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Designing experiments to identify improvement in products that are assembled from manufactured
components does not readily fit into conventional design of experiments methods and can be costly.

Efficient methods are explored for determining designs for engineering problems where some, or all, of
the factors of interest are (a) not easily set to prescribed values and (b) are dependent on a combination
of properties of several components. The methods involve taking a sample of each type of component,
measuring the relevant features and then finding a design that specifies an optimal set of assembled products
for experiment. Three examples from manufacturing industry are presented to illustrate the approach. Two
different algorithms for finding designs are described, an exchange algorithm and a genetic algorithm, and
a comparison of their performances is made on the three examples.
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UALITY improvement experiments in industry
Q commonly make use of fractional factorial or
response surface designs to investigate the effects of
factors on product performance. These designs can-
not be used when the nature of the product, or its
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manufacturing process, imposes practical restrictions
on the combinations of the factor levels that can
be run. In such experiments, computer search algo-
rithms are often employed to find a suitable design
and these algorithms are widely available as com-
mercial software. This paper addresses the difficul-
ties that arise in the design of experiments for man-
ufactured products and, in particular, for mechani-
cal products that are assembled from several compo-
nents. In general, some, or all, of the factors to be
investigated have values that depend on a number of
features of the components. Many of the factors may
not be readily set to particular experimental values
so that conventional design methods are not appli-
cable. This paper presents and compares algorithms
that allow designs to be found efficiently for exper-
iments on such products. The practical problem is
that sets of components are available that have had
their relevant features measured and it is now re-
quired to select components and combine them into
assembled products in such a way that maximum in-
formation can be obtained on the factors of interest.
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Two different algorithms are presented, one an ex-
change algorithm and the other a genetic algorithm,
and their performances are compared on three prac-
tical examples from engineering companies.

For experiments where there are constraints on
the design region, such as mixture experiments (Cor-
nell (1990)), exchange algorithms (EAs) are the most
popular method of searching for optimal designs.
These algorithms search iteratively for improved de-
signs by replacing points in a current design with
points selected from a list of permitted or candidate
points; see, for example, Myers and Montgomery
(2002), pp. 413-414, for a description of EAs. In these
algorithms, the most commonly used design selec-
tion criterion is .D-optimality. This criterion is ap-
propriate when accurate estimation is required of the
coefficients in the linear model that is assumed to
describe the response when the experiment is being
planned; typically a low-order polynomial model. In
the following work, we also assume a low-order poly-
nomial for the response with independent, normally
distributed errors having constant variance.

Genetic algorithms (GAs) may also be used to
search for efficient designs. These algorithms work on
a large pool, or generation, of designs that are repre-
sented by chromosomes; that is, strings of numbers
that encode the values of the factors. The fitness, or
performance, of each design in the generation is eval-
uated, for example, using D-optimality. Two stages
are used to develop designs for the next generation.
First, in the selection stage, each of the good designs
is chosen with high probability but each poor de-
sign may also be chosen with a low probability. Sec-
ond, from the selected designs, the next generation
of designs is created by crossover and mutation pro-
cedures. In a crossover procedure, features of pairs of
designs are combined, whereas, in mutation, random
changes are made to a design. Crucial to the effective-
ness of a GA is the choice of values for the parameters
that control each procedure and the coding or rep-
resentation of the factor values in the chromosomes.
GA methods have been found to compare favourably
with EA methods by Heredia-Langner et al. (2003),
particularly for finding designs when linear restric-
tions exist on the design region for the experiment.
An alternative approach of simulated annealing (see
Haines (1987)) has also been used successfully for
similar problems.

‘Whether the design selected for an experiment is
a standard factorial design, a response surface design
or a design obtained from a search algorithm, it will
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specify combinations of factor values that must be
achieved with reasonable accuracy in order for the
experiment to produce useful results. When manu-
factured products are assembled from several compo-
nents, the production of products that meet the spec-
ifications of the chosen design may be prohibitively
expensive due to, for example, the cost of manpower
to measure large samples of components or the cost
of fabricating special components.

