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1. Introduction

ONTROL CHARTS are used to aid practitioners in
the production of quality goods and services.
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There are generally two phases in the application of
these methods. In Phase I, the practitioner collects
a fixed-size sample of time-ordered data in order to
learn about the process. Of course, after collecting
some data, one could decide to collect more but, in
Phase I, the data are analyzed and studied in the ag-
gregate while maintaining the time order. The goals
of a Phase I analysis include quantifying the current
process quality performance and better understand-
ing the nature of the variation over time. In Phase I,
it is also important to establish process stability by
investigating the data for unusual results and remov-
ing assignable causes of variation. Then the remain-
ing data are used to estimate the in-control process
parameters. Often, one must assess the capability of
the process to meet specification limits. Finally, the
practitioner selects an appropriate in-control model
and estimates the process parameters in order to de-
termine an appropriate Phase II monitoring scheme.
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There is an exploratory aspect to Phase I and there
can be efforts to improve process performance based
on knowledge and insights gained from the data. The
purpose of Phase II monitoring is to detect changes
from the assumed in-control model.

The Phase I data can serve as a baseline by which
to judge the success of future quality-improvement
initiatives. In some cases, the process knowledge and
resulting process improvement from a Phase I analy-
sis is sufficient and there may be no need for on-going
Phase IT monitoring except to ensure that the process
improvements are sustained. As additional improve-
ments are made to the process, one may consider pe-
riodic revisions of the control limits and center line
of the charts (see, e.g., Montgomery (2013), p. 243).

The vast majority of research on process monitor-
ing has considered the development and performance
of Phase II control-charting methods. Most of the
Phase II methods are based on the assumption that
the in-control process model is known or that the
process parameters have been accurately estimated
from an in-control reference sample. Although it is
well-known that the use of estimated parameters sig-
nificantly affects the statistical performance of Phase
IT control charts (Jensen et al., (2006)), the research
regarding methods to actually obtain an in-control
reference sample has received less emphasis.

It is frequently advocated that one apply standard
Phase II charts retrospectively to Phase I data to
identify an in-control reference sample. When using
this approach, it is common for the charts to signal
quite frequently, making it difficult to distinguish be-
tween in- and out-of-control events. Most research on
the retrospective use of control charts shows that the
control limits of Phase II charts must be widened, of-
ten substantially, in order to control the overall false-
alarm rate.

Others recommend that self-starting methods be
used to avoid the need for a Phase I study, but re-
search on self-starting charts suggests that they do
not perform well if the process is initially unstable or
if there are deviations from the assumed model. The
process knowledge and insights gained from Phase I
data and analysis can be too important for one to
move quickly into Phase II, even if this is possible in
theory. A Phase I analysis should encompass more
than simply applying a control chart to data to de-
termine which observations are in control. A Phase
I analysis should include visualization of the process
data as well as the application of statistical meth-
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ods in order to gain richer insights into the process
and determine the appropriate model for process im-
provement and monitoring.

In our paper, we comment on some of the impor-
tant aspects of Phase I analysis and review some of
the recent developments in this area. Due to the large
number of papers on this topic, we did not attempt a
complete literature review. Chakraborti et al. (2009)
provided a detailed literature review on the retro-
spective use of univariate control charts in Phase I,
with important technical details about performance
measures and comparisons of various control charts.
The scope of our paper is somewhat broader and less
technical. We consider not only univariate control
charts but also control-chart design issues and other
Phase I methods, including graphical methods, self-
starting charts, change-point methods, classification
methods, robust parameter estimation, and multi-
variate methods.

We begin in Section 2 with an overview of a num-
ber of Phase I issues, including subgrouping, sam-
ple size, graphical methods, selecting an in-control
model, and performance measures. In Section 3, we
discuss approaches to Phase I, including self-starting
charts, change-point methods, classification meth-
ods, and robust parameter estimation. The remain-
der of the paper is more technical in nature. In Sec-
tions 4-6, we discuss some developments in the ret-
rospective use of Phase I univariate and multivariate
control charts. In Section 7, we briefly discuss Phase
I analysis of profile data. Section 8 contains our con-
clusions.

2. Phase I Issues

2.1. Overview

Prior to developing a process-monitoring scheme,
one must determine and give operational definitions
for the key variables necessary to measure process
quality. Once identified, an analysis of the measure-
ment system should be conducted to ensure that it
is adequate to produce reliable measurements of the
process performance. For more information on as-
sessing the capability and reliability of measurement
systems, see, e.g., Montgomery (2013, pp. 379-397)
and Steiner and MacKay (2005, pp. 89-104). Steiner
and MacKay (2005) recommended using Phase I data
in the assessment of the measurement system, espe-
cially in the estimation of process variation.

The most common approach to determine the sta-
bility of a process is to apply a Shewhart control
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chart retrospectively. It is important to note that cu-
mulative sum (CUSUM) and exponentially weighted
moving average (EWMA) control charts are used
in Phase Il because they can more quickly detect
process shifts. Speed of detection is not of impor-
tance with a fixed historical dataset in Phase I, so
our discussion of retrospective control charts centers
on Shewhart-type control charts. Plots of cumulative
deviations from the historical mean have been rec-
ommended, however, for diagnosing process changes.
See, for example, Box and Lucefio (1997). In addi-
tion, change-point methods, discussed in Section 3.3,
can be used to detect smaller process shifts to which
the Shewhart charts are insensitive.

The statistical performance of control-chart meth-
ods for Phase I data is dependent on the distribu-
tional characteristics of the process, the nature of the
process variation, the sampling frequency, the size of
the reference sample, whether subgrouped or individ-
ual data are used, and the method used to estimate
the unknown process parameters. In fact, it is impos-
sible to disentangle the effects of each on the control-
chart performance. For instance, one cannot consider
the effect of the sample size on the statistical perfor-
mance of a control chart without considering whether
the data are subgrouped, how the parameters are es-
timated, and the process distribution.

