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In estimating the standard deviation of a normally distributed random variable, a multiple of the sample
range is often used instead of the sample standard deviation in view of the range's computational simplicity.
Although it is well known that use of the sample standard deviation is more efficient if the sample size
exceeds 2, many statistical quality-control textbooks argue that the loss in efficiency when using the sample

range to estimate the process standard deviation is very small with relatively small sample sizes. In this
paper, we show that this loss in efficiency can be relatively large even for very small sample sizes and
thus strongly advise against using range-based methods. We found that some.previously published tables

of relative efficiencies were either mislabeled or inaccurate. We also make some recommendations when a

number of samples have been taken over time.
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Introduction

SE OF SOME statistical quality-control tools, such
U as the Shewhart variable control charts and
process-capability indices, require estimation of both
the process mean and the process standard deviation,
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often from m independent samples each of size n. In
their review paper, Jensen et al. (2006) reported that
research has shown that estimation error in Phase I
of control charting can lead to degraded performance
in Phase II. Thus, it is important to use efficient es-
timators of the process parameters.

Use of the sample ranges is often recommended
for estimating the standard deviation o of a nor-
mally distributed quality characteristic when the
sample size is very small; see, for example, Mont-
gomery (2009) and Ott (1975). Grant and Leaven-
worth (1996, p. 125) stated, “In practical control-
chart work in industry, R rather than s should nearly
always be used as a measure of subgroup dispersion.
R is easier to explain; almost everyone can under-
stand range, whereas people with little background
in statistics have difficulty understanding standard
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deviation.” Woodall and Montgomery (2000) noted
that the use of the sample standard deviation is more
efficient, if » > 2. They concluded, however, that the
loss in efficiency when using the range method in-
stead of the standard deviation to estimate o is very
small with the relatively small sample sizes typically
used in variables control charts and other statistical
process control (SPC) applications.

We first consider the case of a single sample (i.e.,
m = 1) and show that the use of the sample range
can be more inefficient than has been recognized. The
sample range for random variables X;, Xa,..., X,
(n > 1) is defined as

R = Max(X;) - Min(X,). (1)

The use of the sample range in estimating the Shew-
hart X-chart limits and process-capability indices re-
quires values of the mean and standard deviation of
R/o as a function of the sample size n. We focus
on the case of independent, identically distributed
(1.i.d.) normal random variables. It is well known that
both the mean and standard deviation of R, pug and
o R, respectively, are multiples of ¢ in the form

up =doo and og = dso, (2)

where dy and ds are functions of the sample size n,
known as “control-chart constants” in the SPC liter-
ature. The control chart constants do and dg corre-
sponding to different values of the sample size n have
been tabulated for a normal population in many sta-
tistical quality-control textbooks; see, for example,
Montgomniery (2009, p.702). Also, see our Table 2.

As mentioned above, the sample standard devia-
tion S, where

o D00 X

n—1

and X is the sample mean, is a more efficient esti-
mator for ¢ than the usual estimator based on the
sample range for samples of size n > 2. Using the fact
that the quantity (n —1)5?/g? follows a chi-squared
distribution with n — 1 degrees of freedom, it can be
shown that the mean and standard deviation of .S,
us and og, respectively, are also multiples of o in the

form
pg =cqo and og=/1-clo, (3)

— X I'[n/2]
(GRS

where

Cy =

(4)
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Montgomery (2009, p. 702) stated that the constant
¢4 can be closely approximated by
4n —4
C4 = 4n — 3: (5)
for n > 25. This approximation leads to an approxi-
mate variance for .S of
(8n — 7)o?
oi~ A—— (6)
(4n - 3)
When one has only a single sample, the commonly
used estimators for the process standard deviation
are

=l 6= ad =S5 ()

Note that, when n = 2, 61 = §2 = R/1.128 while
&3 = R/1.414. The standard deviations of the unbi-
ased estimators &, and &2 are

dg Vvi1-— C',zl

'd—QO' and —04—0', (8)

respectively, while the standard deviation of the bi-

ased estimator &3 is
/1 —c3o. (9)

The measure of relative efficiency commonly used
to compare one estimator with another is the recipro-
cal of the ratio of the respective mean-squared errors.
The mean-squared error (MSE) of an estimator & is
defined as

MSE(6) = E(6 — 0)* = Vax(8) + [B(6))>,  (10)

where BE(-) and Var(-) denote “expectation” and
“variance,” respectively, and B(6) = E(&) — o is the
bias of &. Vardeman (1999) used the square root of
the mean-squared errors to compare the efficiencies
of some proposed estimators of the population stan-
dard deviation.