One approach in such circumstances is to take
large samples of components and measure their rele-
vant properties. Subsamples of these components are
then identified that provide a set of assembled prod-
ucts that best explore the design region of interest
for a required experiment size. This basic approach
is due originally to Harville (1974), who considered
a number of different design problems, including an
experiment from the chemical industry on batches
of dyestuff, where the value of a covariate, impu-
rity of a raw material, was known for each batch.
More recently, O'Neill et al. (2000) applied a simi-
lar technique to the investigation of chemical treat-
ments for preventing wood cracking after weather-
ing, where the uncontrollable properties of the wood
samples were measured and included as noise factors.
The methods presented in this paper enable designs
to be found for this type of experiment as well as
for more complicated design problems on assembled
products.

Similar issues arise in experiments to identify the
tolerance levels to be set in the manufacture of com-
ponents. One approach taken is to have a few special
components made and to use these more than once
by reusing them in different products or runs in the
experiment; see Shainin (1993) and Bisgaard (1997)
for detailed methods. An alternative approach, pre-
sented by Bisgaard et al. (2000), applies to products
for which performance can be simulated using a CAD
system so that experiments may be performed com-
putationally. The methods given in this paper are
applicable where reuse of components is impossible
and no simulation package is available.

A further complication in designing experiments
for assembled products is that the factors that are
thought likely to influence product performance may
not be directly measurable. Rather, the factors may
have values obtained as functions of several parame-
ters from one or more components. Such factors are
called derived factors by Sexton et al. (2001). An ex-
ample is the journal clearance of a bearing, which is
derived as the difference between the outer diame-
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ter of a shaft and the inner diameter of a hole in a
bearing block into which it fits. Unless all the pa-
rameters defining the factor can be fully controlled
and set, conventional design of experiments cannot
be applied.

The following method of experimentation is con-
sidered for these practical problems. Samples of com-
ponents of the various types are obtained from pro-
duction and, after careful measurement of the fea-
tures of interest, a design is found that specifies the
arrangement of these components into a set of as-
sembled products for the experiment. The combina-
tions of factor values that correspond to each of the
assemblies of components may be obtained directly
from the measurements on the component features,
or, in the case of derived factors, by calculation of
the appropriate functions of the measurements. Care-
ful choice of the selection and arrangement of com-
ponents for assembly is required in order to obtain
as much information as possible on the factors un-
der investigation. The possible combinations of fac-
tor values that can be used in the experiment depend
on the component measurements available from the
samples. Thus, there cannot be full control over the
factor values used in the experiment. In practice, ex-
periments may include parameters that can be set to
required values, as used in conventional factors, as
well as parameters that can only be measured, as il-
lustrated below. We have assumed that the levels of
such conventional preset parameters can be chosen
independently of the measured parameters, as this is
the only situation we have encountered to date.

The purpose of this paper is to illustrate indus-
trial experiments on assembled products and to use
three examples to compare two algorithms for search-
ing for efficient designs. The recommended algorithm
has been incorporated into a software package called
DEAP (Design of Experiments for Assembled Prod-
ucts), which is freely available for download from
www.maths.soton.ac.uk/~sml/screen_assemble, that
enables users to investigate particular assembled
products and manufacturing processes. The software
is written in Visual C with a user interface for Win-
dows machines.

Industrial Examples

The methods and algorithms described below were
developed in response to experimental design prob-
lems arising in industry. The following gives an out-
line of three problems to which the methods have
been applied and the particular challenges that each
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problem presented. Detailed descriptions of these
problems, issues arising in practice, and designs and
statistical analyses have appeared elsewhere in the
literature, as indicated below. In addition, the prob-
lems feature as worked examples in the step-by-step
software guide, DEAP (2005), and the data sets to
enable others to work through examples and com-
pare methods and approaches are available from the
website.

