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We review methods for conducting and analyzing measurement systems capability studies, focusing on
the analysis of variance approach. These studies are designed experiments involving crossed and possibly
nested factors. The analysis of variance is an attractive method for analyzing the results of these experi-
ments because it permits efficient point and interval estimation of the variance components associated with
the sources of variability in the experiment. In this paper we demonstrate computations for the standard
two-factor design, describe aspects of designing the experiment, and provide references for situations where

the standard two-factor design is not applicable.

Introduction

ETERMINING the capability of a measurement sys-

tem is an important aspect of most process and
quality improvement efforts. Indeed, in any activity
involving measurements, some of the observed vari-
ability will arise from the units that are measured
and some variability will be due to the measuring
instrument or gauge. The purposes of most measure-
ment systems capability studies are to: (1) determine
how much of the total observed variability is due to
the gauge; (2) isolate the sources of variability in the
system; and (3) assess whether the gange is capa-
ble (that is, determine if it is suitable for use in the
broader project or application). In many measure-
ment systems capability studies, the gauge is used
to obtain replicate measurements on units by sev-
eral different operators, for different set-ups, or for
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different time periods. In these types of studies, two
components of measurement systems variability are
frequently generated: repeatability and reproducibil-
ity. Repeatability represents the variability from the
gauge or measurement instrument when it is used to
measure the same unit (with the same operator or
set-up or in the same time period). Reproducibility
reflects the variability arising from different opera-
tors, set-ups, or time periods. These studies are often
referred to as gauge repeatability and reproducibility
(GR&R) studies.

Two methods commonly used in the analysis of a
GR&R study are: (1) an analysis of variance ap-
proach followed by estimation of the appropriate
variance components; and (2) a tabular algorithm
that relies on the range method to estimate the stan-
dard deviations of the components of gauge variabil-
ity. We focus on the analysis of variance approach
because the method is easy and widely available to
practitioners, it can be adapted to deal with very
complex experiments, and it admits confidence inter-
val estimates of the important components of gauge
variability. Furthermore, the properties of these con-
fidence intervals are reasonably well understood. The
tabular approach cannot be applied to any study
other than the traditional two-factor design, and it
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does not allow the analyst to obtain confidence in-
tervals. Ballard, McCormack, Moore, Prins, Tobias,
and Pore (1997) provided additional comparisons of
these two methods.

In the following sections we review the standard
GR&R experiment, provide a numerical example,
discuss issues concerning design of a GR&R exper-
iment, and cite additional references for more com-
plex designs. Some aspects of measurement systems,
such as calibration and assessing linearity, are be-
yond the scope of this paper. References that con-
sider measurement systems analysis in a broader con-
text include the manuals by the Automotive Industry
Action Group (AIAG (1995, 2002), Horrell (1991),
and Croarkin (2002, Chapter 2)).

Parameters of Interest

The purpose of a GR&R study is to determine if
the variability of the measurement system is small
relative to the variability of the monitored process.
Several commonly reported ratios in GR&R studies
are functions of the parameters in Table 1. These
parameters describe the variation in the monitored
process and the variation in the measurement sys-
tem. We purposely avoid assignment of the terms
“repeatability” and “reproducibility” to any of these
parameters because they are defined differently by
some authors (see, e.g., Vardeman and VanValken-
burg (1999)), and such labels are not needed to ad-
dress the questions of interest.

The precision-to-tolerance ratio (PTR) is a func-
tion of 7y expressed as

. kvVIMm
PTR—————USL_LSL x 100%, (1)

where USL and LSL are specification limits
(pass/fail) and k is either 5.15 or 6. The value k = 6
corresponds to the number of standard deviations be-
tween the “natural” tolerance limits of a normal pro-
cess. The value k£ = 5.15 corresponds to the limiting
value of the number of standard deviations between

bounds of a 95% tolerance interval that contains at
least 99% of a normal population. Montgomery and
Runger (1993a) stated that PTR values of 10% or
less indicated the measurement system is adequate.
This recommendation is consistent with the recom-
mendation of the AIAG Measurement Systems Anal-
ysis manual (1995, p. 60). Mader, Prins, and Lampe
(1999) referenced Wheeler and Lyday (1989) for en
“arbitrary” rule that states a measurement system
is inadequate if the PTR exceeds 20%. Barrentine
(1991, p. 10) provided a rule that states a measura-
ment system is unacceptable if the PTR exceeds 30%.
Montgomery and Runger (1993a) and Mader et al.
(1999) noted that the PTR does not necessarily give
a good indication of how well a measurement system
performs for a particular process. This is because a
process with a high capability can tolerate a mea-
surement system with a higher PTR than a process
that is not as capable. For this reason, the adequacy
of a process is more often determined by some func-
tion of pp (or, alternatively, pps, since ppyr = 1—pp).
For example, the signal-to-noise ratio (SNR) defined
by AIAG (1995, p. 32) can be written as a functicn
of pp. In particular,

e (@)
pp

ATAG (1995) defined SNR as the number of distinct
levels of categories that can be reliably obtained from
the data. A value of five or greater is recommended,
and a value less than two indicates the measuremert
system is of no value in monitoring the process.