The tables in Montgomery (2009, p. 112) and in
the NIST/SEMATECH Handbook (Section 6.3.2.1)
purport to contain the relative efficiencies of &1 to
&3, but actually contain the relative efficiencies of &,
to &. Their values evidently come from Ott (1975, p.
200), who did not clearly specify the estimator being
compared with &7, although this point was clarified
in Ott et al. (2000). Table 1 shows the relative ef-
ficiency values given in these three sources. The re-
sults in Table 1 have been used to justify using the
estimator & to estimate the standard deviation for
small sample sizes instead of &3. Montgomery (2009,
p. 96) stated that the loss of efficiency resulted from
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TABLE 1. The Relative Efficiency Values of
01 Compared with 65

n Relative efficiency

1.000
0.992
0.975
0.955
0.930
0.850

OOy OV W N

1

using & is negligible when the sample size n < 6 and
that this estimator “works very well and is entirely
satisfactory.”

The issue of which estimator of the process stan-
dard deviation to use based on relative efficiency
comparisons goes back to Shewhart (1931) and
Davies and Pearson (1934). Shewhart (1931, p. 287)
compared the relative efficiencies of S/cs to R/ds,
ie., of 6o with 41, in a figure and remarked that
“the very rapid decrease in the efficiency of the esti-
mate derived from the range is striking.” Davies and
Pearson (1934) compared the relative efficiencies of
these two estimators in a more complete version of
Table 1. These authors stated that the efficiency of
the range method falls off rapidly for values of n > 5,
and that it should not be used for n > 10. One should
note, however, that this sample-size recommendation
only applies if the standard deviation estimator &5 is
being considered versus the range method.

In our paper, we show that Table 1 cannot be used
to justify the use of the range method to estimate o
for small sample sizes. We also give accurate values
for the relative efficiencies of 61 to estimators 5 and
03, along with relevant formulas used to calculate
them. In addition, we consider the relative efficiencies
of some estimators in the multiple sample case. For
the convenience of the reader, a table defining the
12 estimators we consider, along with some of their
properties, is given in the Appendix.

Relative Efficiency of Estimators of o
Single-Sample Case
The relative efficiency of &, to &5 is

_ MSE(5) _ d3(1 - c3)

RE(&1/6Z)_MSE(&1)_ 2 (11)
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The relative efficiency of 61 to &3 is

2(1 - C4)d§

RE(OA'I/&?,) = d2 ) (12)
3
while the relative efficiency of 65 to 63 is
22
E(62/63) = —2—.
RE(G2/63) = ey (13)

The fifth and sixth columns of Table 2 show the
values of RE(61/62) and RE(61/63), respectively.
One can observe that the values of RE(6,/62) given
in column 5 of Table 2 match the relative efficiency
values shown in Table 1, although the value for n = 6
doesn’t quite match the value of 0.930 given by Mont-
gomery (2009, p. 112) and in the NIST/SEMATECH
Handbook. Ott (1975, p. 200) only gave two signifi-
cant digits for n = 6, i.e., a value of 0.93.

Kenett and Zacks (1998, p. 352) argued that “de-
spite the wide use of the sample ranges to estimate
the process standard deviation, the method is nei-
ther very efficient nor robust. It is popular only be-
cause the sample range is easier to compute than the
sample standard deviation. However, because many
hand calculators now have built-in programs for com-
puting the sample standard deviation, the computa-
tional advantage of the range should not be consid-
ered.” Our results support Kenett and Zacks’ (1998)
argument. It can be observed from the values of
RE(61/63) in column six of Table 2 that one is bet-
ter off using S to estimate o. For example, for n = 2,
the estimator & is only 71% efficient compared with
&3. Thus, Table 1 cannot be used to justify the use
of &1 to estimate the process standard deviation for
small sample sizes. (We have included some of the
relevant control-chart constants in Table 2 for the
convenience of the reader.)

