
not shift, both statistics will give about the same answer. However, if the process does shift, the mov-
ing range will minimize the effect of the shift. Therefore, that method is usually used.

The basic procedure for developing X charts is as follows:

1. Select the measurable characteristic to be studied.
2. Collect enough observations (20 or more) for a trial study. The observations should be far enough

apart to allow the process to be potentially able to shift.
3. Calculate control limits and the centerline for the trial study using the formulas given later.
4. Set up the trial control chart using the centerline and limits, and plot the observations obtained in

step 2. If all points are within the control limits and there are no unnatural patterns, extend the
limits for future control.

5. Revise the control limits and centerline as needed (by removing out-of-control points or observ-
ing trends, etc.) to assist in improving the process.

6. Periodically assess the effectiveness of the chart, revising it as needed or discontinuing it.

Computing the Control Limits. Control limits for the X chart are calculated similarly to
those for the X! chart. That is, we set the control limits at the centerline ±3 standard deviations.
They would then be set at

! ± 3"

The average of the observations X! is commonly used to estimate the process mean !. For the
standards-given case, the known standard deviation would be used in the preceding equation. For
the no-standards-given case, we must estimate the standard deviation. As mentioned earlier, we
can use either the moving range or the standard deviation for this estimate.

Moving Range. The moving range is the difference between the largest and smallest of two
successive observations. Thus for a total of n observations there will be n # 1 moving ranges. We
would average the moving ranges to get an average moving range R!. The control limits would thus
be set in a similar manner to those for the charts using subgroups as

UCLx $ X! % 3R!/d2 $ X! % E2R!

LCLx $ X! # 3R!/d2 $ X! # E2R!

where values of E
2
$ 3/d2 will be found in Appendix II, Table Y. If we employ the common rule of

using moving ranges of size 2, E
2

from Appendix II, Table Y, is 3 divided by 1.13, or 2.66. The con-
trol limits for the individuals chart would thus be set at

UCLx $ X! % 2.66R!

LCLx $ X! # 2.66R!

Standard Deviation. As an alternative to the moving range method, the standard deviation s
of all the trial observations is sometimes calculated. In this case, the control limits would be set at

X! ± 3s

If the process average shifts, e.g., in the case of a trend, the standard deviation method will tend to
overstate the variability. If the process average remains relatively constant, both methods will result
in approximately the same control limits.
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CONSTRUCTING CONTROL CHARTS FOR VARIABLES WHEN A
STANDARD IS GIVEN

If standard values of the parameters are given, we have what is commonly called a standards-given
chart. In this case, the standard for the mean is denoted as X!0, and the standard for the standard devi-
ation is denoted as !0. The control limits for the X! chart will be at

X!0 ± 3!0/"n! " X!0 ± A!0

where A is a function of the sample size n and is tabulated in Table 45.1 and Appendix II, Table A.
In the case of control charts for individuals, the X chart, the control limits would be the same, except
that since the sample size is 1, the limits would be merely X!0 ± 3!0.

CONTROL CHARTS FOR ATTRIBUTES

Control charts for variables require actual measurements, such as length, weight, tensile strength,
etc. Thus go no-go data cannot be used for such charts. Charts for attributes, on the other hand, can
be used in situations where we only wish to count the number of nonconforming items or the num-
ber of nonconformities in a sample. There are several advantages of attributes charts over variables
charts.

1. Attributes charts can be used to cover many different nonconformities at the same time, whereas
a separate chart must be used for each quality characteristic with variables charts.

2. The inspection required for attributes charts may be much easier than that for variables charts. We
merely need to know if the item being inspected meets the specified requirements.

3. Attributes charts may be used for visual inspections for such attributes as cleanliness, correct
labeling, correct color, and so on.

4. Attributes charts do not depend on an underlying statistical distribution.

On the other hand, variables charts need a much smaller sample size. In the case of the charts dis-
cussed earlier, we only used sample sizes of 4 or 5, whereas attributes charts would require sample
sizes of at least 50. Attributes control charts are often used for 100 percent inspection, whereas this
would be difficult for variables charts. The most common control charts for attributes are the p chart
for percentage nonconforming, the np chart for number of nonconforming items, the c chart for num-
ber of nonconformities, and the u chart for number of nonconformities per item. We will discuss each
of these charts in order.

Control Charts for Percentage Nonconforming (p). The variable to be controlled here
is the percentage or fraction of each sample that is nonconforming to the quality requirements. Thus
the number of inspected items containing one or more nonconformities is divided by the number of
items inspected. This is the fraction nonconforming. Sometimes this ratio is multiplied by 100, and
the variable plotted is the percentage nonconforming. Assuming that the process is constant, the
underlying distribution would be the binomial distribution. The details of this distribution are covered
in Section 44. For relatively large samples, the binomial distribution can be approximated adequately
by the normal distribution, and as with the control charts for variables, virtually all the data should
then fall within 3 standard deviations of the mean. If data fall outside these 3 standard deviation lim-
its, this would indicate a lack of statistical control. Therefore, the control limits are set at these values.