SNR =

Another function of pp defined by Mader et al.
(1999) and Wheeler (1992) is the discrimination ratio
1+pp
1—pp’

Mader et al. (1999) stated that DR must exceed four
for the measurement system to be adequate.

DR =

A discussion of the relationships between pp,
PTR, and the capability of the monitored process s

TABLE 1. Parameters of Interest in a GR&R Study

Parameter Definition

Yp Variance of the monitored process

YM Variance of the measurement system

Yr =P +YMm Total variance of the response variable

op =vp/YT Proportion of total variance due to process

PM = YMm/YT Proportion of total variance due to measurement system
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provided by Majeske and Andrews (2002). Although
we focus on the parameters in Table 1, we note that
other authors have proposed alternative measures of
measurement system performance (see, e.g., Varde-
man and VanValkenburg (1999), van den Heuvel and
Trip (2002}, and Larsen (2002)).

Confidence Intervals

Montgomery and Runger (1993b), Conors, Mer-
rill, and O'Donnell (1995), Burdick and Larsen
(1997), Vardeman and VanValkenburg (1999),
Hamada and Weerahandi (2000), and Chiang (2001)
have noted the importance of computing confidence
intervals in a GR&R study. We review two ap-
proaches for constructing confidence intervals in this
paper.

The first approach is based primarily on the mod-
ified large-sample methods (MLS) first proposed by
Graybill and Wang (1980) and summarized in the
book by Burdick and Graybill (1992). This approach
provides closed-form intervals and was applied to the
standard two-factor design by Burdick and Larsen
(1997).

The second approach is based on a computer-
intensive method referred to as generalized inter-
vals. Tsui and Weerahandi (1989) introduced the
concept of generalized inference for testing hypothe-
ses, and Weerahandi (1993) introduced generalized
confidence intervals in situations where exact meth-
ods do not exist. This method was used in a GR&R
two-factor study by Hamada and Weerahandi (2000).
Chiang (2001) proposed a method called surrogate
variables that produces the same intervals, and
also applied this technique to the two-factor GR&R
model. To compute a generalized confidence inter-
val, one needs a generalized pivotal quantity (GPQ)
with a distribution that is free of the parameters un-
der study. Approximate confidence intervals are then
constructed by computing required percentiles of the
GPQ using either numerical integration or simula-
tion. We demonstrate this process in the numerical
example that follows later in this paper.

Empirical comparisons of the MLS and general-
ized intervals suggest the approaches provide com-
parable intervals in most cases. Thus, it is often a
matter of preference as to which method an investiga-
tor employs. The fact that MLS intervals are written
in closed-form makes them particularly amenable to
computation in spreadsheet programs. An advantage
of the generalized intervals approach is that it offers
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a general strategy for constructing confidence inter-
vals. Unlike MLS intervals that are design specific,
generalized intervals are easy to derive for complex
designs that include crossed and nested factors, and
for models with both fixed and random effects.

False Failures and Missed Faults

The quality of a measurement system can be de-
fined by how well it discriminates between good and
bad parts. To demonstrate, we consider the model

Y =X +e,

where X represents the true value of a randomly
selected part, € is the measurement error, and X
and e are independent normal random variables with
means p and 0, and variances yp and 7y, respec-
tively. Using the notation from Table 1, we have the
following results:

EY) =g,
Var(Y) = vp +vm = yr, and
Cov(X,Y) = vp.

The joint probability density function of the random
vector [Y X is bivariate normal and represented
as

Iy, ),

with mean vector [p p] and variance-covariance

matrix
Yr P
YP P

A manufactured part is in conformance if
LSL < X <USL, (3)

where LSL and USL are the lower and upper spec-
ification limits, respectively. A measurement system
will “pass” a part if

LSL <Y <USL. (4)

If Equation (3) is true, but Equation (4) is false, then
a conforming part is incorrectly failed. This is called
a false failure. Alternatively, if Equation (3) is false,
but Equation (4) is true, a faulty part is incorrectly
passed. This is called a missed fault. Of interest in
a GR&R study are the producer’s risk and the con-
sumer’s risk. The producer’s risk, which we denote
by 4, is the conditional probability that a measure-
ment system will fail a part when the part conforms
to specifications (false failure). The consumer’s risk,
denoted by £, is the conditional probability that a
measurement system will pass a part when the part
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does not meet specifications (missed fault). Some au-
thors such as Doganaksoy (2000) define these errors
in terms of joint rather than conditional probabili-
ties (e.g., the probability that a part is bad and it
passes).