Bissell (1990, p. 339) gave the relative efficiency
values RE(61/63) and RE(62/63). To do this, he
used the following approximation for the variance of
63, which was given in Hald (1967, p.300):

o?

2(n-1)

The approximation in Equation (14) does not match
the one given by Montgomery (2009) presented in
Equation (6). For even moderately large values of n,
however, the square roots of both of these expres-
sions give a very close approximation to the exact
value given in Equation (9). To calculate his two sets
of relative efficiencies, Bissell (1990) used the approx-
imation in Equation (14) as the denominator of the

0%~ (14)
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n Cq (lz d3 RE(&l/é’z) RE(&1/5'3) R.E(a‘g/é'g) R,E(&g/é&;) R.E(ag/a‘s) RE(&6/65)
2 0.79788 1.1284 0.85250 1.000 0.708 0.708 0.899 0.899 0.978
3 0.88623 1.6926 0.88837 0.992 0.826 0.833 0.949 0.943 0.978
4 0.92132 2.0583 0.87981 0.975 0.862 0.884 0.981 0.961 0.980
5 0.93999 2.3259 0.86408 0.955 0.870 0.911 1.010 0.970 0.982
6 0.95153 2.5344 0.84804 0.933 0.866 0.928 1.039 0.976 0.984
7 0.95937 2.7044 0.83321 0.911 0.856 0.939 1.067 0.980 0.986
8 0.96503 2.8472 0.81983 0.890 0.844 0.948 1.095 0.983 0.987
9 0.96931 2.9700 0.80783 0.869 0.830 0.954 1.122 0.985 0.989
10 0.97266 3.0775 0.79705 0.850 0.815 0.959 1.150 0.986 0.989
11 0.97535 3.1729 0.78731 0.831 0.801 0.963 1.177 0.988 0.990
12 0.97756 3.2585 0.77848 0.814 0.786 0.966 1.203 0.989 0.991
13 0.97941 3.3360 0.77042 0.797 0.772 0.969 1.229 0.990 0.992
14 0.98097 3.4068 0.76302 0.781 0.759 0.972 1.255 0.990 0.992
15 0.98232 3.4718 0.75621 0.766 0.745 0.974 1.281 0.991 0.993
16 0.98348 3.5320 0.74991 0.751 0.733 0.975 1.306 0.992 0.993
17 0.98451 3.5879 0.74405 0.738 0.721 0.977 1.331 0.992 0.993
18 0.98541 3.6401 0.73859 0.725 0.709 0.978 1.355 0.993 0.994
19 0.98621 3.6890 0.73348 0.712 0.697 0.979 1.379 0.993 0.994
20 0.98693 3.7350 0.72869 0.700 0.687 0.980 1.403 0.993 0.994
21 0.98758 3.7783 0.72417 0.689 0.676 0.981 1.427 0.994 0.995
22 0.98817 3.8194 0.71991 0.678 0.666 0.982 1.450 0.994 0.995
23 0.98870 3.8583 0.71589 0.667 0.656 0.983 1.473 0.994 0.995
24 0.98919 3.8953 0.71207 0.657 0.647 0.984 1.496 0.995 0.995
25 0.98964 3.9306 0.70844 0.648 0.638 0.984 1.519 0.995 0.995
relative efficiency ratio. There are two problems with errors of these estimators are
Bissell’s (1990) approach. First, the approximation in d2
Equation (14) is only accurate for moderately large MSE(64) = mo g
sample sizes. Second, Bissell (1990) should have con- 2 3
sidered the MSE for S, not the variance, because S and
is a biased estimator of o. For n = 2, for example, MSE(gs) = (1 - &)a?, (15)

he gave RE(61/63) = RE(62/63) = 0.876, instead of
the exact value 0.708.