Recall that the standard deviation of a binomial variable is

!p " #$p(1 # p)
$

n
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Therefore, the upper and lower control limits for a p chart will be at

p! ± 3 "#
Although the p chart is usually used for go no-go types of inspection, it also may be used for mea-
surement inspection. Here a piece being inspected is considered nonconforming if its measurements
are outside a set of specified limits. However, this use of the p chart is not recommended because it
is less able to diagnose causes of nonconformities. A chart for determining control limits for a p chart
will be found in Appendix II, Chart Z.

A p chart may be used when the sample size is constant or not constant. Since the n in the pre-
ceding expression for the control limits is the sample size, if n varies from subgroup to subgroup, as
is often the case when the chart is used to plot 100 percent inspection data, the control limits will
vary. They will be wider for small subgroups than for large ones. If the subgroup size varies, we have
three possibilities.

1. We can calculate the average size of the subgroups. This is appropriate when the sizes are simi-
lar or all data lie near the centerline.

2. We can calculate separate control limits for each subgroup. This might lead to a rather confusing
appearing chart.

3. We can find the average subgroup size and use the resulting control limits, but when a point falls
near the limits, calculate the actual limits using the actual subgroup size.

The third approach is the recommended one. In using it, we must remember that a subgroup size
larger than the average will mean the limits move in toward the centerline, so if a point lies outside
the limits based on the average n, there is no point in calculating a new limit.

In setting up a p chart, we would, as for variables charts, collect 20 to 25 samples over enough
time to allow the process to change. If the sample sizes are equal, we would determine the number
of nonconforming items in each sample, divide each by the subgroup size, and average them. This
is the p! in the preceding expression for the control limits. In finding this average p, we first add all
the numbers of nonconforming items and the numbers of items inspected in each subgroup. Then we
divide the first total by the second to get the average. This procedure is essential if the subgroup size
changes. As an example to show the importance of this procedure, suppose that we have five lots of
a finished product as shown in Table 45.2. N is the lot size, x is the number of nonconforming items
in each lot, and p is the fraction nonconforming. We are inspecting all items in each lot.

If we simply average the fraction nonconforming values in the right hand column, we would get
a value for p! of 0.590/5 ! 0.118. This would give us upper control limits, using the actual lot sizes
of 0.161, 0.255, 0.152, 0.215, and 0.197. None of the lots are out of control. However, if we instead
find p! as 90/1600 ! 0.056, we get upper control limits of 0.087, 0.154, 0.081, 0.125, and 0.113. In
this case, three of the five lots (lots 2, 4, and 5) are above the upper control limit, indicating that this
does not represent a stable process. The true average fraction nonconforming is 0.056 not 0.118. The
latter gives equal representation to each lot despite their widely differing sizes.

p!(1 " p!)
#

n
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TABLE 45.2 Inspection Results of 5 Lots

Lot N x p

1 500 32 0.064
2 50 10 0.200
3 800 10 0.013
4 100 18 0.180
5 150 20 0.133

Totals 1600 90 0.590



For all types of control charts for attributes, the lower control limit, when calculated using the
appropriate expressions, may turn out to be negative. This, of course, makes no sense, so we simply
do not have a lower control limit in these cases. In the preceding example, this applies to lots 2, 4,
and 5. Note that lot 3 is actually below its lower control limit, which is, in this case, 0.032. This
means that the quality, measured in terms of fraction nonconforming, is better than the average of
the other lots. Some people use zero as a lower control limit when the calculated limit is negative.
This might lead to a mistaken notion that a sample value of zero means that the subgroup is not in
control.

Example 45.2: Table 45.3 and Figure 45.3 illustrate a p chart. Table 45.3 contains the
result of final testing of permanent magnets used in electrical relays. There were a total of
14,091 magnets tested, and 1030 were found to be nonconforming. The average number
of magnets tested per week was 14,091/19!741.6. The average fraction nonconforming
was 1030/14,091!0.073. Figure 45.3 illustrates the control chart with limits based on
these values of n! and p!. Using the preceding formulas, the upper and lower control limits
are set at 0.073 ± 0.0287, or 0.102 and 0.044.

Control Charts for Number of Nonconforming Items (np). In this case we plot the
number of nonconforming items in each subgroup. Since p is x/n, x is equal to np, where x is the num-
ber of nonconforming items in a sample, and the chart is often called an np chart. For this type of
chart, we must have a constant subgroup size. In this case the control limits are set at

n p! ±3 "n!p!!(1! "! p!!)!
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TABLE 45.3 p Chart Data

Production during week Final assembly and test
Subgroup: ————————— Inspected at: —————————

No. magnets No. defective Fraction 
Week No. Week ending inspected magnets defective p

1 12/3 724 48 0.067
2 12/10 763 83 0.109
3 12/17 748 70 0.094
4 12/31 748 85 0.114
5 1/7 724 45 0.062
6 1/14 727 56 0.077
7 1/21 726 48 0.066
8 1/28 719 67 0.093
9 2/4 759 37 0.049

10 2/11 745 52 0.070
11 2/18 736 47 0.064
12 2/25 739 50 0.068
13 3/4 723 47 0.065
14 3/11 748 57 0.076
15 3/18 770 51 0.066
16 3/25 756 71 0.094
17 4/1 719 53 0.074
18 4/8 757 34 0.045
19 4/15 760 29 0.038

Totals 14,091 1030
Averages 741.6 54.2 0.073
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FIGURE 45.3 p chart for permanent magnets.

or, using X! as the average number of nonconformities per subgroup, the control limits may be
stated equivalently as

X! ! 3 "X!!(1! "! X!!#n!)!

