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ABSTRACT

Industrial success requires efficient experimentation both for the improvement of existing
products and processes and for development of new ones. Because results are usually known
quickly, the natural way to experiment is to use information from each group of runs to plan the
next. Such investigation employs a scientific paradigm in which data drives an alternation of
induction and deduction. This process can suggest at each stage how questions that are still at
issue can be resolved. Response surface methods are a group of statistical techniques
specifically designed to catalyze scientific learning of this kind. In this paper, the scientific
paradigm for discovery and sequential learning is contrasted with the mathematical paradigm for
the proof of theorems. It is argued that, because statistical training unduly emphasizes
mathematics at the expense of science, confusion between the two paradigms occurs. This has
resulted in emphasis on the development and use of "one-shot" statistical procedures which
mimic the mathematical paradigm--examples are hypothesis testing and the use of alphabetically
optimal designs. Such one-shot procedures, where the model is assumed known a priori and
fixed, are appropriate for some practical problems and are attractive because they allow rigorous
development of theories of statistics based on mathematics alone. By contrast, discovery of new
knowledge requires the use of the scientific paradigm in which the model is continually changing.
Scientific method is thus mathematically incoherent. The importance of robustness is discussed
both for analysis and design, and the relationship between these two kinds of robustness is
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clarified. Implications for teaching are discussed.
Key Words: Experimentation, Investigation, Response Surface Methodology, Robustness.

PART | of this article illustrates a number of concepts which together embody what |
understand to be response surface methodology (RSM). These ideas were originally introduced
in a paper read to the Royal Statistical Society many years ago (Box and Wilson (1951)) and, as
previously noted in Part | of this paper, have received considerable attention since that time. The
present paper is about an aspect which | think needs to be further discussed. This concerns the
implications raised when RSM is considered, as was originally intended, as a statistical
technique for the catalysis of iterative learning in the manner illustrated in Part | of this paper. To
introduce this topic | think | first need to explain how the paper referred to above came to be
written.

SOME HISTORY

While serving in the British army during the Second World War, | was, because of my
knowledge of chemistry, transferred to a research station concerned with defense against
chemical warfare. Biochemical results from animal experiments were extremely variable, and,
since no professional statistical help was available, | was assigned the job of designing and
analyzing many statistically planned experiments. | also helped to carry them out. My efforts over
the next three years were necessarily based on self-study, and most of the books and articles |
was able to get were by R. A. Fisher and his followers. Later | studied theoretical statistics at
University College in London and in particular became familiar with Neyman-Pearson theory.

In 1948 my first job was at a major division of ICI in England. The people there were anxious
to develop methods to improve the efficiencies of their many processes, but my suggestion that
statistically designed experiments might prove helpful was greeted with derision. The chemists
and engineers said, "Oh, we've tried that, and it didn't work." Inquiry showed that, for them, a
statistical design had meant the advance planning of an all-encompassing "one-shot" factorial
experiment. This would test all combinations of the many experimental factors perceived to be
important with each factor tested at a number of levels covering the whole of the ranges
believed relevant.

A few of these very large factorial arrangements had, in fact, been begun but had quickly
petered out. In the light of their knowledge of chemistry and engineering, after a few runs the
experimenters might says, "Now that we see these early results, we realize that we should be
using much higher pressures and temperatures. Also, the data suggest that some of the factors
we first thought were important are not. We should be looking at a number of others not on the
original list." The failures occurred because it was presumed the use of statistics meant that the
whole investigation had to be planned when the experimenters knew least about the system.
The result was that statistically planned experimentation received a very bad name.

It was clear that | had much to learn, so | joined a number of teams involved in process
development and improvement. | worked with them and particularly with a chemist, K. B. Wilson,
who had considerable experience in that area. We watched what the experimenters did and
tried to find ways to help them to do it better. It seemed that most of the principles of design
originally developed for agricultural experimentation would be of great value in industry, but that
usually industrial experimentation differed from agricultural experimentation in two major
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respects. These | will call immediacy and sequentiality.

What | mean by immediacy is that for most of our investigations the results were available, if
not within hours, then certainly within days and in rare cases, even within minutes. This was true
whether the investigation was conducted in a laboratory, a pilot plant, or on the full scale.
Furthermore, the experimental runs were usually made in sequence, and the information
obtained from each run or small group of runs was known and could be acted upon quickly and
used to plan the next set of runs. We concluded that the chief quarrel that our experimenters
had with using "statistics" was that they thought it would mean giving up the enormous
advantages offered by immediacy and sequentiality. Quite rightly, they were not prepared to
make these sacrifices. The need was to find ways of using statistics to catalyze a process of
investigation that was not static, but dynamic. RSM was introduced as a first attempt to provide
a suitable adaptation of statistical methods to meet these needs. It was a great surprise to us
when Professor G. A. Barnard, then ICl's statistical consultant, suggested that our work be
made the subject of a paper to be read before the Royal Statistical Society.

THE KEY IDEAS OF RSM

It is necessary, | think, to reiterate the key ideas that were in the Box and Wilson (1951)
paper. They are outlined below with references to the appropriate pages of the journal in which
it was originally published. Points at which there were necessary injections of judgement and
informed guesswork are indicated by italics.

(a) Investigation is a sequential learning process (p. 2).