Vardeman (1999) studied the efficiency of alterna-
tive estimators for ¢ based on multiples of R and S.
In particular, Vardeman (1999) studied the efficiency
of the following two estimators:

da
G4 = 5—=R and 65 =c4S.
R T
Vardeman (1999) showed that the biased estimators
&4 and &5 are optimal among estimators of their re-
spective forms in terms of the mean-squared error
measure defined in Equation (10). The mean-squared
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respectively. Based on these MSE values, the relative
efficiency of 3 to 64 is

d?
RE(83/64) = 3 ; 16
@lo) = qgraa-a 0
while the relative efficiency of 63 to &5 is
o 1+ ¢y
RE(63/65) = — L (17)

The eighth and ninth columns of Table 2 give the
relative efficiency values RE(63/64) and RE(63/65).
Two important conclusions are obtained from the re-
sults in these two columns. First, the loss in efficiency
if one uses the sample standard deviation S to esti-
mate o instead of the optimal estimators &4 and 05
is relatively small. For example, when n = 2, § is
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FIGURE 1. The Relative Efficiency Values of 61, 67, G4, 65, and & to 63.

90% efficient compared with the optimal estimators
64 and 65. Second, for n > 4, § is more efficient
than the optimal estimator among all estimators cal-
culated as a multiple of the sample range R, i.e., &,.

For the sake of completeness, we now consider the
maximum likelihood estimator (MLE) of o, which is

b6 = (y/{n—1)/n)S. The MSE of this estimator is
nol, l) o2 (18)
n n

Comparison of the last two columns of Table 2 indi-
cates that the efficiency of the MLE estimator &g lies
between that of the optimal estimator 65 and that of
the estimator &3.

MSE(66) = (2 —2

Figure 1 shows the relative efficiency values of es-
timators 61, 69, 64, 65, and &6 to estimator &3. As
shown in this figure, only 65 and &g are uniformly
more efficient than &3 for all values of the sample
size n. Estimator &4 is more efficient than estima-
tor 63 only for n < 4. Estimator &3 is uniformly
more efficient than the two commonly used estima-
tors 61 and &5. An important conclusion from Figure
1 is the very rapid decrease in the relative efficiency
(with respect to 63) of the estimators derived from
the sample range, i.e., 61 and 64.

Journal of Quality Technology

Multiple-Sample Case

Where m > 1 independent random samples of a
common size n > 1 lead to sample ranges Ry, Ry,
..., Ry or sample standard deviations Sy, Sa, ...,
Sm, there is more than one way of combining these
into a single estimator. We will only consider the
case where the subgroup size is greater than one.
For the n = 1 case (i.e., multiple individual obser-
vations), the reader is referred to Braun and Park
(2008). For n > 1, standard SPC texts recommend
the estimators R /dy and S /¢4, which are equivalent
to averaging the m independent values of 61 or &5,
respectively, corresponding to each sample.

Denoting the bias and the variance of a single sam-
ple estimator by B and V| respectively, the MSE of
the multiple-sample estimator given by the average
of m such estimators has MSE given by

2
MSEa\reraged estimator = V/m + B7, (19)
which converges to B2 as m increases.

In particular, when the individual sample estima-
tors are unbiased, the MSE of the averaged estimator
will decrease asymptotically to zero as m increases.
This means that, although in the single-sample con-
text the biased estimators 63 and &5 always have

Vol. 42, No. 4, October 2010
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TABLE 3. Relative Efficiency of §7 with Respect to g

7
m 2 3 4 5 6 10 15 20
15 3.88 3.15 2.65 2.32 2.10 1.66 1.44 1.33
20 5.03 3.99 3.29 2.84 2.53 1.92 1.61 1.45
25 6.19 4.83 3.93 3.35 2.96 2.17 1.78 1.58
30 7.35 5.67 4.57 3.87 3.39 243 1.95 1.71
50 11.97 9.04 7.14 5.92 5.10 3.45 2.62 2.21
100 23.54 17.47 13.55 11.07 9.38 6.00 4.31 3.48
300 69.81 51.18 39.22 31.64 26.51 16.20 11.08 8.53

smaller MSE values than the unbiased estimator &y,
for sufficiently large values of m, the situation is re-
versed and.the average of m independent values of
&y (i.e., the usual unbiased estimator S /c¢4) will have
smaller MSE than the average of m independent val-
ues of either &3 or &s. It is important therefore to
compare the relative efficiencies of the averages of m
values of the estimators 62 (unbiased) and &5 (min-
imum MSE estimator in the case of a single sam-
ple) for different values of m and n. We let 67 and
&g represent, respectively, these estimators; that is,
b7 =8/cq and 65 = ¢4 S.