2.2. Use of Rational Subgrouping

A sampling strategy commonly discussed in the
context of statistical process control is rational sub-
grouping. Rational subgrouping concerns what to
measure and how to select samples. Its implemen-
tation relies on process knowledge and some com-
mon sense. Shewhart (1931, pp. 298-299) discussed
the importance of the use of rational subgroups, not
only in terms of detecting out-of-control conditions,
but also to find the assignable cause of any out-of-
control event. Shewhart (1931) stated, “The engineer
who is successful in dividing his data initially into
rational subgroups based on rational hypotheses is
therefore inherently better off in the long run....”
The sampling strategy employed in Phase II can be
determined from the knowledge gained in Phase I.
Certainly, the sampling plan in Phase I does not have
to necessarily match that used in Phase II. For ex-
ample, one might use subgrouped observations with
a Shewhart-type control chart in Phase I and use in-
dividual observations with a CUSUM chart tuned for
fast detection of certain shifts in Phase II.

In general, the subgroups in Phase II should be
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selected such that, if there is an assignable cause
leading to an out-of-control state, the chance of dif-
ferences between the subgroups is greater than the
chance of differences within the subgroups. This is
because it is easier to detect and diagnose changes in
the mean than changes in variation.

One simple example of rational subgrouping
would be to sample from each 8-hour shift, if it is
expected that an assignable cause of variation could
affect a single shift. Another example would be to
sample from the output of each of several machines,
if these machines are performing the same task, in-
stead of sampling from items after the output of
the machines has been combined. Each data stream
would be monitored separately. The consequences of
a poor sampling scheme can lead to ineffective pro-
cess monitoring. Nelson (1988), Wheeler and Cham-
bers (1992), and Palm (1992) provided very good de-
scriptions of rational subgrouping and emphasized its
fundamental importance.

The presence of an “in-control reference sample”
is often a fundamental assumption necessary for se-
lecting and designing an appropriate Phase II con-
trol chart. Actually defining the in-control state of
the process and finding an in-control sample is not
simple. In fact, Shewhart (1939, p. 76) wrote, “In the
majority of practical instances, the most difficult job
of all is to choose the sample that is to be used as
the basis for establishing the tolerance range [control
limits]. If one chooses such a sample without respect
to the assignable causes present, it is practically im-
possible to establish a tolerance range that is not
subject to a huge error”.

Montgomery (2013, p. 201) gave two approaches
to sampling. In his first approach, one consecutively
samples units that occur essentially at the same time
or in very near succession in order to form subgroups.
This approach gives snapshots of the process over
time and is useful for monitoring to detect process
shifts. In the second approach, one randomly selects
and measures units produced during a sampling in-
terval and assigns these values to a subgroup. The
second approach is useful in making decisions about
the entire set of units over a fixed time period, which
may be a goal of a Phase I analysis. However, with
the latter approach, one loses some of the time order-
ing of the data, which may make it difficult to detect
certain types of process changes.

Practitioners should give careful consideration to
their sampling methods, collecting data in a way that
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takes advantage of important information about the
process. Doganaksoy and Hahn (2012) suggested a
five-step process for collecting the “right” data and
discussed the practical difficulties that may be en-
countered, including additional costs and issues of
data ownership. Perla et al. (2013) provided guidance
for determining useful samples in healthcare process
improvement applications. Anderson-Cook and Bor-
ror (2013) and Vining (2013) also considered data-
collection strategies for quality monitoring and anal-
ysis.

It is important to note that most Phase I statisti-
cal methods can only be applied with subgrouped ob-
servations; however, process-quality characteristics
are often observed and recorded as individual obser-
vations (n = 1). There is little guidance in the litera-
ture on the benefits or drawbacks analyzing Phase I
data as individuals or in subgroups. To a large extent,
the data-collection decision depends on the applica-
tion of interest.

2.3. The Size of the Phase I Sample

In some applications, it may not be necessary to
collect new data for a Phase I analysis because there
are historical observational data available. It is often
difficult, however, to determine the in-control base-
line sample from a large historical data set (see, e.g.,
Zhang et al. (2010)). Whether gathering data specifi-
cally for use in Phase I or using a historical data set,
the number of observations available for a Phase I
analysis plays an important role in the estimation of
the values of the in-control parameters. A major goal
of a Phase I analysis is to estimate process variabil-
ity, which is difficult with small sample sizes and re-
quires much larger samples than estimating a mean.
The accurate and precise estimation of the process
parameters is critical for achieving specified Phase
IT chart performance. Jensen et al. (2006) gave a re-
view of the literature on the effect of estimation error
on control-chart performance in Phase II. The gen-
eral conclusion of the considerable amount of work
on this topic is that the size of the Phase I sample
must often be quite large in order to be confident that
the performance of the control chart will come close
to the performance under the assumption that the
values of the in-control parameters are known. The
amount of Phase I data can be prohibitively large in
many cases; see, for example, Albers and Kallenberg
(2004), Zhang et al. (2013), and Saleh et al. (2014).

Phase I sample-size requirements for Phase IT con-
trol charts vary quite a bit, depending on the type
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of control chart and dimensionality of the data. We
recommend that readers review studies on the effect
of estimation error on the Phase II performance on
their specific control-chart type.

In addition to the necessary size of the sample,
it is also important to consider the length of time
over which the sample data are gathered. Processes
have both long- and short-term characteristics. Phase
I samples should be taken over a long enough time
period to assess both the short- and long-term pro-
cess variation in the mean. This is a fundamental
data-collection principle of the variation-reduction
approach of Steiner and MacKay (2005).