Control Charts for Number of Nonconformities (c). If we wish to plot the number of
nonconformities, where each item inspected may have several nonconformities and each nonconfor-
mity is counted, we have a c chart, where c is the number of nonconformities in each sample. In this
case, the underlying distribution is the Poisson distribution, discussed in Section 44. Recall that in this
distribution the standard deviation is the positive square root of the mean, so if we again take 20 to 25
samples and calculate the average number of nonconformities, c!, the control limits will be set at

c! ! 3"c!!
A chart for determining control limits for a c chart will be found in Appendix II, Chart AA.

A c chart requires an equally large number of opportunities for a nonconformity to occur in each
subgroup inspected. Thus, for example, if we are inspecting the number of defective solder connec-
tions in each circuit board, they must all have the same number of connections. If not, we must use
the u chart, to be discussed next.

Example 45.3: A control chart for c is used to control nonconformities in sheeted mate-
rial. Table 45.4 shows the results of a series of pinhole tests of paper intended to be imper-
vious to oils. Specimen sheets 11 by 17 inches in size were taken from production, and
colored ink was applied to one side of each sheet. Each inkblot that appeared on the other
side of the sheet within 5 minutes was counted as a nonconformity.

The centerline of the chart is set at c! $ 200/35 $ 8.0 nonconformities per sheet.
Control limits are set at 8.0 ± 3 "8! $ 8.0 ± 8.5, or 0 and 16.5. That is, there is only an
upper limit set at 16.5. The resulting c chart is found in Figure 45.4.

Control Chart for Number of Nonconformities per Item (u). This chart is sometimes
called a standardized c chart. It is used when more than one item makes up a sample but each item
may have more than one nonconformity. The variable plotted on the chart is the number of noncon-
formities per item. Thus the number of items in a sample does not need to remain constant, as it does
for the c chart. The control limits are calculated similarly to those for a c chart except that the vari-
able is c/n, where n is the number of items in the sample. For example, if we are inspecting for defec-
tive solder joints on printed circuit boards where the boards have different numbers of solder
connections, we would divide the number of nonconforming solder connections on each board by



the number of connections on that board.
The control limits for a u chart are set at

u! ± 3 "u!!/n!

Example 45.4: As an example of the use of a u chart, the data in Table 45.5 are the
results of the inspection of 10 samples of cloth for imperfections introduced during pro-
cessing. From the table, we determine that u! ! 59/1360 ! 0.043. We might then calculate
the average sample size as 1360/10 ! 136. Using this figure for n in the preceding expres-
sion for the control limits, we get

UCLu! 0.043 " 3"0!.0!4!3!/1!3!6! ! 0.043 " 0.054 ! 0.097

LCLu! 0.043 # 3"0!.0!4!3!/1!3!6! ! 0.043 # 0.054 ! $0
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TABLE 45.4 c Chart Data

Sheet number Number of pinholes Sheet number Number of pinholes

1 8 14 6
2 9 15 14
3 5 16 6
4 8 17 4
5 5 18 11
6 9 19 7
7 9 20 8
8 11 21 18
9 8 22 6

10 7 23 9
11 6 24 10
12 4 25 5

13 7 Total 200

FIGURE 45.4 c chart for pinholes in paper.



There is no lower control limit, and only the second sample is close to the upper control limit; how-
ever, since the size of this sample is 80, less than the average sample size of 136, the correct upper
control limit will be greater than 0.097, and this sample is in control.

CUMULATIVE SUM (CUSUM) CONTROL CHARTS

Another type of control chart is the cumulative sum control chart (often abbreviated as CUSUM
chart). This chart is particularly useful for detecting small changes (between 0.5! and 2.5!) in the
parameter being studied. For shifts larger than approximately 2.5!, the Shewhart-type charts dis-
cussed previously are just as good or somewhat better and are easier to understand and use. A
CUSUM chart is a plot of the cumulative sum of the deviations between each data point, e.g., a sam-
ple average, and a reference value T. Thus this type of chart has a memory feature not found in the
previous types of charts. It is usually used to plot the sample average X!, although any of the other
statistics, such as s or p, may be used. It is also often used for individual readings, particularly for
chemical processes. This section will only discuss the CUSUM chart for averages. For a discussion
of other types of CUSUM charts, the reader is referred to Wadsworth et al. (1986). For CUSUM
charts, the slope of the plotted line is the important thing, whereas for the previous types of charts it
is the distance between a plotted point and the centerline.

CUSUM charts, like other control charts, are interpreted by comparing the plotted points to crit-
ical limits. However, the critical limits for a CUSUM control chart are neither fixed nor parallel. A
mask in the shape of a V is often constructed. It is laid over the chart with its origin over the last plot-
ted point. If any previously plotted point is covered by the mask, it is an indication that the process
has shifted.

Construction of a CUSUM Control Chart for Averages. The following steps may be
followed to develop a CUSUM control chart for averages:

1. Obtain an estimate of the standard error of the statistic being plotted; e.g., ! XX! may be obtained
from a range chart or from some other appropriate estimator. If a range chart is used, the esti-
mate is R!/(d2"n!) or A2R!/3.