Example 1: Hydraulic Gear Pump
(Pilot Experiment)

The first example is an initial study on a hy-
draulic gear pump, manufactured by Sauer-Danfoss
Inc., which is assembled from seven components: a
flange, two bearing blocks, a drive gear, a driven gear,
a housing and a cover (see Figure 1). Hydraulic fluid
is drawn through the pump by rotating gear teeth.
The efficiency of the pump is reduced by fluid leaking
around the internal components, which is caused by
the high pressure in the fluid. An experiment was re-
quired to determine those aspects of the pump that
have an important influence on the leakage, where
leakage is measured by the difference between the
theoretical and actual flow rates through the pump.
Of primary interest in the initial study were three
leakage paths that were expected to be important.
These paths were identified with the three physical
quantities: the journal clearance, the gear form (a
function of the profile of the meshing gear teeth),
and the side gap (a measure of the distance between
the gears and the bearing blocks). The values of these
three leakage paths could not be measured directly
but they could be derived from measured geometri-
cal features of the components, such as the widths of
the gears, the bearing blocks and the housing.

A conventional factorial experiment could not be
used to investigate these derived factors because, for
example, the gear teeth could not be machined to
the required accuracy within acceptable costs. The
alternative approach of the detailed measurement
of a large sample of gear teeth in order to select a
specified number with the required dimensions was
prohibitively expensive. Further, the reuse of compo-
nents within the experiment was not a viable option
because testing the pump involves the gear teeth cut-
ting into the housing and bearing blocks to produce
a tight seal, and this produces permanent changes
in relevant features of the components. Thus, this
example considered three derived factors, namely,
the three leakage paths, with all other aspects of
the pumps held as fixed as possible. For the pilot
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ﬂange/

FIGURE 1. Hydraulic Gear Pump.

study, 12 driven gears, 24 bearing blocks and 11 drive
gears were available and their features were mea-
sured. This resource allowed the assembly and testing
of 11 pumps.

The full details of this experiment, including the
component measurements, values of the derived fac-
tors, the final plan used and the leakage measure-
ments are available in Sexton et al. (2000) and Sexton
et al. (2001), with the former paper concentrating on
engineering practicalities and the latter emphasizing
statistical analysis methods. Further statistical issues
related to power and the size of experiments, and il-
lustrated using data from this study, are discussed
by Sexton and Lewis (2001).

Example 2: Hydraulic Gear Pump
(Follow-Up Experiment)

The second example concerns a further experi-
ment on the pump of Example 1, which built on the
findings from the pilot study and examined some ad-
ditional factors. The results from the initial study
indicated that the gear form should be investigated
further. This was achieved by considering two sepa-
rate elements of this derived factor that represented
different aspects of the leakage path. Thus, gear form
was replaced by two derived factors (involute form
and lead-edge error) in the follow-up experiment.
The derived factor side gap was retained for further
investigation and a new derived factor, the fit of the
bearing in the housing, was also included. There was
no evidence from the pilot study that the journal
clearance factor was important and hence this factor
was not included in the follow-up experiment.

From a physical understanding of the working of
the pump, it was decided to include three additional
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bearing blocks

aspects of the pump design in this second experi-
ment. The factors were the horizontal position of the
flange and of the cover and the endfloat of the gear
pack in the housing. All these factors could easily
be set to prescribed levels. The available engineering
knowledge indicated that the effect of each factor on
the leakage was likely to be quadratic, with a mini-
mum expected to occur within the range of interest.
Hence, three levels of each of these factors were used
in the experiment.

This example thus investigated four derived fac-
tors and three conventional factors, which could be
set to prespecified levels. Components sufficient to
make 44 hydraulic gear pumps were available for the
experiment.