From Equations (8), (15), and (19), given m sam-
ples of size n,

. 1-c2o?
MSE(67) = 42 2
SE(67) cg m (20)
and
o2
MSE(6g) = c2(1 — cﬁ);; +(1-c2)%0?  (21)
This gives
RE(67/8s) = c2[m(1 — c2) + 3], (22)

which increases monotonically with m.

Table 3 shows values of RE(67/6s) for several val-
ues of m and n. The advantage of 7 over g is re-
markable.

Of course we could also calculate MSE(S), but
because S is the geometric mean of &7 =S /ca and
63 = ¢4 S, its MSE will lie somewhere between their
MSEs. Therefore, there is no need to consider this
estimator in detail to conclude that it is not to be
recommended either, in face of the greater efficiency
of 7. Neither do we need to consider the average of

Vol. 42, No. 4, October 2010

m independent values of &g, because the bias of &g
is larger than the bias of S.

The results in Table 3 illustrate our statement
that, in the multiple-sample case, the average of un-
biased estimators can be much more efficient than
the average of biased estimators (even when the lat-
ter are optimal in the single-sample case). This leads
to the conclusion that averaging m values of the op-
timal single-sample range-based estimator 4 is not
advisable. For completeness, however, we examine
the classic unbiased multiple-sample range-based es-
timator 69 =R /dz (which is the average of m val-
ues of 41) and, analogous to what was done in the
single-sample case regarding &1 and &2, compare its
efficiency with that of 57. Because &g and o7 are av-
erages of m values of 6 and &2, respectively, and
both &; and &, are unbiased, it becomes evident
from Equation (19) that RE(69/67) = RE(61/52)
(the latter is given in the fifth column of Table 2).
The estimator &; is not to be recommended in the
single-sample case and the corresponding estimator
in the multiple-sample case, 69, is not to be recom-
mended either.

Another method for combining the individual
standard deviation estimators from m samples into a
single estimator is using the pooled sample standard
deviation, defined as

S (ng —1)52

Dima (i —1) 7

where S? is the ith sample variance and n; is the ith
sample size. (Note that, when m = 1, Spaolea reduces
to &3, the sample standard deviation.) Vardeman
(1999) noted that “even a poor multiple of Spooled
is better than the best linear combination of sample
ranges” in terms of the mean-squared error measure

Spooled = (23)

www.asq.org
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TABLE 4. Values of RE(&7/6’10), RE(éll/c}m), and RE(a’lz/&lo)

n ™m v+1 C4(7’L) C4(I/‘|— 1) RE(5'7/5'10) RE(511/&10) RE(&lz/&lo)
2 20 21 0.7979 0.9876 0.865 0.994 0.975
2 25 26 0.7979 0.9901 0.867 0.995 0.980
2 30 31 0.7979 0.9917 0.869 0.996 0.983
2 50 51 0.7979 0.9950 0.872 0.998 0.990
3 20 41 0.8862 0.9938 0.909 0.997 0.988
3 25 51 0.8862 0.9950 0.910 0.998 0.990
3 30 61 0.8862 0.9958 0.911 0.998 0.992
3 50 101 0.8862 0.9975 0.913 0.999 0.995
4 20 61 0.9213 0.9958 0.932 0.998 0.992
4 25 76 0.9213 0.9967 0.933 0.998 0.993
4 30 91 0.9213 0.9972 0.933 0.999 0.994
4 50 151 0.9213 0.9983 0.934 0.999 0.997
5 20 81 0.9400 0.9969 0.946 0.998 0.994
5 25 101 0.9400 0.9975 0.946 0.999 0.995
5 30 121 0.9400 0.9979 0.947 0.999 0.996
5 50 201 0.9400 0.9988 0.947 0.999 0.998

defined in Equation (10). Vardeman (1999) showed
that the optimal standard deviation-based estimator
of o in terms of MSE measure is given by