(b) When there is little or no knowledge about the functional relationship connecting a
response, y, and a group of factors, x, a truncated Taylor series approximation (i.e., a polynomial
in x of some degree d, usually 1 or 2) might produce a useful local approximation, and the data
themselves could suggest a suitable value for d (p. 3). It was shown later by Box and Cox
(1964) and Box and Tidwell (1962) that the value of simple polynomial graduation functions can
be increased considerably by allowing the possibility of transformation of y or x.

(c) When at the beginning of an investigation it is suspected that considerable improvement is
possible, we are probably "down the mountain side." In that case, most of the information
concerns "which way is up" and first order terms are likely to dominate. Factor screening and
estimation can then be achieved by using two-level Plackett-Burman and fractional factorial
designs followed by first order steepest ascent (p. 10).

(d) When at a later stage first order terms appeared no longer dominant, a higher degree
polynomial, in particular one of second degree, might be employed (p. 4).

(e) When d is 2 or greater, factorial designs at d + 1 levels and their standard fractions
obtained from group theory (Finney (1945)) are inappropriate and uneconomical for estimating
the approximating polynomials. Instead, what were later called response surface designs were
used. These were classified, not by the number of levels used, but by the degree of the
approximating polynomial they estimated (p. 15). Three-level designs of a different kind for fitting
second degree equations were later developed by Box and Behnken (1960) that were
specifically chosen to estimate the necessary coefficients in a second degree polynomial.

(f) For comparing bias properties of possible designs, the general alias matrix was derived. In
particular, if a polynomial of degree d[sub1] was fitted when a polynomial of degree d[sub2] was
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needed, the alias matrix determined how the estimated coefficients would be biased (p. 7).

(g) By a process later called sequential assembly, a suitable design of higher order can be
built up by adding a further block of runs to already existing runs from a design of lower order.
For example, when the data indicates that this is necessary, a second order composite design
may be obtained by adding axial and center points to a first order factorial or fractional (p. 17).
The general principle of "fold-over" is another example of sequential assembly which can be
used when it is thought necessary to separate second order aliases from effects of first order
(pp. 14, 16, and 35).

(h) Real examples of experimentation with fractional two-level factorials used as first order
screening designs followed by first order steepest ascent are given (pp. 19, 20, and 21).

(i) When earlier experimentation has exploited and greatly reduced dominant first order terms,
it is likely that a near stationary region has been reached. Real examples showed how a second
order approximating function might then be estimated and checked for model relevance and for
lack of fit (later discussed more fully in Box and Wetz (1973) and Box and Draper (1987)) (p.
27).

(j) When there are only two or three factors of major interest, contour plots and contour
overlays can be of value in understanding the system (pp. 3, 24, and 32).

(k) More generally, canonical analysis of a second degree equation can indicate the existence
of a maximum, minimum, or, as in the helicopter example, a minimax. Also the type and direction
of ridges can be determined. When, as is usual, there are costs and other responses that must
be considered such ridges may be exploited to produce better and cheaper products and
processes (p. 24).

(I) To check the reality of potentially interesting characteristics of the fitted surface, additional
runs may be made at carefully chosen experimental conditions and, where appropriate, used in
re-estimating the function (p. 28).

Before proceeding further, | need to make a number of disclaimers:

(1) RSM as described above represented a beginning. Later, these ideas were extensively
developed by other researchers and other collaborators.

(2) The detailed methodology of RSM is appropriate to a particular species of industrial
problem. It is certainly not intended as a cure-all. However, what has been made clear by my
industrial experience, then and later, was that there should be more studies of statistics from the
dynamic point of view. Unfortunately, with notable exceptions such as Daniel (1961), the
concept of statistics as a catalyst to iterative scientific learning has not received much attention
by statistical researchers.

(3) The illustrative investigation in Part | of this paper involves quite a number of experimental
runs. Suppose, however, that we were really in the business of making paper helicopters to
achieve longer flight times and that the original design represented the previously accepted state
of the art. Then the increased flight time from 223 to 347 centiseconds achieved after only 21
runs using one fractional design and steepest ascent could have put us far ahead of the
competition. At this point improvement efforts might, in practice, be halted temporarily. However,
when competitors started to catch up, experimentation could begin again in a manner
corresponding to later parts of the example. Not surprisingly, as the product got better it would
take more effort to improve it.
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(4) In the helicopter investigation only one response is considered (except in the early stages
when dispersion is also analyzed). In most real examples there would be several responses.

(5) The helicopter investigation is conducted almost entirely empirically. In practice, the result
at each stage would be considered in the light of subject matter knowledge. This could greatly
accelerate the learning process. Investigation must involve scientific feedback as well as
empirical feedback.

STATISTICS AS A CATALYST TO LEARNING

Francis Bacon (1561-1626) said "Knowledge ltself Is Power." The application to industry of
this aphorism is that by learning more about the product, the process, and the customer we can
do a better job. This is true whether we are making printed circuits, admitting patients to a
hospital, or teaching a class at a university. For example, an industrial investigation to provide a
new drug for a particular disease has two distinct aspects to its development: 1) the long
process of learning by which an effective and manufacturable chemical substance is discovered
and developed and 2) the process of testing to ensure its effectiveness and safety for human
use. These two aspects have parallels in criminal procedures: 1) the tracking down of a criminal
by a detective and 2) the trial of the criminal in a court of law. Solving the crime, like the
discovery and development of a new, initially unidentified drug, is necessarily a sequential
procedure. It emphasizes hypothesis generation based on intelligent guesswork and is inspired
by clues which help decide what kind of data to seek at the next stage of the investigation.