2. Determine the smallest amount of shift in the mean D for which detection is desired. Calculate
" # D/!X! .

3. Determine the probability level at which decisions are to be made. For limits equivalent to the
standard 3! limits, this is $ # 0.00135.
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TABLE 45.5 Inspection Results of Cloth

Square meters of Nonconformities
cloth inspected found u

200 5 0.025
80 7 0.088

100 3 0.030
300 15 0.050
120 4 0.033

90 6 0.067
250 10 0.040

50 1 0.020
100 6 0.060

70 2 0.029
Totals 1360 59



4. Determine the scale factor k. This is the change in the value of the statistic to be plotted (vertical
scale) per unit change in the horizontal scale (sample number). Ewan (1963) recommends that k
be a convenient value between 1!X! and 2!X!, preferably closer to 2!X!.

5. Obtain the lead distance d from Table BB in Appendix II using the value of " obtained in step 2.
6. Obtain the mask angle # from Table BB in Appendix II by setting D/k equal to " in the table and

reading # from the table. Straight-line interpolation may be used if necessary.
7. Use d and # to construct the V mask.
8. The sample size for a CUSUM chart for averages is usually the same as for the X! chart. However,

Ewan (1963) suggests, for best results, that one use

n $ 2.25s2/D

where s is an estimate of the process standard deviation.

Operation of the CUSUM V Mask. The mask is placed over the last point plotted. If any of the
previously plotted points are covered by the mask, a shift has occurred. Points covered by the top of
the mask indicate a decrease in the process average, whereas those covered by the bottom of the
mask indicate an increase. The first point covered by the mask indicates the approximate time at
which the shift occurred. If no previous points are covered by the mask, the process is remaining in
control.

Some Cautions
1. Periodically check the process variability with an R or s chart before drawing conclusions about

the average level of the process.
2. Watch for gradual changes (trends) or changes that come and go in a short period of time. Such

changes are not as apparent on a CUSUM chart as they are on an X! chart.
3. The individual measurements are assumed to follow the normal distribution.

Example 45.5: The data in Table 45.6 summarize measurements of 20 samples of 4 each
taken on the percentage of water absorption in common building brick. A reference value
of T $ 10.0 was used. To illustrate the CUSUM chart, the original data were modified to
introduce a decrease in the average level of 2.0 percent, starting with subgroup 11. A range
chart shows a value of R! of 8.08.

1. !X! is estimated as R!/d2"n! $ 8.08/2.059 "4! $ 1.96.
2. We wish to detect a shift in the process mean of D $ 1!

X!; therefore, " $ 1.96/1.96 $ 1.0.
3. We wish to use % $ 0.00135, the value corresponding to the standard control chart.
4. The scale factor k is calculated as 2!

X! $ 2(1.96) $ 3.92 ≈ 4.
5. We enter Table BB in Appendix II to get the lead distance of the mask as d $ 13.2.
6. We substitute D/k $ 2/4 $ 0.5 for " in Table BB in Appendix II to get # $ 14°.

Figure 45.5 shows the CUSUM chart with the mask at sample number 17. The mask was moved
from left to right with the zero point on the mask over each plotted point. For the first 16 points, the
mask did not cover any of the previously plotted points. At point 17 the shift was detected, and the
mask indicated that the shift occurred at point 10 or 11.

Figure 45.5 also shows the same data plotted on a standard X! chart. Such a chart would not have
detected the shift based on a single point outside the control limits. However, it would have detected
the shift at point 17 based on the fact that four of five successive points were outside the 1! limits. A
comparison of the CUSUM chart and the standard X! chart usually involves the average run length
(ARL). This is the average number of sample points plotted at a specified quality level before the chart
detects a shift from a previous level. Ewan (1963) compares the CUSUM and X! charts for various
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TABLE 45.6 Data on Percentage Water Absorption

Sample no. X! X! ! 10.0 " (X! ! 10.0)

1 15.1 5.1 5.1
2 12.3 2.3 7.4
3 7.4 !2.6 4.8
4 8.7 !1.3 3.5
5 8.8 !1.2 2.3
6 11.7 1.7 4.0
7 10.2 0.2 4.2
8 11.5 1.5 5.7
9 11.2 1.2 6.9

10 10.2 0.2 7.1
11 7.6 !2.4 4.7
12 6.2 !3.8 0.9
13 8.2 !1.8 !0.9
14 7.8 !2.2 !3.1
15 6.8 !3.2 !6.3
16 6.1 !3.9 !10.2
17 4.3 !5.7 !15.9
18 8.5 !1.5 !17.4
19 7.7 !2.3 !19.7
20 9.7 !0.3 !20.0

FIGURE 45.5 Comparison of cumulative sum and standard control charts.



amounts of shift in the process mean. For shifts between 0.5!X! and 2.0!X! the CUSUM chart detects
the shift with many fewer samples than are needed by the X! chart. For larger shifts there is no longer
any advantage to the CUSUM chart. The preceding statement assumes that the X! chart uses only the
one point outside the control limits rule. As indicated in the preceding example, if the other rules for
detecting out-of-control conditions are used, the advantage of the CUSUM chart is diminished.