2.4. Graphical Methods and the Multivari
Chart

The first step in any data analysis should be plot-
ting the data. One should consider histograms, time-
series plots, and scatterplots for multivariate applica-
tions. Another very useful plot is the multivari chart
introduced by Seder (1950a, 1950b) as a graphical
method for studying sources of process variability.
In their most common form, multivari charts use
pictograms to graphically present multiple sources
of variability (e.g., within-piece, piece-to-piece, and
time-to-time variability). Shainin (2008) presented a
thorough overview of multivari charts and illustrated
their use in two case studies.

In one example, Shainin (2008) discussed the
use of a multivari chart to study the variation in
the strength of paper produced for packaging. The
sources of variation in strength considered were
machine-to-machine variation, variation in the ma-
chine direction, and in furnish-to-furnish (batch-to-
batch) variation from the raw materials. Figures 1
and 2 show the paper machine and the sampling lo-
cations for the measurements of strength in the paper
both across the paper and in the machine direction.
Figure 3 gives the associated multivari chart for the
paper process. As discussed in Shainin (2008), there
were some differences across the paper and across
the machine, but the largest portion of the variabil-
ity in strength resulted from differences between fur-
nishes (batches). The furnish-to-furnish variability is
indicated by the differences in strength measures be-
tween the shaded portion of Figure 3 corresponding
to Batch A and the unshaded portion for Batch B.
From Figure 3, it also scems that the furnishes dif-
fer, not only in terms of mean, but also in terms
of variability. If the source of the furnish-to-furnish
variation can be removed, then it would be prudent
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Head

Machine direction

Cross direction Wire

FIGURE 1. lllustration of the Paper Machine Discussed in Shainin (2008). Reprinted with permission, (2008, John Wiley

and Sons.

to collect more data from the refined process in or-
der to determine an appropriate sampling plan and
monitoring scheme in Phase II.

Graphical methods like the multivari chart can be
used in the early stages of process control to learn
more about the process. They can be used to help the
practitioner target resources and process improve-
ment efforts toward the largest contributor to the
process variability, with the goal of process improve-
ment through variation reduction and bringing the
process into an in-control state.

2.5. Selecting an Appropriate In-Control
Model

One of the great challenges of Phase I is the need
to evaluate process stability without a model of the

process. It is not clear what comes first because one
must evaluate process stability, but in order to do so
a reasonable model of the process is required. Deter-
mining an appropriate model is premature, however,
if the process is not stable. Thus, a practitioner is
charged with simultaneously determining the model
while evaluating process stability. We have no clear
roadmap for this difficult problem, but offer some
practical points to consider. Wheeler (2011) recom-
mended the use of individuals and moving-range
charts without any selection of a model. We support
the use of these tools, but do not believe that they
are always the best approach.

One should keep in mind that process stability
depends to a large extent on the “process view”. A
process could be stable with respect to one quality
characteristic and a particular sampling plan, but un-

Sample Sample Sample
a b c
LN . e °
X X 12 fi. X X
O ©) \ o)
- Miles >

9 mullen tests/reel

FIGURE 2. lllustration of the Sampling Locations for the Multivari Chart in Shainin (2008). Reprinted with permission,

(©2008, John Wiley and Sons.
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FIGURE 3. lllustration of the Multivari Chart for the Pa-
per Process Discussed in Shainin (2008). Reprinted with
permission, (2008, John Wiley and Sons.

stable with respect to some other choice. This issue
can cause some confusion in industrial practice.

Many parametric Phase I statistical methods have
statistical performance that is quite sensitive to
departures from the model assumptions (see, e.g.,
Jones-Farmer et al. (2009)). For continuous process
variables, the normal distribution is commonly as-
sumed. If planning to use an X-chart in the univari-
ate case or a Hotelling’s 72 chart in the multivariate
case, retrospectively, it is important to evaluate the
distribution of the data. For continuous multivariate
process variables, Phase I control charts are not ro-
bust to departures from normality (see, e.g., Bell et
al. (2014)). Q-Q plots or other methods can be used
to ensure that the normality assumption is reason-
able; however, out-of-control values can make it ap-
pear as if there are departures from normality when
none exist. If the normality assumption is not reason-
able, transformations of the data or nonparametric
methods can be considered.

In addition to considering the form of the distribu-
tion for continuous univariate data, one should also
check for autocorrelation and overdispersion. In the
traditional model of statistical control, the value of
any parameter is assumed to be constant over time
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and the process observations are assumed to be un-
correlated over time. In many applications, data are
collected at such a quick rate that the assumption of
independence over time is not reasonable and auto-
correlation becomes an issue. For autocorrelated pro-
cesses, practitioners should consider monitoring the
level of the process and residuals from an appropriate
time-series model. Overdispersion occurs when large
sources of common cause variability occur between
subgroups. This could imply that the subgrouping
plan is poorly chosen or that the parameter(s) vary
over time for some reason. It also may be appropriate
to use a multi-stage approach in which the output of
the process is monitored only after being adjusted
for process-input variables.

2.6. Performance Measures

The Phase II performance metrics, such as aver-
age run length (ARL) and average time to signal
(ATS), are not relevant for evaluating, comparing,
and designing Phase I methods. Most often, Phase
I methods are compared on the basis of the overall
probability of detecting some specified out-of-control
condition such as an outlier or a sustained shift in
an underlying parameter. In-control performance is
usually characterized by the overall false-alarm prob-
ability (FAP), which is defined as any signal from the
method used to analyze the historical Phase I dataset
when the process is, in fact, stable.