C4Spooled, (24)

where the function ¢4 has argument v + 1 and v =
S, (n; — 1). The optimal estimator given in Equa-
tion (24) equals &5 when m = 1. We denote this
estimator by 619 and compare its efficiency with the
efficiency of 7. To avoid ambiguity, we will hence-
forth use the notation ca(-) to include the argument
of the function. Vardeman (1999) showed that

MSE(610) = [1 — c3(v + 1)]o?. (25)

When all samples are of the same size n, v+ 1 =
mn —m - 1 for the determination of c4. Given Equa-
tions (20) and (25), the relative efficiency of 519 with
respect to 7 is

RE(G10/67) = mcﬁ(i;[l_f4c(§()g + 1))’ (26)

which is greater than 1 for any values of m and n.
This means that &19 is uniformly better than 67 in
terms of MSE.

Table 4 contains RE(67/610) values for a number
of values of n and m, along with values of c4(n) and

Journal of Quality Technology

ca(v+1) for convenience of the reader. These results
show that &1 is preferable to &7, although not com-
monly used in SPC practice. The smaller the sample
size n, the greater the advantage of 619 over 7. Note
that d19 is biased, but the statement made before
that, in the multiple-sample case, the combination of
unbiased estimators is generally more efficient than
the combination of biased estimators applies only to
the case where the estimators are combined through
averaging them, where Equation (19) holds.

Finally, it should be noted that, even for mod-
erate values of m and n, c4(v + 1) is quite close
to 1, so the estimators &1 (biased, but optimal),
G11 = Spooled (neither unbiased nor optimal, but
most common), and &12 = Spooled/ca(v + 1) {unbi-
ased) have nearly the same MSE. To show this, Table
4 also contains the relative efficiencies RE(611/610)
and RE(612/610). For the computation of these val-
ues, the MSEs of 617 and &1, are required and are
given by

MSE(611) = 2[1 ~ ca(v + 1)]o? 27)
and 2 )
. _ 1-ci(v+1) 4
MSE(613) = 20+ o, (28)
respectively.

Vol. 42, No. 4, October 2010
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Boxplots of estimates of sigma from samples from the N(0,1) distribution
Estimated Mean Squared Errors from the 100,000 simulations are displayed

o 20 v
‘g 0.0671 0.0546 0.0538
=) 0.0570 0.0628 0.0544
* MSE
1.5 0.007147 0.007328 0.006644
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1ol fo| 1l
U b

0.5+

Based on a single sample of 10

S

Based on 25 samples of 4

0.0+— , . . .
R/d2 Sjc4 S  OptR c4S
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The estimators are ordered from left to right according to the suffix notation used in the text

FIGURE 2. Boxplots of the Estimators Considered.

In the one-sample context, 6 = S/cs, 63 = S,
and 65 = c4.S have reasonably different MSEs, which
clearly indicate 65 = c4.5 as the best of these es-
timators. In the multiple-sample context, however,
the differences between the MSEs of 19 = ca(v +
l)Spoo]ed) b1 = Spooled and 612 = Spooled/c4 (V =+ 1)
are much less important and, although 610 = cg(v +
1)Spooled is uniformly better, it will not make much
difference in practice if one prefers to use the unbi-
ased estimator &12 = Spooled/ca(v +1) or the simpler
and more familiar 611 = Spoolea. Clearly, however,
any of these three estimators is to be preferred to
&7 =8 /ca(n) and Vardeman (1999) has previously
shown the range-based methods to be very inefficient.

To provide an illustration, Figure 2 gives the box-
plots of all the estimators considered, for the cases
of single samples of size n = 10 and of m = 25 sam-
ples of size n = 4. The boxplots were each obtained
through 100,000 simulations using Minitab® macros.