CUSUM Limits Using the Tabulation Method. For some processes it may not be con-
venient to use a V mask. An alternative tabulation method may be used that is particularly well suited
for computer applications. This method is equivalent to the charting method with the mask. The pro-
cedure is as follows:

1. Form the CUSUM as C1 " " (X!i # K1), where K
1
" T $ D/2, to detect a shift upward.

2. Form the CUSUM as C2 " " (X!i # K2), where K2 " T # D/2, to detect a shift downward.
3. Tabulate these quantities sequentially with X!i ignoring negative values of C1 and positive values

of C2. That is, reset the upper CUSUM to zero when it is negative and the lower CUSUM to zero
when it is positive.

4. Watch the progress of the C
1

and C2 values. When either value equals or exceeds Dd/2 in absolute
value, a signal is produced.

Example 45.6: We will use the same data as in Example 45.5 to illustrate this technique.
Recall that for that example, we had T " 10.0, D " 2, and d " 13.2. Then we have for the
preceding steps,

1. K1 " T $ D/2 " 10.0 $ 2/2 " 11.0 and C1 " " (X!i # 11.0)
2. K2 " T # D/2 " 10.0 # 2/2 " 9.0 and C2 " " (X!i # 9.0)
3. Decision limit " Dd/2 " 13.2

This procedure is illustrated by Table 45.7.

THE EXPONENTIALLY WEIGHTED MOVING AVERAGE CONTROL
CHART

Another type of control chart is the exponentially weighted moving average (EWMA) control chart.
It was first introduced by Roberts (1959) and later by Wortham and Ringer (1971), who proposed it
for applications in the process industries as well as for applications in financial and management
control systems for which subgroups are not practical. Like the CUSUM charts, it is useful for
detecting small shifts in the mean. Single observations are usually used for this type of chart. The
single observations may be averages (when the individual readings making up the average are not
available), individual readings, ratios, proportions, or similar measurements. A brief discussion of
the chart is presented here. The interested reader should consult the preceding references or other
more recent publications such as Hunter (1986), Lowry et al. (1992), Lucas and Saccucci (1990), Ng
and Case (1989), Crowder (1989), and Albin et al. (1997).

The plotted statistic is the weighted average of the current observation and all previous observa-
tions, with the previous average receiving the most weight, that is,

Zt " %xt $ (1 # %)Zt#1 0 & % & 1

where Z0 " '
Zt " the exponentially weighted moving average at the present time t
Zt#1 " the exponentially weighted moving average at the immediately preceding time
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xt ! the present observation
" ! the weighting factor for the present observation

The xt are assumed to be independent, but the sample statistics Zt are autocorrelated. However,
Wortham and Ringer (1971) demonstrated that for large t, the sample statistic is normally distributed
when the xt are normally distributed with mean # and variance $2. That is,

E(Zt) ! #
and

Var(Zt) ! $2[" /(2%")][1 % (1 % ")2 t]

As t increases, the last term bracketed on the right-hand side converges rapidly to one, and the cor-
responding expression for the variance becomes

Var(Zt) ≈ $2 [" /(2 % ")]

By choosing " ! 2/(t & 1), the variance approximation becomes

Var(Zt) ! $2/t (the variance of averages of sample size t)

Under these conditions, the control limits become #̂ ± 3 !$̂"2/"t". For other values of ", the control
limits are

UCL ! #̂ & 3$̂ !""/("2" %" "")"

LCL ! #̂ %3$̂ !""/("2"%""")"

For the first few observations, the first equation for the variance should be used. This can be illus-
trated by the following example. If a good estimate of $ is not available, a range chart should be
used with $̂ estimated by R"/d2. In the case of individuals, the average moving range can be used as
with the control chart for individuals.
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TABLE 45.7 Tabulation of Data on Water Absorption

Sample no. X" X" % 11.0 C1 X" % 9.0 C2 Remarks

1 15.1 4.1 4.1 6.1 '0
2 12.3 1.3 5.4 3.3 '0
3 7.4 %3.6 1.8 %1.6 %1.6
4 8.7 %2.3 (0 %0.3 %1.9
5 8.8 %2.2 (0 %0.2 %2.1
6 11.7 0.7 0.7 2.7 '0
7 10.2 %0.8 (0 1.2 '0
8 11.5 0.5 0.5 2.5 '0
9 11.2 0.2 0.7 2.2 '0

10 10.2 %0.8 (0 1.2 '0
11 7.6 %3.4 (0 %1.4 %1.4
12 6.2 %4.8 (0 %2.8 %4.2
13 8.2 %2.8 (0 %0.8 %5.0
14 7.8 %3.2 (0 %1.2 %6.2
15 6.8 %4.2 (0 %2.2 %8.4
16 6.1 %4.9 (0 %2.9 %11.3
17 4.3 %6.7 (0 %4.7 %16.0 Lower signal
18 8.5 %2.5 (0 %0.5 %16.5
19 7.7 %3.3 (0 %1.3 %17.8
20 9.7 %1.3 (0 0.7 %17.1



Example 45.7: To illustrate the EWMA control chart, we will use the same data as used
in Example 45.5. Recall from that example that we have results of 20 samples of size 4
each taken on the percentage of water absorption in common building brick. The averages
are shown in Table 45.6 and again in Table 45.8. The range chart gave us an estimate of !