When evaluating Phase I methods, most authors
have used alarm probabilities, or the probability of
observing at least one alarm when the process is out
of control. This method has been used by a number
of authors, e.g., Sullivan and Woodall (1996), Vargas
(2003), Woodall et al. (2004), Jensen et al. (2007),
Alfaro and Ortega (2008), Jobe and Pokojovy (2009),
Jones-Farmer et al. (2009), and Graham et al. (2010).
In out-of-control situations, it seems more useful to
evaluate Phase I methods based on their ability to
correctly identify the right observations as outliers.
The latter approach was recommended by Shiau and
Sun (2009) and Chen et al. (2014). In addition, Bell
et al. (2014) used the correct detection probability to
evaluate the performance of their multivariate-mean-
rank chart.

The biggest performance problem that arises when
using control charts retrospectively is highly inflated
FAP values. Chakraborti et al. (2009) discussed this
issue in detail. When there are many false signals, it
is difficult to trust the importance of any signal. If the
in-control parameters are assumed to be known and
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one assumes independent observations, the succes-
sive comparisons of the Shewhart-chart statistics to
the control limits are independent. In this case, when
there is a constant probability of a false alarm for any
given chart statistic, p, we have FAP = 1— (1 —p)™,
where m is the number of chart statistics. As an il-
lustration, if the process is normally distributed with
known in-control parameters and 3¢ control limits
are used, the probability of at least one false sig-
nal on an X chart with m = 30 chart statistics is
0.078. With m = 50, we have FAP = 0.126. Gen-
erally, as m increases, the FAP increases. Similarly,
when the parameters are unknown, the FAP of retro-
spective control charts can be substantially inflated
over the desired level as the number of samples in-
creases. Some remedies to the problem of increased
FAPs are discussed in Section 4.1.

3. Some Phase I Methods

3.1. Checking for Outliers in Phase 1

When using retrospective Shewhart control charts
in Phase I, it is standard practice to calculate trial
control limits and to investigate any values that fall
outside the control limits. If a reason can be deter-
mined for any points falling outside the limits and
the assignable cause is removed from the process,
then the points are deleted from the data and the
control limits recalculated. This process is repeated
iteratively until one is reasonably sure that the data
represent what could be expected from an in-control
process.

A few practical considerations arise with this ap-
proach. First, practitioners sometimes remove the
out-of-control data points automatically without any
deliberation or investigation. This is an unwise prac-
tice in a Phase I analysis, when little may be known
about the process. The model on which the control
charts is based could be wrong; thus, the points out-
side of the limits may simply be a reflection of normal
process variation. Montgomery (2013, pp. 206207,
238-239) and Shiau and Sun (2009) also discussed
this issue. Regardless of the analysis method, we rec-
ommend careful consideration prior to eliminating
process observations in a Phase I analysis.

Second, many points falling outside of the control
limits may cause concern about considerable insta-
bility in the process. However, this could be a reflec-
tion of an incorrectly assumed model for the process
variable or a poor subgrouping approach. For exam-
ple, when using an X chart in Phase I, it may not
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be reasonable to assume a constant in-control mean.
There could be an extra component of variation that
affects the process mean, as discussed by Woodall
and Thomas (1995) and others. Another possible ex-
planation for a large number of points outside X or
X-chart control limits may be the presence of pos-
itive autocorrelation, as demonstrated by Maragah
and Woodall (1992). One should remove the source
of any such autocorrelation, if possible. If removal is
not possible, one should consider the process-control
approaches of Box and Luceno (1997), provided there
is a control variable. If autocorrelation cannot be re-
moved from the data, then any monitoring in Phase
IT should take this feature of the data into account.

3.2. Self-Starting Charts

Self-starting control charts are control charts in
which successive observations are used to update the
parameter estimates and simultaneously check for
out-of-control events. The purpose of these charts is
to begin Phase II monitoring as quickly as possible
with a minimal amount of data. These methods were
introduced by Hawkins (1987) to reduce the need for
a potentially costly Phase I sample. Self-starting con-
trol charts are useful, however, only when data col-
lection is slow and there is insufficient process history
available to estimate the in-control process parame-
ters. Such a situation might occur, for instance, in
low-volume manufacturing.

Univariate self-starting control charts have been
considered by Hawkins (1987), Quesenberry (1991),
del Castillo et al. (1996), Zou et al. (2007), Li
et al. (2010), Zhang et al. (2012), and others.
Multivariate self-starting control charts have been
studied by Sullivan and Jones (2002), Capizzi and
Masarotto (2010), Hawkins and Maboudou-Tchao
(2007), Maboudou-Tchao and Hawkins (2011), and
others.

Most self-starting control charts are susceptible to
estimation error that occurs due to processes that are
either out-of-control from the start of monitoring or
due to early process shifts. The contamination of the
parameter estimates can be quite large in the early
stages of monitoring when not much information is
available.

Sullivan and Jones (2002) noted the problem of
early contamination of the parameter estimates and
suggested that the self-starting methods be sup-
plemented with a thorough retrospective analysis
once sufficient data had been gathered. Hawkins and
Maboudou-Tchao (2007) and Maboudou-Tchao and
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FIGURE 4. An lllustration of Data with Change-Points
in the Mean.

Hawkins (2011) addressed the problems with con-
taminated parameter estimates, suggesting that, in
addition to prospectively monitoring with a self-
starting chart, one should apply the self-starting
methods beginning with the most recent process ob-
servation and working backwards to the initial ob-
servations.

Self-starting methods are useful tools in processes
with slowly accruing data and little process history,
but they have not diminished the need for a thor-
ough Phase I analysis. Phase I can provide valuable
information about the process, so it should not be
bypassed unless absolutely necessary.

3.3. Change-Point Methods

Change-point analysis is a commonly recom-
mended statistical approach for assessing the sta-
bility of a process in Phase I. Change-point analy-
sis methods are used to check if any step shifts in
the process parameters have occurred, and to esti-
mate the times of these shifts. An illustration is given
in Figure 4 for data generated from a normally dis-
tributed process with a standard deviation of 1. The
mean is 100 for the first 20 observations, shifting to
101 for the next 30 values, and then to a mean of 99.