However, the trial of the accused in a court of law is a much more formal process. It is a "one-
shot" procedure in which the court must make a decision based on already available evidence
(past data). The "null hypothesis" of innocence must be discredited "beyond all reasonable
doubt" for the defendant to be found guilty. In comparison to this very formal trial process, the
detective's methods for tracking down a criminal are informal and are continually concerned with
such questions as: "Given what | already know and suspect, how should | proceed? What are
the critical issues that need to be resolved? What new data should | try to get? This informal
investigative process certainly cannot be put into any rigid mathematical framework.

In statistics, although research on "data analysis" led by John Tukey has gone part of the way
to restore respectability to methods of exploratory inquiry, it still seems to be widely believed that
expertise appropriate to aid the trial judge is also appropriate to advise the detective. In
particular, the concept of hypothesis testing at accepted fixed significance levels are, so far as
they can be justified at all, designed for terminal testing on past data of a believable null
hypothesis. They make little sense in the context of exploratory inquiry. We should not be afraid
of discovering something. If | know with only 50% probability that there is a crock of gold behind
the next tree, should | not go and look?

In the helicopter example, notice that what is plotted are the averages of repeat runs. The
variation in these averages thus includes "manufacturing" variation and is appropriate for
conclusions drawn about the helicopter designs, rather than conclusions about particular
helicopters (see Part | of this paper). This informal use of normal probability plots is quite
deliberate. We use the plots simply to indicate what might be worth trying. The idea that before
proceeding further we need to discredit the already incredible null hypothesis (that the prototype
design is the best possible) is clearly ridiculous. When experimentation is sequential we need to
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think in terms of conducting a blitzkrieg rather than trench warfare. However, if desired,
confidence cones about the directions of steepest ascent can be calculated (Box (1954) and Box
and Draper (1987)). For the two steepest ascent paths calculated in Part | of this paper, 95%
confidence cones exclude, respectively, 97.9% and 94.7% of possible directions of advance. It
must always be remembered that (except perhaps when dining with the Borgia's) the proof of
the pudding is in the eating.

The analysis of variance in Table 10 of Part | of this paper is not intended to be used formally
either. Its main purpose is to determine whether the fitted second degree equation is estimated
sufficiently well to be worthy of further interpretation. The occurrence of an F multiplier of 8.61
strongly suggests that it is. The F multiplier indicates whether the overall change in response
predicted by the fitted equation is reasonably large compared with the error in estimating the
response (Box and Wetz (1973) and Box and Draper (1987)). For this purpose it is more
appropriate than the more frequently used R[sup2].

PARADIGM OF SCIENTIFIC LEARNING

The paradigm for scientific learning has been known at least since the time of Robert
Grosseteste (1175-1253) who attributed it to Aristotle (384-322 BC). The iterative inductive-
deductive process between model and data is not esoteric but is part of our every day
experience. For example, suppose | park my car every morning in my own particular parking
place. On a particular day after | leave my place of work, | might go through a series of inductive-
deductive problem solving cycles like this:

Model: Today is like every day.

Deduction: My car will be in my parking place.

Data: It isn't!
Induction: Someone must have taken it.
Model: My car has been stolen.
Deduction: My car will not be in the parking lot.
Data: No. It is over there!
Induction: Someone took it and brought it back.
Model: A thief took it and brought it back.
Deduction: My car will be broken into.
Data: No. It's unharmed and it's locked!
Induction: Someone who had a key took it.
Model: My wife used my car.
Deduction: She has probably left a note.
Data: Yes. Here it is!

Two equivalent representations of this process (which might be called the cycle and the saw-
tooth) have been given, respectively, by Deming's (1982) modification of Shewhart (1939) and
by Box and Youle (1955). They are shown in Figure 1. For example, the saw-tooth model
indicates how data which look somewhat different from what had previously been expected can
lead to the conception of a new or modified idea (tentative model) by a process of induction. By
contrast, consideration of what the data would imply if the model were true is achieved by a
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process of deduction. The first implies a contrast indicated by a minus sign; the second involves
a combination of data and model indicated by a plus sign. Some of the theoretical consequences
of these ideas are discussed in Box (1980a, 1980b, 1983). Studies of the human brain over the
last few decades have confirmed that, in fact, separate parts of the brain are engaged in a
conversation with each other to perform this inductive-deductive iteration. Thus, although
different people may follow different paths of reasoning, they can arrive at the same or
equivalent conclusions.

Notice that the acquiring of data may be achieved in many different ways, for example, by a
visit to the library, by observing an operating system, or by running a suitable experiment. But to
be most fruitful, subject matter knowledge must be available for all such activities. For example,
after the analysis of an initial experiment, a conversation between a scientific investigator and an
inexperienced statistician could go something like this:

Investigator: "You know, looking at the effects of factors x[sub2] and x[sub3] on the response
y[sub1], together with how they seem to affect y[sub4] and y[sub5], suggests to me that what is
going on physically is thus and so. Therefore, | think that in the next design we had better
introduce the new factors x[subi] and x[subj] and drop factor x[sub1]."

Statistician: "But at the beginning of this investigation | asked you to list all the important
variables and you didn't mention x[subi] and x[subj]."

Investigator: "Oh yes, but | had not seen these results then."