Mader et al. (1999) provide expressions based on
the bivariate normal distribution for computing the
conditional probabilities § and 3. Using the joint
probability density function defined earlier, then

USLLSL USL oo

I fly,z)dyde+ [ [ f(y,)dydx
__ LSL —co LSLUSL
0= USL » (5)
s
and
LSLUSL oo USL
R LgL fly, z)dydx + gL Lf [y, x)dyda
IH: = fUSLf 3 (6)
LSL

where f(z) represents the marginal probability den-
sity function for X which is normal with mean yx and
variance yp. In Figure 1 we illustrate the regions
of false failures (FF) and missed faults (MF) on an
equal density contour of the bivariate normal distri-
bution. Thus, Equations (5) and (6) can be used to
compute ¢ and 3 for given values of y, vp, vy, LSL,
and USL. The SAS code to perform this computa-
tion is provided in the Appendix.

In practice, we don’t know the true values of u,
vp, and yr. If one uses only point estimates, the cal-
culation does not account for the uncertainty in the
estimates. Thus, we want to incorporate confidence
intervals for these parameters in the calculation of §
and 3. One way to proceed is to compute § and 3
under different scenarios suggested by the confidence
intervals. For example, a pessimistic scenario might
consider the worst possible performance for the mea-
surement system, and the worst possible capability
for the manufacturing process. To do this, set vp
equal to the upper bound of the confidence interval
for vp and solve for the value of 47 that provides the
lower bound on pp. Conversely, one might consider
an optimistic scenario with the best possible perfor-
mance for the measurement system combined with
the best process capability. We will demonstrate this
procedure with a numerical example later in the pa-
per. Larsen (2003) provided an alternative scheme
for using confidence intervals to estimate § and J.
The process of generalized inference can also be used
to construct confidence intervals on § and 3. Engel
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FIGURE 1. MF and FF Regions of an Equal Density Con-
tour.

and De Vries (1997) considered the relationship bs-
tween PTR and ¢ and 3 for a model with one source
of variation.

The Standard Experiment

The standard experiment employs a two-factor di-
sign with “parts” and “operators”. The statistical
model used to describe the response variable is the
random two-factor model

Yijk = p+ Pi+ O + (PO)sj + Eijx (")
t=1,...,p; j=1,...,0; k=1,...,r

where p is a constant, and P;, O;, (PO);;, and E;;;
are jointly independent normal random variablvs
with means of zero and variances oP, UO, JPO, and
0%, respectively. The ANOVA table for the model in
Equation (7) is shown in Table 2. Under the assump-
tions of Equation (7), (p — 1)5%/0p, (0 — 1)5% /00,
(p—1)(0—1)S%,/8p0, and po(r—1)5% /0 are jointly
independent chi-squared random variables with p—1,
o—1, (p—1)(0—1), and po(r — 1) degrees of freedom,
respectively.

In Table 3 we report the point estimators for the
parameters of interest. The estimators for vp, vy,
and yr are all minimum variance unbiased (MVU)
estimators. The estimators for pp and pp; are ob-
tained by replacing each variance component with
the corresponding MVU estimator. Table 4 contairs
upper and lower bounds for approximate 100(1—a)%
MLS confidence intervals for these parameters. In
Table 5 we list definitions of terms used in Table
4, where Fy.gp1 qr0 represents the F-value with df1
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TABLE 2. ANOVA for Model (7)

SV DF MS EMS

Parts (P) p—1 52, 0p = 0% + 1o, + orod
Operators (O) o—1 52 0o = 0% +rodby + prog
Px0O (p—1)(o—1) S?o 0po = 0% + 0%
Replicates (E) po(r — 1) S% fp =02

TABLE 3. Point Estimators

Parameter

Point Estimator

vp = 0% 3o = [Sp — Spol/(or)

Vi =06 +0po +0F
VT = 0% + 04+ 0ho + 0%
pp =vpP/YT Ve lTr

PM = ’YM/'YT =1-pp ;}\/1\4 /%

Fu =[5 + (p = 1)Sko +p(r — 1)SE/(pr)

Az = [pSh + 053 + (po — p — 0)Spo + po(r — 1)SE]/(por)

and df2 degrees of freedom with area « to the left.
References for the formulas in Table 4 can be found
in Burdick and Larsen (1997), with one exception.
As suggested by Chiang (2002), the intervals for pp
and pys are based on a method by Leiva and Gray-
bill (1986). This interval is easier to compute than
the one reported by Burdick and Larsen (1997), and
better maintains the stated confidence level. The
numbers in the last columns of Tables 4 and 5 corre-

spond to the numerical example that follows in the
next section.