In a Phase I application, if any change points are
detected in the sample, it would be a mistake to com-
bine all of the Phase I data together to estimate the
in-control process parameters. If there are shifts in
the distribution over time, then some effort should be
made to address the root cause of this phenomenon
so that process variation can be reduced.

Hinkley (1970) derived a likelihood-ratio test
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statistic for testing hypotheses about a change point.
In addition, Hinkley (1971) showed the relationship
between the CUSUM chart and the likelihood-ratio
test. Chen and Gupta (2011) provided a good in-
troduction to change-point methods and discussed
many application areas. Several authors have ap-
plied the change-point inference framework to sta-
tistical process control. A few contributions in the
quality-control area include Sullivan and Woodall
(2000), Mahmoud and Woodall (2004), Mahmoud et
al. (2007), Paynabar et al. (2012), and Pan and Rig-
don (2012).

Change-point methods are particularly useful in
Phase I analysis when one or more sustained pro-
cess changes (rather than randomly occurring out-
liers) are expected. Many opportunities for future re-
search on change-point methods in Phase I still exist.
Zhang et al. (2013) and Jones-Farmer et al. (2014)
discussed the lack of methods available for conduct-
ing a Phase I analysis for attribute processes. Addi-
tionally, although some work has been done in de-
veloping nonparametric change-point methods (see,
e.g., Zhou et al. (2009), Hawkins and Deng (2010),
and Zou at al. (2013)), more work is necessary in
this important area. For change-point methods to
be used by quality-control practitioners, easy-to-use
computer software is also needed due to the mathe-
matical and computational complexity of the meth-
ods.

3.4. Classification and Cluster-Based Methods

One approach is to frame the Phase I analy-
sis as a classification problem, in an attempt to
classify observations into two or more groups (e.g.,
in-control and out-of-control). Noting that Phase I
control charts often fail when multiple shifts occur
within a reference sample, Sullivan (2002) introduced
a clustering approach to detect multiple shifts in
the process mean. Zhang et al. (2010) considered a
method for determining a sufficiently long stable run
of process observations from a historical data stream.
They proposed a robust method for identifying the
in-control reference sample using a combination of
empirical probability distribution profiles and clus-
tering methods. Jobe and Pokojovy (2009) proposed
a computationally intensive clustering algorithm ap-
plied to multivariate individual observations in Phase
I. They showed that their method was better at de-
tecting randomly occurring outliers and some process
shifts than the use of the retrospective Hotelling’s 72
chart.
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There are many ways in which a Phase I sample
can be contaminated with out-of-control points, in-
cluding sporadic or randomly occurring outliers, sus-
tained process shifts, sporadic process shifts, nonsta-
tionarity, etc. Simple hierarchical clustering methods
in which observations are assigned to groups provide
the most straightforward results in the case of ran-
domly occurring outliers. Once clusters have been
formed, one can look for patterns over time. Some
classification methods that preserve the time order-
ing of the observations have been developed (see, e.g.,
Liao (2005)). An important opportunity for future
research is to expand the study of classification and
cluster-based methods for the Phase I situation.

3.5. Robust Estimation of In-Control
Parameters

Because it is common to have outliers in Phase
I data, the use of robust estimators of in-control
parameters along with a carefully designed Phase
I method is important. As explained by Mahmoud
et al. (2010), we do not recommend the historically
popular and continuing practice of using the sam-
ple ranges to estimate the standard deviation for the
X chart. It is much better to use the sample stan-
dard deviations because these are much less affected
by outliers. Also, see Schoonhoven and Does (2012,
2013) and Schoonhoven et al. (2011) for discussion
of robust estimation with univariate Phase I data.

In the multivariate normal model case, authors
have used different strategies for the estimation of
the covariance matrix in Phase I for implementation
of Hotelling’s T2 charts. Vargas (2003) recommended
using a minimum-volume ellipsoid (MVE) estimate
of the covariance matrix for detecting multiple out-
liers in Phase I. Later, Jensen et al. (2007) compared
the MVE estimators with the minimum covariance
determinant (MCD), showing that the MVE esti-
mators are best when the percentage of outliers is
small and that the MCD estimators are preferred
with there is a large percentage of outliers in the
Phase I sample. Oyeyemi and Ipinyomi (2010) used
an alternative estimator for the covariance matrix for
individuals 72 chart in Phase I that outperformed
the MVE and MCD methods in a limited number of
cases. Yanez et al. (2010) proposed using a biweight
S estimator for location and scatter in a T chart for
individual data with simulated limits, showing that
it outperforms the T2 chart based on an MVE esti-
mator for small samples.
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4. Univariate Variables
Control Charts in Phase 1

Because it is often recommended that Shewhart
control charts be applied retrospectively to Phase I
data, some of the technical issues involved with this
approach are discussed in this and the next three
subsections. It is commonly assumed that the obser-
vations over time are independent and that the in-
control values of the parameters are unknown. The
goal is to detect any deviation from a stable pro-
cess with a specified FAP. All proposed methods are
based on the assumption that stability corresponds
to constant in-control parameter values. The two pri-
mary issues with these methods are that the control
limits must be widened in order to avoid an excessive
number of false alarms and that the performance of
the methods does not tend to be robust to departures
from the distributional assumptions, usually the as-
sumption of normality. For a more technical descrip-
tion of this topic, we recommend Chakraborti et al.
(2009).