While statisticians are accepted by scientists as necessary for the testing of a new drug, their
value in helping to design the long series of experiments that lead to the discovery of the new
drug is less likely to be recognized. For example, Lucas (1996) estimated that, of the 4,000 or so
members of American Statistical Association (ASA) who were engaged in industry at that time,
about 3,000 were in the pharmaceutical industry--one suspects that a disproportionate number
of these were concerned with testing rather than with the more rewarding and exciting process
of discovery.

A MATHEMATICAL PARADIGM

A purely mathematical education is focused on the one-shot paradigm--"Provide me with a set
of assumptions and if some proposition logically follows, then | will provide a proof." Not
surprisingly this mind-set can also produce a paradigm for hypothesis testing in mathematical
statistics--"Provide me with the hypothesis to be tested, the alternative hypothesis, and all the
other assumptions you wish to make about the model, and | will provide an 'optimal' decision
procedure." Similarly with experimental design--"Tell me what are the important variables, what
is the exact experimental region of interest in the factor space, what is the functional relationship
between the experimental variables and the response, and | will provide you with an
alphabetically optimal design!" These are requests to which most investigators would respond, "I
don't know these things, but | hope to find them out as | run my experiments."

By historical accident, experimental design was invented in an agricultural context. For
example, Fisher's earlier interest in aerodynamics could have resulted in a career in aircraft
design, perhaps producing a somewhat different emphasis in the "design of experiments."
However, the circumstances of agricultural experimentation are very unusual (certain industrial
life testing experiments are an exception) and should certainly not be perceived as sanctifying
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methods in which all assumptions are fixed a priori and lead to a one-shot procedure. lterative
learning, of course, goes on in agricultural trials as elsewhere. The results from each year's trials
are used in planning the next.

CONTINUOUS NEVER ENDING IMPROVEMENT

We can better understand the critical importance of sequential investigation if we consider a
central principle of modern quality technology--that of "continuous never ending improvement."
This might at first be confused with mathematical optimization, but mathematical optimization
takes place within a fixed model; by contrast, in continuous improvement, neither the functional
form of the model, nor the identify of the factors, nor even the nature of the responses is fixed.
They all evolve as new knowledge comes to light. Furthermore, while optimization with a fixed
model leads inevitably to the barrier posed by the law of diminishing returns, a developing model
provides for the possibility of continuous improvement and for expanding possibilities of return.

At the beginning of this century, Samuel Pierpont Langley (1834-1906), a distinguished
scientist and a leading expert in aerodynamics who had considerable financial support from the
U.S. government, built two airplanes designed largely from theoretical concepts. The planes
were not operated by Langley himself, and they never flew but fell off the end of the runway into
the Potomac. By contrast, the Wright brothers, after three years of iterative learning (first flying
kites, then gliders, then powered aircraft), discovered not only how to design a working airplane
but also how to fly it. (In the course of their investigations they also discovered that a
fundamental formula for lift was wrong; they built their own wind tunnel and corrected it). Their
airplane design, of course, was not optimal any more than is that of the Boeing 777. The
dimensionality of the factor space in aircraft design, as in any other subject, is continually
increasing.

It is obviously impossible to prove mathematical theorems about the process of scientific
investigation itself, for it is necessarily incoherent; there is no way of predicting the different
courses that independent experimenters exploring the same problem will follow. It is
understandable, therefore, that statisticians inexperienced in experimental investigation will shy
away from such activities and concentrate on the development of mathematically respectable
one-shot procedures. For such work it is not necessary to learn from (or cooperate with)
anybody. To develop statistical decision theory, there was no need to consider the way in which
decisions were actually made; nor to develop the (many!) mathematically optimal design criteria
was it ever necessary to be involved in designing an actual experiment.

Recently there has been considerable discussion of the malaise which has affected statistical
application. For example, one of the sessions at the ASA annual meetings in 1997 was on the
topic "The D. O. E. Dilemma: How Can We Build on Past Failure to Ensure Future Success." |
believe such discussion would be more fruitful if attention was focused on the root cause of such
problems--namely, the confusion between the mathematical and the scientific paradigm in
determining much of what we do.

SUCCESS OF THE INVESTIGATION IS THE OBJECTIVE
In the context of iterative learning, optimizations of separate designs and analyses will
necessarily be sub-optimizations. It is the investigation itself, involving many designs and
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analyses, that must be regarded as the unit, and the success of the investigation that must be
regarded as the objective. Although we cannot prove any mathematical theorems about the
process of iterative investigation, we can apply ourselves to the study of the learning process
itself. This should not be a matter for too much dismay. For example, after the discovery of the
genetic code, geneticists of a biological turn of mind realized that, in addition to their previous
knowledge, they must now acquire expertise in mathematical coding theory. We, too, ought to
be able to make a transformation of this kind.

THE INDUCTIVE POWER OF FACTORIAL DESIGNS

The floundering that we tend to do between the scientific and mathematical paradigms can
lead to major misunderstandings. For example, | have often found myself defending the factorial
design. "Surely," | am told, "with modern computers able to accomplish enormous tasks so
quickly, you ought not to be content with outdated factorial designs." One can, of course, try to
point out that the design of a real experiment involves judgment and the wise balancing of many
different issues with the help of the investigator. But, in addition, a different and very important
point is usually missed. In favor of factorial designs is their enormous inductive power. Even if
we grant that an "optimal" design might provide a useful answer to the question posed before
we did the experiment, the experimental points from such a design are usually spread about in
irregular patterns in factor space and are of little use as a guide to what to do next.