The plan used, together with the values of the
conventional and derived factors, and the leakage re-
sponses were given by Sexton et al. (2000) and Sex-
ton et al. (2001). The details of the measured com-
ponents, the derived factors and the process used
to investigate and generate the design for this ex-
ample form the basis of the Advanced Tutorial in
DEAP (2005). The tutorial also covers practical as-
pects, such as defining products, components and
lists of parts, together with setting up the database
of measurements associated with these, and the func-
tional dependence of the factor values on these mea-~
surements. In addition, the tutorial indicates how to
obtain simple graphical summaries of the measure-
ments that allow, for example, anomalous values to
be identified.

Example 3: Electro-Acoustic Transducer

An experiment was planned to investigate the
sound output from an electro-acoustic transducer
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FIGURE 2. Schematic of an Electro-Acoustic Transducer.

manufactured by Hosiden Besson Ltd. and illustrated
in Figure 2. In this device, an oscillating input electri-
cal signal is fed to the bobbin windings, which causes
the armature to rock on the pivot created by the pip.
One end of the armature is connected to a lightweight
diaphragm, which then radiates sound. The air gaps
between the rocking armature and the yoke need to
be carefully adjusted so that the balanced state of
the armature is maintained during operation. This
adjustment is made manually by an operator, who is
guided by an electrical measurement (the electrical-
gap adjustment). The magnetic field strength of the
permanent magnet is then adjusted by another oper-
ator (in a process known colloquially as demagging)
to achieve the required sound output level from the
capsule for a given driving electrical signal.

Two of the factors to be explored, the magnetic
permeability of the yoke and of the armature, could
be measured but could not be produced to speci-
fied values. A total of 139 yokes and 113 armatures
were available, together with their measured mag-
netic permeabilities. However, these yokes and ar-
matures experienced variations in the heat-treatment
process (through batch variation and kiln position)
and hence heat treatment factors were also included
in the design of the experiment.

There were four conventional factors to be stud-
ied in the experiment: the asymmetry of the bobbing
windings, the electrical-gap adjustment, the skill of
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the demagging operator and the crimping force ap-
plied to hold the front cover to the capsule frame. In
addition, there were four factors that were associated
with measured components, namely, the magnetic
permeabilities of the armature and of the yoke, the
heat treatment batch and the armature pip height.
The resources allocated to this experiment allowed a
total of 60 capsules to be assembled.

Details of the factors and their levels, together
with the plan and an analysis of the results are given
by Anthony et al. (2003). This example is included
in the user documentation, DEAP (2005), where full
details are available, including the measurements.

Design Algorithms

Two competing types of algorithm were developed
to search for designs among the large number of pos-
sible sets of assemblies of components that could be
used in an experiment. The first is based on an ex-
change algorithm (EA) and the second is a genetic
algorithm (GA).

Within each algorithm, a criterion is required for
choosing between designs. In the examples in this pa-
per, the main aim of each experiment was to under-
stand how the factors jointly influenced the measured
response. Hence, the D-optimality criterion was cho-
sen which minimizes the generalized variance of the
estimated model coefficients. The objective function
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to be minimized is D = (|X'X|/n?)~1/?, where n is
the number of runs in the experiment, p is the num-
ber of coefficients in the assumed model and X X is
the information matrix of the design (see, for exam-
ple, Myers and Montgomery (2002), p. 394).

The Exchange Algorithm

The algorithm presented here differs from conven-
tional exchange algorithms for design search in two
ways. It is able to find designs when factor values,
and their combinations, can only be selected from
those available from the samples of components with
the restriction that each component can only be used
once. In addition, the algorithm allows designs to in-
clude factors, the values of which depend on several
measured properties of different components.

This section provides an outline of the algorithm.
First, the procedure for obtaining a starting design
is described. Second, the steps taken to improve on
this, and subsequent, designs are summarized.