4.1. Some Background

Chou and Champ (1995) and Champ and Chou
(2003) studied two approaches to dealing with the
correlation among the retrospective comparisons of
the chart statistics to the control limits for X, R-,
and S-charts. In one approach, referred to as the
“standard limits” approach, the limits are computed
in the standard way, but the probability of a signal
on each comparison is adjusted using a Bonferroni-
like adjustment. This conservative approach results
in an actual FAP that is no more than desired, pro-
vided the distributional assumptions hold. Another
approach, the “individual limits” approach, consid-
ers different parameter estimates for each successive
comparison of the plotted statistic to the control lim-
its. For a given comparison of a chart statistic to the
control limit, the process observations for that statis-
tic are eliminated from the parameter estimates. This
approach removes the dependence among the suc-
cessive comparisons. The study by Champ and Chou
(2003) suggested that the “standard limits” based on
Bonferroni adjustments performed better than the
“individual limits” method. Thus, the methods dis-
cussed in this section are based on the “standard lim-
its” approach to computing control limits in Phase I.

4.2. Assessing Stability of the Process Mean
Champ and Jones (2004) recommended control
limits for retrospective X charts for normally dis-
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tributed processes based on the multivariate -
distribution that account for the estimation of the
parameters as well as the dependence of the succes-
sive comparisons of the chart statistics to the limits.
Champ and Jones (2004) also suggested approximate
limits for retrospective control charts based on the
univariate t-distribution that account for the esti-
mation of the process parameters, but ignored the
dependence among the chart statistics. Using simu-
lation, they showed that both approaches resulted in
empirical FAP values that were very near the desired
FAP.

Newton and Champ (1997) considered the use of
analysis of means (ANOM) as a method for con-
structing control limits for retrospective X charts.
Nedumaran and Pignatiello (2005) studied the per-
formance of the ANOM-based retrospective X lim-
its for normally distributed processes with unknown
parameters. Using simulation, they showed that the
ANOM-based control limits maintained an FAP that
was closer to the desired level and performed slightly
better than limits based on a standard normal dis-
tribution with a Bonferroni adjustment based on the
number of chart statistics. Champ and Jones (2004),
however, showed that, when the Bonferroni approach
was used to determine the X control limits for a
sample of m subgroups of size n, the empirical FAP
was quite dependent on n. Their simulation study re-
sulted in empirical differences from the desired FAP
that ranged from 50% below the desired FAP for sub-
groups of size n = 10 to 36% above the desired FAP
for subgroups of size n = 3. In the first case, the lim-
its would be too wide, resulting in lower probabilities
of detecting out-of-control conditions. In the second
case, the limits would be too narrow, resulting in too
many false alarms.

Champ and Jones (2004) and Nedumaran and
Pignatiello (2005) considered only X charts for nor-
mally distributed processes. In addition to the effect
of estimated parameters on retrospective control-
chart performance, the situation is further compli-
cated by the process distribution. Jones-Farmer et al.
(2009) studied the in-control performance of using X
chart limits computed using the methods described
in Champ and Jones (2004) under specific depar-
tures from normality. In the case of a chart designed
with an FAP of 0.10, they showed that, when the
process distribution was heavy tailed (¢-distribution
with three degrees of freedom), the empirical FAP
increased dramatically as the number of subgroups,
m, increased, reaching close to 50% for some combi-
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nations of m and n. Similar, but less dramatic, re-
sults were given for the same chart design applied to
skewed data, which showed empirical FAP values of
around 30% in the case of m = 50, n = 3.

Jones-Farmer et al. (2009) recommended the use
of standardized mean ranks similar to the Kruskal-
Wallis procedure (Kruskal and Wallis (1952)) with
retrospective control-chart limits. Using simulation,
Jones-Farmer et al. (2009) showed that their mean-
rank chart maintained the desired FAP under several
process distributions and achieved higher signaling
probabilities than the retrospective X chart in some
cases when the process distribution was nonnormal.

Graham et al. (2010) considered a distribution-
free Phase I chart for subgrouped data based on the
median of the pooled data. Using simulation, they
showed that the empirical FAP values were closer to
the desired levels than the X chart when the process
distribution was nonnormal; however, this median-
based method requires the subgroup size, n, be much
larger than the number of subgroups, m, in order for
the FAP values to be near the desired levels. In prac-
tice, most process data are gathered as individuals or
in small subgroups.

Recently, Capizzi and Masaratto (2013) intro-
duced a distribution-free Phase I control chart that
can be applied to individual observations. Their
method uses a time-ordered segmentation of the in-
dividual process observations and is similar to the
methods of Sullivan (2002) and Zhang et al. (2010).
Capizzi and Masaratto (2013) used a permutation
approach for determining the control limits and their
methods seem promising for detecting several types
of process shifts.

Some control chart limit adjustment approach
should be used when applying control charts retro-
spectively in Phase I. If the assumption of normality
is a concern, we recommend a nonparametric method
be used. If stability is reasonable based on a nonpara-
metric analysis, the form of the underlying in-control
distribution should be assessed to design any Phase
IT methods. Graphical methods are recommended for
determining an appropriate model for the in-control
distribution.

4.3. Assessing Stability of Process Variation

The X chart for location is generally supple-
mented with the R, S, or S? chart to monitor
variability. Similarly, a retrospective location chart
should be supplemented with a chart to monitor the
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variability of the process. We found relatively little
work on the retrospective use of control charts for
process variation. Hillier (1969) and Yang and Hillier
(1970) considered variance control charts for nor-
mally distributed processes with estimated param-
eters, but did not control for the dependence of the
successive comparisons of the chart statistics to the
control limits. Champ and Chou (2003) examined the
Phase I R and S charts under the independent nor-
mal model. Human et al. (2010) used simulation to
find empirical control limits that account for both pa-
rameter estimation and the dependence of the com-
parisons in a retrospective analysis. They provided
extensive tables of control limit constants for several
sample (m) and subgroup sizes (n) for R, S, and S?
charts based on normally distributed processes.