One of the most fundamental means by which we learn is by making comparisons. We ask,
"Are these things (roughly) the same or are they different?" A pre-school coloring book will show
three umbrellas with the young reader invited to decide if they are the same or different. A
factorial design is a superb "same or different machine." Consider, for example, a 2[sup3]
factorial design in factors A, B, and C represented as a cube in space in which a response vy is
measured at experimental conditions corresponding to each corner of the cube. By contrasting
the results from the two ends of any edge of the cube, the experimenter can make a comparison
in which only one factor is changed. Twelve such comparisons, corresponding to the 12 edges
of the cube, can be made for each response. These basic comparisons can then be combined in
various additional ways. In particular, they can be used to answer such questions as: "On the
average, are the results on the left hand side of the cube about the same as those on the right
hand side (factor A main effect) or are they different? Are they on average the same on the front
as on the back (factor B main effect) or are they different?" Also, since an interaction
comparison asks whether the differences produced by factor A are the same or different when
factor B is changed, the possibility of interaction between the factors can be assessed by
similarly comparing the diagonals of the design.

However, as pointed out by Daniel (1961), there are many natural phenomena which are not
best represented in terms of main effects and interactions (or by polynomial functions). In
particular, a response may occur only when there is a "critical mix" of a number of experimental
factors. For example, sexual reproduction can occur from a binary critical mix; to start an internal
combustion engine requires a quaternary critical mix of gas, air, spark, and pressure, and so
forth. With a 2[sup3] factorial design a tertiary mix is suggested as one explanation when one
experimental point on the cube gives a response widely different from all the others. A binary
mix is suggested when two points on an edge are different from all the rest (see, e.g., Hellstrand
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(1989)). Such possibilities can be suggested by a cube plot and by a normal plot of the original
data. For this reason it seems best to decide first the space in which there is activity of some
kind or other for a group of factors and to then decide what kind of activity it is. Usually,
information will become available simultaneously for not one, but for many different responses
measured at each experimental point. This can provide an inspiring basis for the scientist or
engineer using subject matter knowledge to figure out what might be happening and to help
decide what to do next.

PROJECTIVE PROPERTIES OF FACTORIAL DESIGNS

Factorial designs are made even more attractive for purposes of screening and inductive
learning by the discovery that certain two-level fractional factorials have remarkable projective
properties (Box and Hunter (1961)). For example, a 2[sup8-4[sub[sublV] fraction factorial
orthogonal array containing sixteen runs can be used as a screen for up to three active factors
out of eight suspects and supplies what was later called a (16, 8, 3) screen (Box and Tyssedal
(1994, 1996)). For this design, every one of the 56 possible ways of choosing three columns
from the eight factor columns produces a duplicated 2[sup3] factorial design. The original
2[sup8-4[sub[sublV] design can therefore be said to be of projectivity P = 3. In addition to the
fractional factorial arrangements for 4, 8, 16, 32, ... runs, a different kind of two-level orthogonal
array is available for any number of runs that is a multiple of four (Plackett and Burman (1946)).
These arrangements will be called P.B. Designs. They provide additional designs for 12, 20, 24,
28, ... runs; some of these turn out to have remarkable screening properties. It was with some
surprise that it was discovered, first by computer search, that the 12-run P.B. design could
screen up to 11 factors at projectivity P = 3, supplying a (12, 11, 3) screen (Box, Bisgaard, and
Fung (1987) and Box and Bisgaard (1993)). Furthermore, Lin and Draper (1992) showed by
further computer search that some but not all of the larger P.B. designs had similar properties.
The conditions necessary for such designs to produce given projectivities were categorized and
proved by Box and Tyssedal (1994, 1996). Such screening designs are important because they
can suggest which subset of the tested factors are, in one way or another, active. See also Lin
(1993a, 1993b, 1995).

Many designs have another interesting projective property that allows simple procedures to be
used when the factor space is subject to one or more linear constraints. One such constraint is
the additive constraint which occurs when a set of factors measures the proportions of
ingredients which must sum to unity. In particular, it was shown by Box and Hau (1998) that
most of the operations of RSM can be conducted by projecting standard designs and
procedures onto the constrained space.

ROBUSTNESS

If statistics is to be an essential catalyst to science, an important part of our job is to fashion
techniques for continuous never ending improvement that are suitable for use in the iterative
learning cycles we have described. Such techniques rest on tentative assumptions (stated or
unstated), and since all models are wrong, but some are useful, they must be robust to likely
departures from assumption. As is indicated by the wavy lines in Figure 2, robustness concepts
are important both for statistical analysis and also for the process of informed extrapolation
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required so that the results of an investigation can be put to practical use.

ROBUST ANALYSIS

| want to first discuss the robustness of statistical analysis. It is sometimes supposed that if the
assumptions are "nearly right," then so will be a desired procedure and that if they are "badly
wrong," then the desired procedure will not work. Both ideas are faulty because they take no
account of robustness. As a specific example, consider the estimation of the standard deviation,
sigma, for a control chart for individual items. Suppose an estimate is employed based on the
average moving range, MR, of two successive observations (see, e.g., Duncan (1974)). If it is
assumed that the data are normally, identically and independently distributed, then an unbiased
estimate of sigma is provided by MR / 1.128. But for data of this kind collected in sequence it is
to be expected that successive deviations from the mean may be appreciably correlated. It can
be shown that even small serial correlations of this kind can seriously bias this estimate of sigma
(see, e.g., Box and Luceio (1997)).