Suppose that each component has been uniquely
labeled and the relevant component variables mea-
sured. The exchange algorithm begins from a start-
ing design that is obtained by a random allocation
of parts from the set of measured components and
from the possible preset factor levels to make the re-
quired number, n, of products for testing. For each of
the assemblies in the starting design, the correspond-
ing value of each factor is either (i) the preset level
or (ii) the component measurement or, for derived
factors, (iii) an engineering-based function of several
measurements and preset levels. The n combinations
of factor values form the starting design from which
the first value of D is calculated.

There are three stages of improvement on the
starting design. In broad terms, stage I attempts to
improve the design by making changes to the com-
binations of the levels of the preset factors while
holding fixed the combinations of factor values that
involve component measurements. Stages IT and III
make changes to the combinations of factor values
that arise from component measurements while keep-
ing the preset factor combinations fixed. The objec-
tive function D is calculated at every stage from the
combinations of values of all the factors in the design.

o Stage I: Search conventional factors. The Modified
Fedorov exchange procedure of Cook and Nacht-
sheim (1980) is used to find the optimal set of
preset factor combinations. The allocation of the
measured components is held fixed at this stage.

o Stage II: Search unallocated measured compo-
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nents. The conventional preset factor values are
held fixed at this stage and at stage II1.

1. Starting with the first product, as defined by
the combination of components in the design,
each component is swapped with each compo-
nent of the same type that is not yet allocated
to a product. The swap that leads to the great-
est improvement in D is accepted.

2. Step 1 is repeated for each type of component.

3. Steps 1 and 2 are repeated until the improve-
ment in D is smaller than some prespecified
value.

o Stage III: Search by reallocation of measured com-~
ponents between products.

1. Starting with a particular type of component,
each component of this type within the design is
interchanged with every other component of the
same type within the design. The interchange
that leads to the greatest improvement is re-
tained.

2. Step 1 is repeated for each of the remaining
types of component in the product.

3. Steps 1 and 2 are repeated until the improve-
ment in D is smaller than some prespecified
value.

The steps of Stages I, II and T1T are iterated until
the improvement in the D value is sufficiently small.
The tendency for the search to become trapped in a
local optimum is overcome by making multiple runs,
or tries, of the algorithm from different starting de-
signs in the usual way.

Stages IT and III replace the procedure in the orig-
inal algorithm given in Sexton et al. (2001), where
improvement in the design was sought by selecting
k > 1 combinations of components in the design,
and systematically substituting into the design all
possible new sets of k component combinations, se-
lecting the set that gave the greatest improvement in
the value of D. The replacement of this procedure by
Stages IT and III has substantially improved the per-
formance of the algorithm in terms of its speed and
the frequency with which good designs are found.

Not all of Stages I, IT and IIT are relevant to all
product assembly problems. Example 1 requires only
Stages II and III, as there are (i) no conventional
factors at Stage I, and (ii) one driven gear and two
bearing blocks are available for swapping at Stage
II. Example 2 requires only Stages I and I11, as there
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are no surplus components to be considered, while
for Example 3, all three stages need to be used.

In applications of the Modified Fedorov exchange
algorithm, as used in Stage I, it is usual to allow iter-
ations to continue until the change in D is very small,
for example 10~%. However, in the applications pre-
sented in this paper, the rate of convergence of the
overall method was significantly improved by under-
taking only one iteration of this algorithm each time
Stage I was performed.

The Genetic Algorithm

Genetic algorithms were first described by Holland
(1975) and have been popularised mainly through the
work of Goldberg (1989). These methods have been
applied to design of experiment problems by, for ex-
ample, Heredia-Langner et al. (2003), who gave an
accessible introduction to the basic ideas of GAs. For
product assembly problems, it is necessary to modify
the basic approach, to decide on suitable coding for
the factors and to determine appropriate values for
the parameters within the various selection, muta-
tion and crossover procedures (known as tuning the
GA). A brief overview is given here; full details of the
various approaches investigated and comparisons of
the resulting speeds achieved are given by Anthony
and Keane (2004).