Generalized Confidence Intervals

In Table 6 we report the generalized pivotal quan-
tity (GPQ) for each parameter in Table 1 where
Ui,...,U, are jointly independent chi-squared ran-
dom variables with degrees of freedom p — 1, 0 — 1,

TABLE 4. 100(1 — )% MLS Confidence Intervals

Lower Upper Example
Parameter Bound Bound 95% Interval
vp 5, — YVee p + Ve [22.69; 161.64]
Ya Fyy — Yt -+ [1.20; 27.02]
7 iy — Yr Fp + Yz [24.48; 166.23]
pp Lp =2 Up = B [0.628; 0.991]
a1 1-Up 1-Lp [0.009; 0.372)
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Term Definition Value in Example
Vip G315} + H3Sho + G13S:S%,, 53,076.17
Vup HIQS;I; + G:%S;l;o + ngS}%S}%O 1,040,643.4
Viar G354 + G3(p — 1)28h, + G2p?(r — 1)254 321.282
Vum H3Sh + H3(p — 1)28%, + H2p?(r — 1)25% 572,150.12
Vir Gp*Sh + G30*S4 + Gi(po — p — 0)28h + GF (po)?(r — 1)254, 5,311,676.7
Vur Hip*S}H + H30°SE + H3(po — p — 0)2Sho + Hi(po)*(r — 1)25% 109,230,276
Gy 1= 1/Fi_a/2:p-1,00 0.5269

G 1-1/Fi_a/20-1,00 0.7289

Gs 1= 1/Fi_a/2:p-1)(0-1),00 0.4290

Gy 1- 1/F1—a/2:po(r—1),oo 0.2797

Hl l/Fa/2:p—1,oo -1 2.3329

Hj 1/Fa/2:0-100 — 1 38.4979

Hj 1/ Fq2:(p-1)(0-1),00 — 1 1.1869

H, 1/Foy2:poir—1),00 — 1 0.4821

G13 (Fl—"‘/ziple(l’_l)(‘;;jl)_1)2_G%F12—04/2:p*1,(p—1)(071)_H§ -0.0236

1—a/2:p—1,(p—1)(0—1) )
ng (lﬂFa/ZP“l»(P*l)(a"1))2_H12F2/2:p71,(p—1)(o~1)_Gg -0.1800
Fas/;:i}up—%)(n—l) o
L* Py 3 Y S Ty oS 0.5075
U 8p=Fa2p-1.in-1)0-1)SPo 31.6827

p("'_1)F0/2:p~1,ooS?;+Fa/2:p—l,aklsg)+(p_1)F(x/2:p~1.oospo

{(p—1)(0—1), and po(r — 1), respectively. The terms
5%, $%, 850, and s% are the realized values of the
mean squares for a particular data set.

The quantities shown in Table 6 were recom-
mended by Hamada and Weerahandi (2000) and cor-
respond to the tailored variables recommended by
Chiang (2001).

One can use either numerical integration or com-

puter simulation to compute the generalized inter-
vals. We will apply simulation because it is easier
computationally. To construct a generalized intervel
in this manner, we use the following process:

1. Compute S%, S3, S35, and S% for the col-
lected data set and denote the realized values
by s2, %, 5%, and s%, respectively.

2. Simulate 10,000 values of the appropriate GPQ)

TABLE 6. GPQs for the Two-Factor With Interaction Model

Example
Parameter GPQ 95% Interval
P [(”‘Ull)s% - (”‘1)(,‘};”3?’0] /(or) 22.22; 164.92]
. [(0~Ulz)s2o n (p—1>2([;»3—1>s?:o +p2o<r[;4nis“é} /(pr) [1.18; 27.50]
¥ |k 4 eloplieh 4 (pocpolp-to-Niko 4 USR] fpor) (25,14 181.76)
PP GPQ(vr)/GPQ(7r) 0.630; 0.989]
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TABLE 7. ANOVA for Numerical Example

SV DF

MS

Parts (P)
Operators (O)

Replicates (E)

p—1=9
0o—1=2
PxO (p—1(o—1)=18
po(r — 1) = 60

S% = 437.3284

5% =19.6333
5%, = 2.6951

S%4 =0.5111

by simulating 10,000 independent values each
of Uy, ..., Uy,

3. Order the resulting 10,000 GPQ values from
least to greatest.

4. Define the lower bound for a 100(1 — @)% in-
terval as the value in position 10,000 x («/2)
of the ordered set of simulated GPQs. De-
fine the upper bound as the value in position
10,000 x (1 — «¢/2) of this same ordered set.