In all such examples, the effect of a departure from assumption depends on two factors: i) the
magnitude of the deviation from assumption and ii) a robustness factor which measures how
sensitive is the outcome to such a deviation. The concept is completely general, as is shown
below, again using the correlation example for illustration. Suppose that some outcome of
interest (the estimate of sigma in the example, but in general some characteristic of interest
denoted by Y) is sensitive to an assumption about some characteristic (the zero value of the
serial correlation coefficient for this example, but in general some quantity defining the
assumption denoted by Z). Now let a deviation, z, from assumption produce a change, vy, in the
outcome. Then approximately

y=zxdy/dz

and the effect y on the outcome is obtained by multiplying z (the discrepancy from
assumption) by a robustness factor dy / dz (the rate of change of the outcome in relation to the
change in assumption). Thus, as is well known, two different procedures, even though derived
from identical assumptions (such as a test to compare means by the analysis of variance and a
test to compare variances by Bartlett's test), can be affected very differently by the same
departure from assumption (the test to compare means is robust to many kinds of non-normality
of the error distribution, but the test to compare variances is not).

Such facts have led to the development of a plethora of robust methods. However,
practitioners must be cautious in the choice of such methods. In particular, we should ask the
question "Robust to what?" For example, so-called "distribution free" tests recommended as
substitutes for the t-test are just as disastrously affected by failure of the distributional
assumption of zero serial correlation as is the t-test itself. When such sensitivity occurs, inclusion
of the sensitive parameter in the formulation of the original model is often necessary to obtain a
robust procedure.

ROBUST DESIGN

Almost never is an experimental result put to use in the circumstances in which it was
obtained. Thus, a result obtained from a laboratory study published in a Polish journal might find
application in, say, an industrial process in the United States. However, as was emphasized by
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Deming (1950, 1982), such a link with practice is not made using statistics or formal probability,
but by "a leap of faith" using technical judgment. Nevertheless, the basis for that extrapolative
judgment could be very strong or very weak depending on how the investigation was conducted;
although no absolute guarantees are possible, by taking certain precautions in the experimental
design process, we can make this job of informed extrapolation less perilous. Using statistics to
help design a product that will operate well in the conditions of the real world is a concept that
has a long history going back at least to the experiments conducted by the Guinness's at the turn
of the century. These experiments were run to find a variety of barley for brewing beer with
properties that were insensitive to the many different soils, weather conditions, and farming
techniques found in different parts of Ireland.

Later Fisher (1935, p. 112) pointed out that one of the virtues of factorial experiments was
that "[extraneous factors] may be incorporated in experiments designed primarily to test other
points with the real advantages, that if either general effects or interactions are detected, that
there will be so much knowledge gained at no expense to the other objects of the experiments
and that, in any case, there will be no reason for rejecting the experimental results on the ground
that the test was made in conditions differing in one or other of these respects from those in
which it is proposed to apply the results." We owe to Taguchi (1986) our present awareness of
the importance of statistics in achieving robust processes and products in industry. Many such
applications of robust design fall into one of two categories:

(1) minimization of the variation in system performance transmitted by its components or

(2) minimization of the affect on system performance of variation in environmental variables
which occurs in everyday use.

Overlooked solutions to both problems, which in my view are better than those later proposed
by Taguchi, are due to Morrison (1957) and Michaels (1964). Morrison solved the first problem
directly using the classical error transmission formula. He further made the critical observation
that for any solution to be reliable, standard deviations of component errors must be reasonably
well known (see also Box and Fung (1986, 1993)). Michaels showed how the solution to the
second problem is best dealt with as an application of split plot designs (see also Box and Jones
(1992a, 1992D)).

It is clearly important that robustness concepts and response surface ideas should be
considered together (see, e.g., Vining and Myers (1990) and Kim and Lin (1998)). One
illuminating approach to the environmental robustness problem can be understood by an
extension of the earlier discussion. | assume in what follows that Taylor expansions that include
derivatives up to the second order can provide adequate approximations.

As a specific example of environmental robust design consider the formulation of a washing
machine detergent (see Michaels (1964)). Suppose we have an initial "prototype" formulation
(product design) for which, however, the effectiveness, Y, is unduly sensitive to the temperature,
Z, that is actually used in the domestic washing machine. (Effectiveness of a detergent can be
measured by applying a "standard soil" to a sample of white cloth and making a colorimetric
determination of its whiteness after washing.) To make the detergent suitable for household use
we need to modify the formulation so that the its effectiveness is robust to a moderate departure,
z, from the ideal washing temperature. If y is the change induced by z in the measure of
effectiveness, then, as before, approximately
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y=zxdy/dz.

Now let dy / dz|[subp] be the robustness factor for the initial prototype design and suppose we
can find a design variable (say, the proportion of compound X in the formula) which has a
substantial interaction (measured by d[sup2]y / dzdx) with the temperature Z. Then the
robustness factor can be changed in accordance with the equation

dy / dz = dy / dz|[subp] + (d[sup2]y / dzdx) x x,

where x is the deviation of the design variable X from its value in the prototype formulation.
Theoretically, therefore, the robustness factor can be reduced to zero and a formulation
insensitive to temperature obtained by setting x = x* such that x* is the solution of the equation

dy / dz|[subp] + (d[sup2]y / dzdx) x x* = O.