Concluding Remafks

In this paper, we have compared the relative effi-
ciencies of different estimators of the standard devia-
tion of a normally distributed random variable in two
cases: a single sample of size n and m independent
samples of size n > 1. (We do not consider the case
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m > 1 and n = 1 in our paper.) Our results show that
the typically recommended use of the estimator R/dy
to estimate o instead of the sample standard devi-
ation S when the sample size is small has not been
always based on accurate relative efficiencies. The
relative efficiency values given in several statistical
quality-control sources, e.g. Montgomery (2009), Ott
(1975), and the NIST/SEMATECH e-Handbook of
Statistical Methods, compared the efficiency of R/ds
with the unbiased estimator S/c4, not to S.

For the single-sample case, we gave formulas and
values that compare the efficiency of R/dy with S.
Based on the mean-squared error criterion, the bi-
ased estimator S is definitely preferable to the com-
monly recommended estimator R/dy. We also com-
pared the relative efficiency of the sample standard
deviation S and of the maximum likelihood estimator
(v/(n —1)/n)S (MLE) with the two optimal estima-
tors of o based on the minimum mean-squared error
criterion studied by Vardeman (1999). Our results
show that the loss in efficiency if one uses the sam-
ple standard deviation S or the MLE to estimate o
instead of the optimal estimators given in Vardeman
(1999) is relatively small. However, one can use the
optimal estimator c4S more efficiently to estimate
the process standard deviation.
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In the multiple-sample case, where m > 1 indi-
vidual estimates from samples of size n > 1 are
available, as in Phase I of SPC, our results show
that averaging the unbiased estimators leads to much
more efficient multiple-sample estimators than av-
eraging biased (albeit optimal in the single-sample
case) estimators. The relative efficiency of R /dp
to S /ca(n) equals the relative efficiency of R/ds
to S/ca, so use of S /cs(n) is preferable to R /da.
However, the estimators based on Spooled (namely,
Spooled; the minimum-MSE estimator c4Spooled; and
the unbiased estimator Spocled/cs, Where ¢4 has ar-
gument mn—m+1) are virtually equivalent for com-
binations of values of m and n typically encountered
in practice, and any of these should be preferred to
the commonly used estimator S /cq(n). Our results
support the conclusions of Vardeman (1999) in the
multiple-sample case.

Qur results are based on the assumption of nor-
mality. If the underlying distribution is more heavy-
tailed, then use of the subgroup standard deviations
might not be the best option. It is likely, however,
that the use of the subgroup ranges would be even
more adversely affected in this situation.

Overall, based on relative efficiency performance,
we strongly recommend the use of the sample stan-
dard deviations in estimating the process standard
deviation o when calculating Shewhart X-chart lim-
its and when estimating process capability indices
with subgrouped data (i.e., n > 1). We see no reason
for the continued use of the range-based methods,
especially because calculations are likely to be per-
formed by software.

Acknowledgments

The authors would like to thank Dr. D. E.
Roberts, Visiting Research Fellow at Edinburgh
Napier University, who computed the values of the
control-chart constants dy and ds to 9 decimal places
using Mathcad. These values were used in the calcu-
lation of the relative efficiencies reported and dis-
played in this paper and are listed, rounded to five
significant digits, in Table 2.

The research of Professor Woodall was partially
supported by NSF grant CMMI-0927323. The re-
search of Professor Epprecht was partially supported
by CNPq, Brazil, PQ grant 302326/2008-1

Appendix
Table of Estimators Considered

Single sample

Notation Formula Biased/unbiased MSE
& R/dy U (d3/d3)o?
&2 S/ca U (1= c})/cilo
o3 S B 2(1 — ¢4)0?
G4 [d2/(d3 + d3)|R B [d3/(d5 + df)]o?
6’5 } C4S B (1 - Ci)dz
e V(n—1)/nS B 2 -2v/(n—1)/ncy — 1/n)o?

Multiple samples

Notation Formula Biased/unbiased MSE
& S [ea(n) U [(1 = c})/ci)(o?/m)
58 ca(n) S B c2(1—c3)(o?/m) + (1 — c2)2a?
5o R/d, U (d3/d3)(0? /m)
G10 ca(v + 1)Spooled B (1 —ci(v+1))o?
611 Spooled B 2[1 — ca(v + 1)]o?
812 Spooled/ca(v +1) U [(1 = ck(v + 1)) /(v + 1))o?

Note: v = 31", (n; — 1) = m(n — 1) when all samples are of the same size.
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