The numerical example in the next section demon-
strates this process. The Appendix provides SAS
code that performs this computation.

Numerical Example

We demonstrate the formulas in this section by
analyzing a data set reported by Houf and Berman
(1988). These data consist of measurements taken
on a power module for an induction motor starter.
The units of measurement are degrees C per watt.
The cxperiment consists of a two-factor crossed de-
sign with p = 10 parts, o = 3 operators, and r = 3
replicates. The resulting ANOVA after multiplying
each response by 100 for convenience of scale is shown
in Table 7. The mean of all the observations is 35.8.
The last columns in Tables 4 and 6 contain the 95%
MLS and generalized confidence intervals, respec-
tively, for these data. In the last column of Table
5 we list values used to compute the intervals in Ta-
ble 4. Here, we use o = 0.05, p = 10 parts, o = 3
operators, and r = 3 replicates. All lower bounds
have been rounded down to the reported number of
decimals and all upper bounds have been rounded
up.

We can use the intervals on v and pp to compute
confidence intervals for PTR and SNR, respectively.
To demonstrate, for this example the specification
limits are LSL = 18 and USL = 58. Using Equation
(1), the bounds for va; in Table 4, and & = 5.15, a
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95% confidence interval for the PTR has the limits

 5.15y1.20

=14.1%. and

58 — 18
5.15v/27.02

J = " — 67.0%.

¢ g1z o0%

A 95% confidence interval for the SNR based on
Equation (2) and the bounds for pp in Table 4 is

2% 0.628

L,: ———————:1. ‘d
Vizoes & an
2 % 0.991

=20 s,

v 1-0991 °°

Since not all values in the interval for SNR exceed
five, there is not sufficient evidence to claim this mea-
surement system is adequate for monitoring the pro-
Cess.

Table 8 shows the calculation of producer’s risk
(6) and consumer’s risk (3) using Equations (5) and
(6) under two scenarios. The scenario labeled “Pes-
simistic” is computed assuming the worst possible
performance for both the production process and
the measurcment system. This is done by comput-
ing 4 and @ using the upper bound on vyp and the
lower bound on pp. We used the sample mean of
35.8 for the value of p, the computed confidence
hounds in Table 4, and solved for vr using the rela-
tion yr = vp/pp. The SAS code shown in the Ap-
pendix was used to make this calculation. The sce-
nario labeled “Optimistic” uses the best conditions
for both the process and the measurement system.
In particular, we use the lower bound of vp and the
upper bound of pp. As with the first scenario, we

TABLE 8. Error Rates for Two Scenarios

Scenario Yp pp é 3
Pessimistic  161.64 0.628 15.2%  31.0%
Optimistic ~ 22.69 0991 0.002% 12.3%
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use the point estimate of 35.8 for p. The range for
the producer’s risk is from 0.002% to 15.2% and for
consumer’s risk from 12.3% to 31.0%.

All of the intervals in this example are relatively
wide. The reason for the wide intervals is that there
are only three operators in the experimental design.
This provides only two degrees of freedom for esti-
mation of the operator effect, and this impacts the
interval length for any parameter that is a function
of o}. Hence, it is necessary to increase the num-
ber of operators beyond the traditional size of three.
The next section provides additional guidelines for
designing a GR&R experiment.

Finally, as this example suggests, there is not
much practical difference between the closed-form in-
tervals and the generalized confidence intervals. Em-
pirical comparisons of these two sets of intervals sug-
gest they provide comparable intervals for the model
in Equation (7). Thus, for this particular model, an
investigator can use either method.

Designing a GR&R Experiment

A successful gauge capability study is one that
provides reliable estimates of the components of vari-
ation in the measurement process and identifies the
factors that are most influential. The study should
also provide information about the potential effec-
tiveness of the gauge as a measurement tool. Con-
sequently, the design of the experiment is very im-
portant. Poor statistical design of the experiment
can lead to a situation where the true variation in
the measurement process is underestimated, and this
results in an overly optimistic conclusion regarding
gauge capability. Some important statistical design
issues include the number of parts to be used in the
study, the number of measurements per part, how the
parts are selected, and ensuring that true replicates
are actually obtained as opposed to repeat measure-
ments. Very few sources in the literature provide
guidance on these experimental design aspects of a
measurement systems capability analysis study, so
we include some discussion here.