Now suppose we have a suitable experimental design centered at the prototype conditions
x[supp] so that dy / dz|[subp] can be estimated by the linear effect of the temperature (denoted
below by c) and so that d[sup2]y / dzdx can be estimated by the interaction (denoted by C) of X
with temperature. The value x* required for robustness can then be estimated from the equation

-c=Cx* (1)

More generally, suppose that in Equation (1), ¢ now represents a vector of the linear effects of
p environmental variables so that ¢ = (c1, ¢2,...,c[subp])' and C = [c[subij]] represents a p x q
matrix of interactions such that the element of its ith row and jth column is the interaction
between the environmental variable Z[subi] and the design variable X[subj]. Then the solution of
the equations, X* = (x*[sub1],x*[sub2],...,x*[subq])', if a solution exists, estimates the values of
the design variables required for a robust design. If there are more design variables than
environmental variables (q > p), then an infinity of solutions may exist. If ¢ = p and the matrix C
is non-singular, then there will be a unique solution; if q < p, then no solution may exist. Also, for
the solution to be of any value, x* will need to be located in the immediate region where the
approximations can be expected to hold and the coefficients in ¢ and C will need to be estimated
with reasonable precision. A discussion of the effects on the solution of errors in the coefficients
of a linear equation is given in Box and Hunter (1954).

For illustration, suppose q = p = 2 and the environmental variables are Z[sub1], the
temperature of the wash, and Z[sub2], its duration. Also suppose the design variables are the
deviations from prototype levels of the amounts of two ingredients, X[sub1] and X[sub2]. Then
the conditions (x*[sub1], x*[sub2]) which satisfy the robustness criterion are such that

-c[sub1] = ¢[sub11]x*[sub1] + c[sub12]x*[sub2]
-c[sub2] = ¢[sub21]x*[sub1] + c[sub22]x*[subZ2], (2)

where it must be remembered that the coefficients c[sub11], c[sub12], etc. are all interactions
of the environmental variables with the design variables. Thus, for example, c[sub11] is the
interaction coefficient of Z[sub1] with X[sub1]. Notice that no account of the level of response
(the effectiveness of the detergent) is taken by these equations. The robust formulation could
give equally bad results at different levels of the environmental variables.

Now suppose that the environmental variables are at their fixed nominal values and that

locally the response is adequately represented by a second degree equation in the design
variables,
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Ay = Db[sub0] + Db[sub1]x[sub1] + Db[sub2]x[sub2] + b[sub11]x[sup2[sub[sub1] +
b[sub22]x[sup2[sub[sub2] + b[sub12]x[sub1]x[sub2].
The coordinates (x[supO[sub[sub1], x[supO[sub[sub2]) of a maximum in the immediate region
of interest will then satisfy the equations

-b[sub1] = 2b[sub11]x[supO[sub[sub1] + b[sub12]x[supO[sub[sub2]
-b[sub2] = b[sub12]x[supO[sub[sub1] + 2b[sub22]x[supO[sub[sub2].

Note that these equations have no coefficients in common with the robustness equations in
Equation (2).

Thus you could have an "optimal" solution that was highly non-robust and a robust solution
that was far from optimal. In practice, some kind of compromise is needed. This can be based
on costs, the performance of competitive products, and the like. One approach, which combines
considerations of robustness and optimality and provides a locus of compromise between the
two solutions, was given by Box and Jones (1992a, 1992b) who showed which coefficients
needed to be estimated to achieve various objectives and who provided appropriate
experimental designs.

ROBUST DESIGN USING SPLIT PLOTS

As Michaels (1964) pointed out, to achieve environmental robustness, convenient and
economical experimental designs are provided by split plot arrangements employing "main plots"
and "subplots" within main plots (Fisher (1935) and Yates (1937)). In industrial applications,
situations requiring this kind of design are extremely common. In fact, the famous industrial
statistician Cuthbert Daniel once said, perhaps with slight exaggeration, that all industrial
experiments are split plot experiments. The designs which Taguchi refers to as containing
"inner" and "outer" arrays are usually split plot arrangements often incorrectly analyzed.

Depending on whether the design variables or the environmental variables are applied to the
subplots, design main effects or environmental main effects will be estimated with the subplot
error. In either case, however, all the design x environmental interactions will be estimated with
the subplot error. Because it is frequently true that the subplot error is considerably smaller than
the whole plot error, the different kinds of split plot arrangements can have different theoretical
efficiencies. These were given by Box and Jones (1992b) who also showed that strip-block
designs can be even more efficient. They point out, however, that in practice the numbers of
such operations and the difficulty and cost of carrying them out are usually of most importance in
deciding the way in which an experiment is conducted. In his experiment on different detergent
formulations, Michaels (1964) applies the design variables (test products) to the subplots. When
environmental conditions are not easily changed, this option can produce experimental
arrangements which are much easier to carry out.