X!
of 1.96. For the first few samples we will use the complete formula for the standard devi-
ation, and we will use the target value of 10 for our estimate of ". For this example, a # of
0.2 was used.

The resulting Minitab output with the data plotted is shown in Figure 45.6 It may be
observed from the table and the chart that the control limits have stabilized after the eighth
or ninth sample. The plot drops below the lower control limit on the sixteenth sample and
stays there for the rest of the run.

The design parameters of this chart are the multiple of ! and the value of # used. It is possi-
ble to choose these parameters to closely approximate the performance of the CUSUM chart.
There have been several theoretical studies of the average run length of EWMA charts; see, for
example, Lucas and Saccucci (1990). They provide average run length tables for a large range of
values of # and control chart widths. In general, Montgomery (1991) recommends values of #
between 0.05 and 0.25, with # $ 0.08, # $ 0.10, and # $ 0.15 being popular choices. Small val-
ues of # should be used to detect small shifts. Three standard deviation limits, as with the
Shewhart charts, seem to work well in most cases; however, if # is less than 0.10, a value of
2.75! works somewhat better.

Like the CUSUM chart, the EWMA chart is more effective than the X! chart in detecting small shifts
(less than 2.5!) in the mean; however, both charts perform worse than the X! chart for larger shifts. In
order to overcome this difficulty, some authors have suggested plotting both the Shewhart limits and
the EWMA limits on the same chart (see, for example, Albin et al. 1997).
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TABLE 45.8 Data and Calculations for EWMA Chart

Control limits for Zt

Sample
t X!t Zt LCL UCL

0 10.00
1 15.1 11.02 8.8 11.2
2 12.3 11.28 8.5 11.5
3 7.4 10.50 8.3 11.7
4 8.7 10.14 8.2 11.8
5 8.8 9.87 8.2 11.9
6 11.7 10.24 8.1 11.9
7 10.2 10.23 8.1 11.9
8 11.5 10.48 8.1 11.9
9 11.2 10.62 8.1 11.9

10 10.2 10.54 8.1 12.0
11 7.6 9.95 8.1 12.0
12 6.2 9.20 8.0 12.0
13 8.2 9.00
14 7.8 8.76
15 6.8 8.37
16 6.1 7.92
17 4.3 7.20
18 8.5 7.46
19 7.7 7.51
20 9.7 7.95



SHORT-RUN CONTROL CHARTS

Some processes are carried out in such short runs that the usual procedure of collecting 20 to 30 sam-
ples to establish a control chart is not feasible. Sometimes these short runs are caused by previously
known assignable causes that take place at predetermined times. Hough and Pond (1995) discuss
four ways to construct control charts for such situations:

1. Ignore the systematic variability, and plot on a single chart.
2. Stratify the data, and plot them on a single chart.
3. Use regression analysis to model the data, and plot the residuals on a chart.
4. Standardize the data, and plot the standardized data on a chart.

The last option has received the most consideration. It involves the use of the transformation

Z ! 

to remove any systematic changes in level and variability. This standardization of Shewhart charts
has been discussed by Nelson (1989), Wheeler (1991), and Griffith (1996). Control charts of this
form have control limits of ±3.0. These charts are sometimes called Z charts.

There are several variations of these charts, some of which are as follows:

1. Difference charts, in which a constant such as a known mean ("), an average from past data (X!),
a target value (T), or the specification limit is subtracted from each observation. Burr (1989) dis-
cussed this chart and included its use to determine process capability.

2. Standardized charts, in which a constant as above is subtracted from each observation and the
result is divided by a second constant. When the divisor is the standard deviation, the resulting Z
values have a standard deviation of 1, and the control limits are ±3 for # ! 0.0027. The divisor

X $ "
%

&
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can be a known standard deviation (!) or an estimate from past data, such as R!/d2. Sometimes the
divisor is not a standard deviation but some other value. For example, Burr (1989) discussed a
measure used at Kodak in which the nominal was subtracted from the observation and the result
divided by half the tolerance. This had the advantage of indicating the fraction of the tolerance
used by the process as well as the closeness to the nominal.

3. Short-run X!, R charts, in which the statistic

Z " (X! # X
=

)/R!

is plotted against control limits for the mean set at ± A2. The statistic RR/R! is plotted on a range
chart with control limits set at D3 and D4. The result is a set of dimensionless charts that are suit-
able for plotting different parts or runs on the same chart.

Another chart for short runs is the Q chart discussed by Quesenberry (1991, 1995a, 1995b). This
technique allows the chart to be constructed from initial data without the need of previous estimates of
the mean or variance. It allows charting to begin at the start of a production run. Furthermore, the prob-
ability integral transformation is used to achieve normality for Q from nonnormal data such as the range
or standard deviation. Quesenberry explains how the method may be used for charts for the mean or
standard deviation when those parameters are either known or unknown.