A good general practice is to use many parts in the
experiment with relatively few measurements each,
as opposed to few parts with many measurements
per part. There are several reasons for this recom-
mendation. First, parts are typically selected from
actual production and are representative of the ma-
terial that the measurement system will encounter
during routine operation. The gauge may exhibit
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less variability on a production unit that is near the
center of the manufacturing specifications than on
product at the extremes of this specification. An ex-
treme example of this is non-linearity of the gauge,
which results in unstable or unreliable results be-
yond a certain operating region. Using a relatively
large number of parts in the study increases the like-
lihood of detecting this problem. Some analysts like
to use “golden” or “standard” parts in a measure-
ment systems capability study as opposed to pro-
duction parts. We do not recommend the exclusive
use of standard parts because standard units may nor
share important product characteristics with the typ-
ical production units, and they might produce unex-
pected measurement errors. Alternatively, standard
units typically exhibit less variability than produc-
tion units with respect to key quality characteristics.

Second, it is not unusual to find that the vari-
ance of the measurements is not constant, and of-
ten depends on the mean level of the product char-
acteristic. This is unlikely to be detected if only a
narrow range of good production parts or standard
parts are used in the study. Sometimes visual in-
spection of the data can reveal this problem, but a
better approach is to carefully analyze the residuals
from a gauge capability experiment, using the same
residual plots typically employed in any designed ex-
periment. In particular, the plots of residuals versus
the predicted response, residuals versus parts, resid-
uals versus operators, and residuals versus time order
all convey very specific diagnostic information. For
example, an outward-opening funnel pattern on the
plot of residuals versus time order suggests that vari-
ability in the measurement process is increasing with
time, perhaps due to operator fatigue, an instrument.
that does not hold calibration, or environmental fac-
tors such as temperature that may change over time
and affect the performance of the gauge.

Finally, when many measurements are to be made
on the same part, our experience has been that op-
erating personnel are less likely to perform complete
replications of the measurement process or to com-
pletely randomize the order of the trials. Sometimes
all measurements on a part will be taken succes-
sively without any change in measurement system
setup. Some analysts refer to the repeatability com-
ponent obtained in this manner as “static repeata-
bility” while if complete replicates are performed the
repeatability component is called “dynamic repeata.--
bility.” We feel that it is important to use complete
replicates and to conduct the trials in random order.
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Without complete replicates and randomization, we
omit important sources of variability due to such fac-
tors as fixturing and positioning of the part, measure-
ment tool alignment, batches of reagent in a chemi-
cal assay, or sources of variability that are associated
with time. Consequently, the “static” estimate of the
repeatability component of measurement variability
is overly optimistic. Using a relatively large number
of parts and making few measurements on each part
encourages true or complete replication as opposed
to simply making repeat measurements.

The number of parts and the number of operators
to choose is an important consideration. A useful
approach to these decisions is to consider the length
of the confidence interval estimates of the relevant
parameters that will result. As demonstrated in the
numerical example, a two-factor random design with
only three operators provides very wide intervals.
Unfortunately, there are no closed-form solutions for
sample sizes that will tell us how many parts and
how many operators to use to produce confidence in-
tervals of a specified length at a stated confidence.
However, a trial-and-error approach using prelimi-
nary estimates of the quantities in these equations
and simulated data can be used to obtain reason-
ably good estimates of the required sample sizes. For
example, simulations by Burdick and Larsen (1997)
demonstrated that increasing the number of opera-
tors from three to six in a random two-factor model
greatly decreases interval length.

Other Measurement System Models

In this section, we cite a few references for situ-
ations where the standard model in Equation (7) is
not appropriate. Although we do not discuss these
papers in detail, they provide starting points for in-
vestigators who encounter these situations.

Mixed ANOVA Models

Although it is customary to assume that all effects
in Equation (7) are random, such an assumption is
not always warranted. In particular, operators are
often more properly considered as fixed effects. This
is the situation when the set of operators used in
the experiment is also used to monitor the process.
The assumption that operators are fixed changes
the distributional assumptions associated with the
standard experiment. If operators are fixed, then
(0 — 1)5% /60 no longer has a chi-squared distribu-
tion, but (0—1)S3/8po has a non-central chi-squared
distribution. Dolezal, Burdick, and Birch (1998) pro-

Journal of Quality Technology

posed a simple modification to the operator degrees
of freedom that allows one to use the closed-form in-
tervals in Table 4 to compute intervals for this mixed
model. Generalized confidence intervals can also be
computed for this mixed model.