In practice, discovering which environmental factors' effects need to be modified and
identifying the design factors that can achieve these modifications are of greatest importance.
The principle of parsimony is likely to apply to both kinds of factors. Fractional factorials and
other orthogonal arrays of highest projectivity are thus particularly valuable to carry both the
environmental and the design factors. Particularly when there are more design factors than
environmental factors, different choices or different combinations of design factors may be used
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to attain robustness. Relative estimation errors, economics, and ease of application can help
decide the best choice. Most important of all, the nature of the interplay between design factors
and environmental factors revealed by the analysis should be studied by subject matter
specialists. This can lead to an understanding of why the factors behave and interact in the way
they do. Such study can produce new ideas and, perhaps, even better means for obtaining
robustness. Notice that these considerations require that we look at individual effects.
Portmanteau criteria, such as signal to noise ratios that mix up these effects, are in my view
unhelpful.

TEACHING AND LEARNING

How might the above discussion affect teaching? In the past, teaching has often been
regarded as a transference of facts from the mind of the teacher to that of the student. The
mind, however, is not a good instrument for storage and retrieval of information. The computer
can do it much better. What it cannot do is to solve unstructured problems. For this a great deal
of practical experience is necessary, including an understanding of the process of investigation.
Thus, a different approach to teaching is needed which is closer to that received by students and
interns of medicine.

Therefore, if it is to have a future, | believe that statistics must be taught with much more
emphasis on the iterative solution by students of unstructured problems, with the teacher
adopting the role of mentor. Also, as well as its use for calculations and graphic display of
results, greater emphasis should be placed on the use of the computer for search and retrieval.
All the mind really needs to be taught is how and where to look (see, e.g., Box (1997)).

FAST COMPUTATION

There are many ways in which intensive computation can help to catalyze learning. In
particular, computer graphics can allow the investigator to look quickly at the data from many
different viewpoints and to consider different tentative possibilities. Another application where
intensive computation is essential to deductive learning is in the analysis of screening designs
such as those mentioned above. For example, the 20 x 20 orthogonal array of Plackett and
Burman (1946) is a (20, 19, 3) screen that can be used to screen up to 19 factors at projectivity
3 with only 20 runs. However, there are 969 possible 3 dimensional projections producing
partially replicated 2(FN3) designs in the chosen factors. With so many possibilities it is hardly to
be expected that the factors responsible for the majority of response activity can be tied down in
a single iteration. It has been shown by Box and Meyer (1993) how a Bayesian approach may
be adopted to compute the posterior probabilities of the various factors being active. Also Meyer,
Steinberg, and Box (1996) show how ambiguities may be resolved by running a further subset
of experiments which maximize the expected change in entropy. After these additional
experiments have been run, the posterior probabilities can be recalculated and the process
repeated if necessary. In this and other ways intensive computation can play its part in the
acceleration of iterative learning.

FIX IT OR UNDERSTAND IT?
An often unstated issue which sometimes causes confusion is whether an experimental
design is to be used to "fix the problem" and/or is part of an effort to "understand the problem."
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Thus, sometimes a faulty TV can be fixed at least temporarily by a carefully located and suitably
modulated kick. At some point, however, the problem may need to be tackled by someone with
subject matter knowledge who, by a sequence of suitable tests, can learn what is wrong with the
system and permanently put it right. The statistical practitioner can certainly feel that she or he
has made some progress even if she or he is allowed only to demonstrate the power of a single
highly fractionated design to fix a problem. This approach is demonstrated by the examples of
Dr. Taguchi. The statistician should not, however, feel satisfied with thus having dented
resistance to the use of statistical methods. A modest success of this kind may sometimes
provide the opportunity to point out that statistics can only contribute its full catalytic value to the
learning process when the statistical practitioner is a valued member of the investigational team.

STATISTICS AND THE QUALITY MOVEMENT

| had earlier been pessimistic about the future of statistics. | was dismayed by the emphasis of
statistics departments on matters that seemed of little interest to anyone but themselves and
saddened, but not surprised, by the lessening support they were receiving from universities and
industry. It was particularly disturbing that this was happening at a time when the opportunities
for the use of statistics and particularly experimental design in industrial investigations were
growing at an unprecedented pace. Now, however, it is heartening to see how the quality
movement is filling the gap. In particular, quality practitioners do not confine their activities to any
narrow discipline but seem happy to learn and include whatever is required for the more efficient
generation of knowledge in whatever sphere it is needed.

CONCLUSIONS

* Most industrial experimentation has a characteristic, here called immediacy, which means
that results from an experiment are quickly known.

* In this circumstance investigations are conveniently conducted sequentially with results from
previous experiments interacting with subject matter knowledge to motivate the next step.

* Such investigations use what may be called the scientific learning paradigm in which data
drives an alternation between induction and deduction leading to change or modification of the
model representing current knowledge.

* The iterative scientific paradigm is contrasted with the one-shot mathematical paradigm for
the proofs of theorems.

* It is argued that because statistical training has unduly emphasized mathematics, confusion
between the two paradigms has occurred resulting in concentration on one-shot procedures
within which mathematical theorems can be proven.

* RSM provides one means of iterative learning using factor screening, steepest ascent, and
canonical analysis of maxima and ridge systems.

* Factorial designs are defended as providing data which encourage inductive discovery.
Projective properties of fractional factorials and other orthogonal arrays further assist this
process.

* If statistical methods are to act as a catalyst to investigation, they must be robust to likely
deviations from assumption.

* Necessary extrapolation of conclusions from experiment to application can be greatly
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strengthened by the use of robust design.

* Both the inductive and deductive investigational steps can be greatly strengthened by the
present availability of massive resources for fast computation.

* The above conclusions have obvious implications for the learning and teaching of statistics
both in industry and universities.
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