To illustrate the Q chart, consider the case where normally distributed measurements are to be
plotted when the mean is unknown and the variance is known. The chart for the process location is
constructed as follows:

1. Collect individual measurements: x1, x2, x3, … , xr .

2. For the r th point to be plotted, compute

Qr (Xr) " [(r # 1)/r]1/2 [(xr # X!r # 1)/!] r " 1, 2, 3,…

where X!r # 1 is the average of the previous r # 1 points.
3. Plot Q

r
(X

r
) for each of the data points against control limits of ±3.0.

The chart for process variation is constructed similarly:

1. Use the same measurements: x
1
, x

2
,…, x

r
.

2. For the rth data point to be plotted (plot for only even r)
a. Compute

[(xr # xr#1)2/2!2], r " 2, 4, 6,…

b. Find the percentile of the $2 distribution with 1 degree of freedom for the value computed in a.
c. Find the normal deviate value for the percentile determined in b and set it equal to Q(Rr).

3. Plot Q(Rr) for even data points against control limits of ±3.0.

BOX-JENKINS MANUAL ADJUSTMENT CHART

J. S. Hunter has suggested an important addition to the charting tools discussed earlier (Hunter
1997). Whereas the Shewhart, CUSUM, and EWMA charts for variables data monitor processes, the
charts Hunter calls the Box-Jenkins Manual Adjustment Charts may be used to regulate them. These
charts are based on the early work of Box and Jenkins (1962, 1970). Box and Luceño (1997) have
recently published a text with a thorough explanation of these techniques. Hunter (1997) includes a
worked example accompanied by many graphs.
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The Shewhart, CUSUM, and EWMA charts discussed earlier require an operator to plot the time
history of the statistic of interest and to leave the process alone as long as the plotted points fall with-
in the control limits and satisfy the run rules. This assumes that the process mean ! is constant and
that departures of the data from the mean are independent and normally distributed with a constant
variance "2. The charts thus monitor the process. The objective is to reduce variability by the elimi-
nation of special (assignable) cause events identified by the charts.

The Box-Jenkins manual adjustment charts provide a mechanism to forecast and regulate the
process after each observation. The procedure assumes the process to be nonstationary; i.e., the process
level is changing constantly, and the variance is increasing. The objective of the procedure is to keep
the variance as small as possible.

It is important to note that if the observed deviations from the mean are independent, this method
should not be used, and if it is used, it may tend to inflate the process variance. However, if the devi-
ations are not independent, a Box-Jenkins manual adjustment chart can provide both a forecast and
the adjustments necessary to force the process to be on target with minimum variance. For a com-
plete discussion of this technique, the reader is referred to the paper by Hunter (1997).

MULTIVARIATE CONTROL CHARTS

When there are two or more correlated quality characteristics that must be controlled simultaneously,
such as both the length and weight of a part, the use of multivariate control charts is necessary. If we
construct both the dimensions with separate control charts, the region of control will be rectangular,
whereas the region using multivariate methods will be elliptical. This means that some observations
will be in control in one case and out of control in the other.

Multivariate control charts are beyond the scope of this section, but the reader is referred to Alt
et al. (1998), Jackson (1985), or Woodall and Neube (1985) for a detailed discussion of this topic.
Multivariate versions of Shewhart, CUSUM, and EWMA charts are available in the literature. They
are all discussed with references in Alt et al. (1998).

PRE-CONTROL

The control charts discussed so far in this section provide limits based solely on the observed varia-
tion of the process and therefore provide a means to detect process changes. In some situations it is
important to detect the presence of only those changes which might incur the presence of noncon-
forming items. For such cases, control limits may be derived using a combination of the observed
frequency and the product specifications. The process is then permitted to change as long as non-
conforming items do not become imminent. The chart gives alarm signals only when nonconform-
ing items threaten. Modified control limits [see Wadsworth et al. (1986, pp. 256–266)] and
acceptance control charts are two examples of such charts. Acceptance control charts are described
in Section 46. Another example of this approach is the PRE-control technique.

PRE-Control starts with a process centered between the specification limits and detects shifts that
might result in making some parts outside of the specification limits. PRE-Control requires no plot-
ting and no computations from the sample data. It only requires the inspection of two items to give
control information. It uses the normal distribution to determine significant changes in the process that
might result in nonconforming items. The principle of PRE-control assumes that the process uses up
the entire tolerance spread. That is, the difference between the upper and lower specification limits is
6" with the process exactly centered.

Two PRE-control (PC) limits are set one-fourth of the way in from each specification limit, as in
Figure 45.7. This results in five regions that are often colored for practical applications. The two
regions outside the specification limits are colored red. The two regions between the PC limits and
the specification limits are colored yellow, and the middle region between the PC limits is colored
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green. If the distribution were as indicated in Figure 45.7a, 86 percent of the parts will be in the green
zone, whereas 7 percent or one part in 14 will be in each yellow zone. The probability that two suc-
cessive parts will fall in the same yellow zone will be 1/14 times 1/14, or 1/196 (approximately 1 in
200). Therefore, we can say that if two parts in a row fall in the same yellow zone, there is a much
greater chance (195/196) that the process mean has shifted than not. It is advisable then to adjust the
process toward the center.

It is equally unlikely to get one part in one yellow zone and the next in the other yellow zone.
This would not indicate that the process has shifted but that some new factor has been introduced
that has caused the variability to increase to an extent that nonconforming pieces are inevitable. An
immediate study of the process and some corrective action must be made before it is safe to contin-
ue its operation.