More Complex ANOVA Designs

Designs more complex than the two-factor crossed
design are needed in some applications. Such de-
signs require more than two factors and involve both
nested and crossed effects. Adamec and Burdick
(2003) provided a closed-form interval for pas in a
three-factor crossed random effects design. Exam-
ples of other designs in the literature include a com-
pletely nested design provided by John (1994, p. 12)
and an example with both nested and crossed factors
by Borror, Montgomery, and Runger (1997). Deut-
ler (1991) demonstrated that nested designs are also
very common in interlaboratory test studies. Var-
ious MLS closed-form confidence intervals that can
be computed for parameters in these models are pro-
vided by Burdick and Graybill (1992). Additionally,
the generalized confidence interval method can be
applied to all such balanced designs, with both fixed
and random effects.

Comparison of Two Measurement Systems

It is often of interest to examine changes in yp
after attempts to improve a measurement systermn.
Comparison of v for two different locations as de-
scribed by Morchower (1999) is also of interest in
many applications. Details of how such a compari-
son can be performed using closed-form intervals for
the two-factor design are provided by Burdick, Allen,
and Larsen (2002). Generalized confidence intervals
can be used in the same manner as the closed-form
intervals.

Attribute (Pass-Fail) Data

Attribute data results from measurement vari-
ables that assign only a finite set of values. The
most common type of attribute data is pass-fail data.
Boyles (2001) proposed a method for such data and
derived maximum likelihood estimators and confi-
dence intervals for the misclassification rates under
a model where a standard is given, and one where
no standard is given. ATAG (2002, pp. 125-140) sug-
gested a cross-tabulation approach for this process.

Truncated Data

Lai and Chew (2000) stated that distributions of
measurements from automated instruments are likely
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TABLE 9. Summary of Software Features

Package Q1 Q2 Q3
Minitab Yes No No
Statgraphics Yes No No
JMP Yes No No
NCSS Yes Yes Yes
Statistica Yes Yes* No
SAS No No No

*Requires the Industrial Statistics and Six
Sigma Module

to be truncated. To address this situation, they
proposed a non-parametric approach that employs
a two-factor model with no interaction. They used
simulation to demonstrate the improvement in point
estimates of the GR&R parameters under different
underlying truncated distributions.

Destructive Testing

When a measurement process destroys parts, it
is not possible to estimate repeatability with the
traditional two-factor model. Mitchell, Hegemann,
and Liu (1997) presented a method for estimating
repeatability and assessing gauge capability for de-
structive testing. Bergeret, Maubert, Sourd, and
Puel (2001) applied this method to three case stud-
ies and suggested a slight modification. Phillips, Jef-
fries, Schneider, and Frankoski (1997) described a
case study where two phases were used to conduct a
GR&R study involving fiberglass shingles.

Two-Dimensional Data

Voelkel (2003) proposed a method for a study in
which the data are two-dimensional and associated
with measurements of a circle. The examples in
the paper concerned balancing rotors in centrifugal
pumps. Several two-dimensional summary measures
were proposed and compared in the paper.

Statistical Software
We performed a review of Minitab 13 (2001), Stat-
graphics Plus 5.0 (2000), JMP 4.0.4 (2001), NCSS
(2001), Statistica 6.0 (2001), and SAS 8.2 (2001).
Table 9 reports the features of each program in re-
sponse to the following three questions:

1. Does the program have a separate measurement
systems capability module?

Vol. 35, No. 4, October 2003

2. Does the program construct a confidence inter-
val for the PTR?

3. Does the program construct a confidence inter-
val for the SNR?

These software packages don’t compute all of the con-
fidence intervals we have recommended in this paper.
Given the computational ease of the closed-form in-
tervals and the SAS code for computing generalized
intervals shown in the Appendix, we recommend im-
plementation of these methods instead of the soft-
ware packages. An Excel program that computes
the closed-form intervals shown in Table 4 is avail-
able from the first author.

Concluding Remarks

We have reviewed statistical methods for conduct-
ing measurement systems capability studies, with
emphasis on the ANOVA procedure to analyze the
results. We have emphasized constructing confidence
intervals on relevant parameters in the ANOVA
model, and provided a brief review of the literature.

Based on our review, it appears that while the
ANOVA method is becoming more widely used, there
is still much reliance on the range method. For ex-
ample, we note that the range method is included in
four of the six software packages represented in Ta-
ble 9. This is unfortunate because the range method
does not support computation of confidence inter-
vals. Point estimates alone do not convey a complete
picture of the capability of the measuring instrument,
just as point estimates of a process capability ra-
tio do not completely describe process capability. In
both situations, confidence intervals are of consider-
able practical value and should become part of anyv
standard GR&R study report. There is still much
reliance on precision-to-tolerance ratios and other in-
dices to summarize the capability of the gauge. Much
of the guidance regarding interpretation of these in-
dices is arbitrary, and often does not provide direct
information on the ability of the gauge to discrimi-
nate between good and bad parts. For this reason, it
might be beneficial to consider the intervals we have
constructed for § and 3 in the decision process.