Jones-Farmer and Champ (2010) used simulation
to show that the empirical FAP values for the retro-
spective R and S charts were inflated over the desired
FAP in the case of normal, heavy-tailed, and skewed
distributions. For example, in the case of m = 30
subgroups of size n = 5, the R chart designed for
an FAP = 0.1 resulted in an empirical FAP of 0.215
in the case of normal observations and 0.918 in the
case of heavy-tailed observations (¢-distribution with
three degrees of freedom). Jones-Farmer and Champ
(2010) compared the performance of several statis-
tics based on the subgroup mean rank of the statis-
tic, |X;; — M|, where X;; is the jth process obser-
vation from the ith subgroup and M is the median
of the observations pooled over all subgroups. They
recommended using the square of the pooled ranks
charted similarly to the mean-rank chart introduced
by Jones-Farmer et al. (2009). This method main-
tained a near desired FAP value, regardless of the un-
derlying process distribution, and detected increases
and decreases in variance with a higher probability
than the S? chart in the case of nonnormally dis-
tributed processes. Jones-Farmer and Champ (2010)
recommended using their scale-rank chart in con-
junction with the mean-rank chart of Jones-Farmer
et al. (2009).

A limitation of the retrospective Shewhart-type
control charts in Phase I analysis is that all meth-
ods we found require subgrouped observations and
performed better for larger subgroup sizes. Further,
most of the distribution-free methods we found were
all shown to work poorly when the subgroup sizes
were small. Jones-Farmer et al. (2009) and Jones
and Champ (2010) did not recommend their meth-
ods when the subgroup size was smaller than five,
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and Graham et al.’s (2010) median-based chart re-
quires large subgroups sizes as well. In many pro-
cesses, data are often collected as individuals. The
applicability of retrospective Shewhart control charts
to quantitative variables gathered without subgroup-
ing is an area that needs to be investigated. The
effect of the underlying distribution of the quality
characteristic will have a strong effect on the Phase I
chart performance for individuals data. Because lit-
tle information is known about the process distribu-
tion in Phase I, we recommend researchers develop
distribution-free Phase I charts for individuals data,
ideally evaluating both location and variation. Little
work has been done in this area other than Capizzi
and Masarotto (2013).

5. Univariate Attributes
Control Charts

We found very few references for the retrospective
use of control charts for attributes data. Borror and
Champ (2001) studied the retrospective use of p and
np charts, using simulation to show that the FAP is
quite high in many cases, especially for a large num-
ber of subgroups (m > 50). They recommended cau-
tion when using these charts for a Phase I analysis.

Jones and Champ (2002) and Dovoedo and Chak-
raborti (2012) proposed Phase I charts to monitor
the times between rare events, basing their method
on the exponential distribution. Jones and Champ
(2002) considered cases when the in-control process
parameters are known and unknown, with approx-
imate control limits provided when the parameters
arc unknown. Generally, the charts for exponentially
distributed data have quite low power in detecting
process shifts during Phase I.

There are a number of open issues regarding the
Phase I analysis of attributes data. Very large Phase
I samples are necessary to estimate parameters pre-
cisely enough in order for many Phase II attributes
charts to perform similarly to the known-parameters
case (Zhang et al. (2013a)). Because very little work
has been done in this area, it is important for re-
searchers to study methods based on a large reference
sample. Szarka and Woodall (2011) identified some
methods that have been proposed to detect change
points with sequences of Bernoulli data.

6. Multivariate Control Charts

Most of the multivariate control charts developed
for Phase I are variations of Hotelling’s 7 control
chart and are based on the assumption of a mul-
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tivariate normally distributed process. Tracy et al.
(1992) outlined a method to construct Phase I con-
trol limits for the retrospective 172 control chart.
Nedumaran and Pignatiello (2000) gave advice for
constructing 7% control-chart limits for retrospective
analysis of subgrouped multivariate normal process
variables when in-control parameters are unknown.

Very little published research has considered the
issue of robust, distribution-free, or nonparametric
multivariate control charts for use in Phase 1. Bell
et al. (2014) evaluated the performance of the ret-
rospective Hotelling’s 72 chart under certain depar-
tures from normality and showed that it does not
perform well, resulting in an FAP as high as 90%
in some cases. Bell et al. (2014) proposed a retro-
spective mean-rank control chart for elliptically sym-
metric multivariate data similar to the univariate
mean-rank chart of Jones-Farmer et al. (2009). In
Bell et al’s (2014) multivariate mean-rank chart,
the ranks are based on the concept of data depth
(Tukey (1975)), which measures the depth of a point
within a multivariate sample. Liu (1995) introduced
the idea of data depth to control charts, developing
several Phase II control charts based on simplicial
depth. Stoumbos and Jones (2000) evaluated control
charts based on simplicial depth, noting that sim-
plicial depth has limitations in distinguishing out-
of-control points in a Phase I analysis. Consistent
with these findings, Bell et al. (2014) showed that
Phase I charts based on simplicial depth do not de-
tect process changes as well as those based on other
data-depth methods.