These principles lead to the following set of rules that summarize the PRE-control procedure:

1. Divide the specification band with PC lines located one-fourth of the way in from each specifi-
cation limit. If desired, color the zones appropriately, as indicated above, red, yellow, and green.

2. Start the process.
3. If the first piece is in the red (nonconforming) zone, adjust the process.
4. If the first piece is in the yellow (caution) zone, check the next piece.
5. If the second piece is in the same yellow zone, adjust the process toward the center.
6. If the second piece is in the green (good) zone, continue the process, and adjust the process only

when two pieces in a row are in the same yellow zone.
7. If two successive pieces are in opposite yellow zones, stop the process and take action to reduce

the variability.
8. When five successive pieces fall in the green zone, frequency gaging may start and continue as

long as the average number of checks to an adjustment is 25. While waiting for five pieces in
the green zone, if a piece falls in the yellow zone, restart the count.

9. During frequency gaging, make no process adjustments until a piece exceeds the PC line (yel-
low zone). If this occurs, check the next piece and continue as in step 6.

10. When the process is adjusted, five successive pieces in the green zone must again be made
before returning to frequency gaging.

11. If the operator checks more than 25 pieces without having to adjust the process, the frequency
of checking may be reduced so that more pieces are produced between checks. If, on the other
hand, adjustment is needed before 25 pieces are checked, the frequency of checking should be
increased. An average of 25 checks between adjustments is an indication that the frequency is
correct.
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For one-sided specification limits, a single PC limit is established halfway between the tolerance
and zero (in the case of flatness or concentricity) or one-fourth the distance between the specifica-
tion limit and the best piece (in the case of a variable like yield or strength). In these cases there is
but one yellow zone, one red zone, and one green zone.

The PRE-control technique indicates changes in the process mean or variability. The technique is
simple to use and understand, it can make use of go no-go gages, and it can guarantee a certain per-
centage nonconforming if adjustments are made when indicated. On the other hand, process control
techniques such as this, which make use of narrow limit gaging, must be introduced to the shop with
care. Unless fully explained, the limits appear to be tightening up the tolerances.

Further discussion of this technique and the statistics behind it may be found in Brown (1966)
and Shainin (1984). A comparison of PRE-control with X! and R charts may be found in Sinibaldi
(1985). Ledolter and Swersey (1997) evaluate the PRE-control procedure and conclude that PRE-
control “is not an adequate substitute for control charts.” They go on to explain that control charts
are useful for identifying assignable causes of variation and distinguishing them from chance causes.
This is particularly important in the early stages of a process when the process capability is likely to
be low (Cp ! 1). PRE-Control is poorly suited for this situation, and its use is likely to lead to exces-
sive tampering with the process.

STATISTICAL CONTROL OF AUTOMATED PROCESSES

Other sections in this handbook have discussed automated manufacturing processes and the role of
computers in both manufacturing and nonmanufacturing processes. The march toward automation
has sparked some important innovations in data analysis for the control of processes:

1. Continuous-reading instrumentation that yields large amounts of data on process variables and
quality characteristics.

2. Automation of statistical analyses (e.g., calculation of averages, standard deviations, and control
limits). This is discussed in the next paragraph.

3. Comparison of process results with preset numerical standards. This comparison may result in
a. The generation of a document giving pertinent information on a nonstandard condition.
b. The generation of an error signal that automatically makes a process adjustment.

4. In recent years a great improvement in size control devices has been realized. While an item is
being ground, a measuring pair of contacts monitors the change in size and electronically
instructs the grinding wheel to prepare to stop as the desired size is being approached.

Software for Statistical Process Control. Many personal computer programs are avail-
able for statistical analysis of data, including all types of control charts. Gages with direct digital out-
put into hand-held data-collection devices are available. These devices will store the gage readings
collected on the shop floor and download them into a personal computer in the office. As an alter-
native, gage readings may be entered into the collection device with its keyboard.

The software will calculate the sample statistics, initial control limits, and the control chart.
Control limits may be easily recalculated periodically, and ±2" limits can be calculated as an addi-
tional guide. Most software will provide additional summaries and analyses such as listing of the raw
data, out-of-specification values, histograms, checks for runs and other patterns within control lim-
its, tests for normality, process capability calculations, Pareto charts, and trend analyses.

The relatively low cost of personal computers and the availability of software have contributed
substantially to the renewed interest in X! and R and other control charts. This computer software
combination also has made it practical to collect large quantities of data and subject them to com-
plex analyses. However, process improvement still requires the identification of the vital few and
often of unexpected variables causing excess variation. Computer analysis of previous data are no
substitute for such tools as design of experiments. Computers are most helpful when the diagnosti-
cian has created a template for a spreadsheet program and least helpful when a packaged statistical
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analysis program is used. Users of such programs are rarely familiar with the detailed logic of the
prepackaged programs and can be led to erroneous conclusions.

The American Society for Quality annually publishes a directory of software for process control
and other statistical uses (ASQC 1996). In addition, the Journal of Quality Technology (ASQ) and
Quality (Hitchcock Publishing Company) have computer columns describing programs for process
control.
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