We have briefly introduced several additional ar-
eas of research and applications. In addition to
mixed ANOVA models, attribute data, truncated
data, and destructive testing presented in this paper,
there are several areas where we think further re-
search is needed. Automated measurement systems
frequently collect data at multiple locations on the
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same unit or on several different variables simulta-
neously. These types of gauges also routinely result
in censored and/or missing data. Furthermore, the
methods that we have discussed are based on the
assumption that the response variable from the ex-
periment is normally distributed. Situations exist
in industrial settings where the measurement error is
not normally distributed. Methodology for analyzing
these experiments needs to be developed, evaluated,
and carried into practice.

Appendix-SAS Code

In this appendix we provide SAS code for comput-
ing the misclassification rates and generalized confi-
dence intervals for the standard two-factor random
crossed experiment. Comments from a reviewer were
helpful in improving our code.

§ and B Errors

The SAS function PROBBNRM computes proba-
bilities from a standardized bivariate normal by com-
puting

a b

PROBBNRM(a, b, p) = / / f(y, z)dydz,

—_—00 — o0

where f(y,x) is a standardized bivariate normal dis-
tribution with Y and X having a correlation of p.
The SAS function PROBNORM computes

PROBNORM(a) = /f(x)dm,

where f(z) is a standardized normal distribution.
The following SAS code uses these functions to com-
pute d and 3 as defined by Equations (5) and (6) for
the numerical example. The computation for mf2 in
the code is based on the assumption that there are
no parts where ¥ < LSL and X > USL, and the
computation for ff2 is based on the assumption that
there are no parts where Y > USL and X < LSL.

data misclass;

input mu 1lsl usl rhop gammap;
gammat=gammap/rhop;

cov=gammap;

corr=cov/ (sqrt(gammap) *sqrt (gammat) ) ;
uslstdy=(usl-mu)/sqrt(gammat} ;
uslstdx=(usl-mu)/sqrt (gammap) ;
1slstdy=(1sl-mu)/sqrt (gammat) ;
1lslstdx=(1sl-mu)/sqrt(gammap) ;

ffi=probbnrm(uslstdx,lslstdy,corr)-
probbnrm(lslstdx,lslstdy,corr);
ff2=probnorm(uslstdx)-probbnrm(uslstdx,uslstdy,corr);
mf 1=probbnrm(1lslstdx,uslstdy,corr)-
probbnrm(lslstdx,lslstdy,corr);
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mf2=probnorm(uslstdy)-probbnrm(uslstdx,uslstdy,corr);
delta=(ff1+f£2)/(probnorm(uslstdx)-
probnorm(1lslstdx));

beta=(mf1+mf2)/(1- (probnorm(uslstdx)-
probnorm(lslstdx)));

keep mu 1lsl usl rhop gammap gammat delta beta;
datalines;

35.8 18 58 .628 161.64

proc print data=misclass;

run;

Generalized Confidence Intervals

The following SAS code can be used to compute
95% generalized confidence intervals for the example
problem.

data gci;

input parts operators reps msparts msoperators msint
mse iter

seedl seed2 seed3 seed4;

dfl=parts-1;

df2=operators-1;

df3=df1*df2;

dfé4=parts*operators*(reps-1);

do i=1 to iter;

uls=2*rangam(seedl,df1/2);
u2s=2*rangam(seed2,df2/2);
u3s=2*rangam(seed3,df3/2);
ués=2*rangam(seed4,df4/2);

*GPQ values from Table 6 are shown below;
qp=(df1*msparts/uls-df3*msint/u3s)/(operators*reps) ;
qm=(df2*msoperators/u2s+df3#*(parts-1)*msint/u3s
+parts**2*operators*(reps-

1) **2*mse/uds)/ (parts*reps) ;

qt=(parts*df 1*msparts/uls+operators*df2«msoperators
/u2s
+(parts*operators-parts-operators)*df1*df2*msint/u3s
+parts**2%operators**2+ (reps-1) **2*mse/u4s)

/ (parts*operators*reps) ;

ar=qp/qt;

output;

end;

datalines;
10 3 3 437.328 19.633 2.695 .5111 10000
1684625530 1646374628 1688825530 1876453274

H
proc univariate data=gci;

var gp qm qt qr;

ods select quantiles;

ocutput out=percentiles pctlpre=Pp Pm Pt P.r
pctlpts=2.5 97.5;

run;

proc print data=percentiles;run;
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