There are a number of important research topics
pertaining to retrospective control charts for multi-
variate processes in Phase 1. Although some work
has addressed control charts for individual observa-
tions, this work is based on the assumption of mul-
tivariate normal process distributions. Our experi-
ence suggests that the multivariate normal model
is rarely adequate in practice; thus, an important
area of research is developing robust, nonparamet-
ric, or distribution-free Phase I control charts for
observations from continuous multivariate processes.
Coleman (1997), expressing this view more strongly,
stated, “I submit I would never believe the multivari-
ate normal assumption for industrial data, and even
if I wanted to, I cannot believe that there are tests
for multivariate normality with sufficient power for
practical sample sizes that I would even bother to
use them; distribution-free multivariate SPC is what
we need”.
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In particular, more consideration needs to be given
to the suitability of rank-based methods such as data
depth for multivariate Phase I charts. Although some
data-depth measures can be difficult and/or time-
consuming to compute in higher dimensions, others
are much easier to compute. Bell et al. (2014) con-
sidered a few data-depth measures, including Maha-
lanobis’ depth, robust Mahalanobis’ depth, and sim-
plicial depth. Bell et al. (2014) showed that their
Phase I control chart using robust Mahalanobis’
depth detected shifts with a higher probability than
the same chart using simplicial depth to rank the
observations. Interestingly, Mahalanobis’ depth re-
quires little more than computing a Mahalanobis’
distance measure, while it is quite difficult to com-
pute simplicial depth in two dimensions and no al-
gorithm has been written for computing simplicial
depth beyond three dimensions. The results of Bell
et al. (2014) suggest that multivariate rank-based
control-chart performance depends on the particu-
lar data-depth measure chosen; thus, further study
is necessary to determine which data-depth measure
works best in certain situations.

Additionally, new data collection methods and the
ability to combine data from multiple sources provide
new opportunities for methodological researchers.
Jones-Farmer et al. (2014) illustrated one applica-
tion area, data quality, where there were correlated
attribute variables, and discussed a lack of availabil-
ity of Phase I methods to establish an in-control
baseline sample. There are many research opportu-
nities for developing Phase I (and Phase IT) methods
for processes that are of high dimension, have hi-
erarchical structures, measured with multiple corre-
lated attributes, or measured with variables of differ-
ent data types. These and other directions for Phase
IT research were given by Woodall and Montgomery
(2013).

7. Phase I Profile Methods

Profile monitoring is an approach to SPC that
is used when the quality of the product or process
can be best characterized by a relationship with one
or more explanatory variables. Woodall et al. (2004)
and Noorossana et al. (2011) provided overviews and
literature reviews on profile monitoring. Much of the
work on profile data is for Phase I because one must
use historical data to determine the form of the pro-
file function. One must also decide if it is reason-
able to assume that the underlying profile function
remains constant over time when the process is in-

Vol. 46, No. 3, July 2014



AN OVERVIEW OF PHASE | ANALYSIS FOR PROCESS IMPROVEMENT AND MONITORING 277

control or if there is some common-cause variation
to be expected in the function over time.

In the case of linear profiles, the relationship be-
tween the outcome variable and the explanatory vari-
able(s) is often modeled using regression analysis. In
Phase I, the regression parameters can be monitored
using several univariate charts or a multivariate con-
trol chart, e.g., the Hotelling’s 72 chart, with the goal
of detecting changes in the regression parameters as
quickly as possible.

In order to monitor for changes in the profile pa-
rameters, it is important to establish baseline in-
control values for the profile parameters. Mahmoud
and Woodall (2004) discussed the importance of de-
veloping Phase I methods for the simple linear pro-
file and introduced a method based on an F-test
for simple linear regression models. Mahmoud et al.
(2007) suggested a Phase I method for linear pro-
files based on change-point methods and showed that
the change-point method offered improved detection
of sustained step changes in the profile parameters
when compared with traditional profile methods.

Ding et al. (2006) and Williams et al. (2007) de-
veloped procedures for the Phase I analysis of non-
linear profile data. The method of Ding et al. (2006)
consisted of two components: a data-reduction tech-
nique to manage the high dimensionality of nonlinear
profile data and a data separation method to distin-
guish in- and out-of-control observations. Chen et al.
(2014) proposed a cluster-based method that can be
applied to analyze linear and nonlinear profiles in
Phase 1. They recommended first fitting models to
the profiles in an historical data set and then clus-
tering the estimated model parameters to distinguish
the in-control from the out-of-control profiles. Esti-
mates of the in-control profile parameters were ob-
tained using a mixed-model approach.

Some Phase I profile methods have been devel-
oped for nonparametric and semi-parametric models.
See, for example, Abdel-Salam et al. (2013). Overall,
there has been a great deal of interest in profile moni-
toring methods. As other applications and models are
considered, there will be a need for additional Phase
I methods.

8. Concluding Remarks

We have discussed important issues and develop-
ments for Phase T analysis and highlighted several
helpful statistical tools. A considerable amount of
knowledge about a process can result from the anal-
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ysis of Phase I data. Thoughtful decisions on how to
collect Phase I data, apply the Phase I methods, and
interpret the results will often determine the differ-
ence between success and failure of a Phase I anal-
ysis. Our focus has been more on industrial applica-
tions but establishing baseline performance is also a
key issue in public health and other health-related
surveillance.

The vast majority of the statistical process-control
literature concerns Phase II methods and is often
based on the unrealistic assumption that the pro-
cess model and parameters are known or have been
determined very accurately from a Phase I analysis.
We believe that Phase I has not received enough at-
tention. In many cases, process improvement results
primarily from efforts tied to Phase I with Phase
IT charts used to ensure that the gains in perfor-
mance are maintained. We have given our perspec-
tive on some of the primary developments in Phase
I methods and identified several open problems and
opportunities for future research regarding Phase I
methodologies.

We emphasize that process monitoring is most
effective as a component of a process-improvement
system, e.g., Six Sigma or the statistical engineer-
ing approach of Steiner and MacKay (2005). Woodall
and Montgomery (2013) reviewed how process mon-
itoring can be used within Six Sigma projects. Un-
der the statistical engineering framework of Steiner
and MacKay (2005), a variation-reduction approach
is tentatively selected after a study of baseline data
from the process. The options are to fix an obvious
problem, desensitize the process or make it more ro-
bust, use feedforward or feedback control, use 100%
inspection, or change the process center. The use of
observational baseline data is emphasized in their
methods, underscoring the importance of a Phase I
analysis to process improvement systems.
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