In order to take account of the restrictions on
the factor combinations that can be used in the de-
sign, a permutation-based GA was used. The set of
measured components was coded in the GA using
chromosomes that consisted of concatenated permu-
tations, where each permutation represented a pos-
sible allocation of the components of one particular
type into the assembled products. If there are more
components of one type than are needed to form the
products to be tested, then only part of the corre-
sponding permutation is required. Also, if each prod-
uct requires more than one component of a particular
type as, for example, for the bearing block in Exam-
ple 1, then that permutation is subdivided so that
each subdivision indicates the particular instance of
an individual component within a product.

The main difference between the GAs developed
here and the algorithms available previously in the
literature is the method used to encode the actual
component allocation into the chromosome and the
resulting modifications to the GA procedures. Two
different coding methods were considered. The first
method, step indez permutation, used a set of N —1
indices to represent a permutation of N components.
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Tt has the advantages that there is no redundancy in
the chromosome representation and that the stan-
dard operations used for binary representations for
site selection for the crossover operation can be used.
The mutation operation is slightly more complicated,
however, in order to ensure that invalid permutations
do not result. The second coding method, extended
chromosome representation, used a simple listing of
each permutation but consequently required special
operators for the crossover and mutation procedures;
see Goldberg (1989). This second method had some
redundancy in the chromosome, as only N — 1 inte-
gers are required to define a permutation of N inte-
gers.

The efficient application of GAs, particularly to
nonstandard problems, requires careful coding and
identification of the many parameters that define the
operation of the algorithm. As the parameter values
may be problem specific, it is important to balance
the computational effort expended in tuning the GA
against the gain in the speed of convergence. For each
of the examples considered here, the optimal GA pa-
rameter values and a choice of coding method was
made by performing fractional factorial experiments
involving both quantitative and qualitative factors
having 2, 3 and 4 levels, in which the GA was only
taken part way toward convergence. This approach
is similar to, but simpler than, factorial experiments
that have been used to find good GA parameters, for
example, by Pongcharoen et al. (2002) and Lee and
Fan (2002).

Application and Comparison of the
Exchange and Genetic Algorithms

Before the performances of the two design search
algorithms were compared on the three industrial
problems, the GA and the EA were applied to two
conventional design problems in which all the fac-
tors were fully controllable. This allowed the GA to
be benchmarked against a Modified Fedorov proce-
dure, as only Stage I of the exchange algorithm was
needed. The first of these, Example A, had three 3-
level factors and four 2-level factors, while the sec-
ond, Example B, had seven 3-level factors. In each
of these examples, a full second-order model was as-
sumed for the response and the number of runs was
10 more than the number of model coefficients: Ex-
ample A had 42 runs and Example B had 46 runs.
For each algorithm, 10 tries were made and the de-
sign with the smallest value of D was chosen. The
results showed that, for both example A and B, the
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TABLE 1. Values of D after 100,000 Evaluations

Example 1 2 3 A B
Genetic algorithm 4.55 6.97 3.50 1.479 2.051
Exchange algorithm 4.50 5.21 3.16 1.490 2.118
GA/EA relative efficiency (%) 99 75 90 100.7 103.2

GA converged more quickly than the EA, and that
it also produced designs with smaller D values. How-
ever, the D values were not substantially improved;
see Table 1, with further details provided by Anthony
and Keane(2004).

The GA and the EA were each used to find designs
for the three industrial problems outlined earlier in
this paper. Each algorithm was tried 10 times from
a different starting design of a random allocation of
components to products and, where appropriate, a
random choice of combinations of the preset factor
levels. Each time D was evaluated, as the algorithms
proceeded, the smallest value of D found so far was
recorded. The average of the smallest .D values found
from the 10 tries was plotted against the number of D
evaluations; see Figures 3-5. This approach is similar
to plotting the average best determinant against the
objective function evaluations of Heredia-Langner et
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FIGURE 3. The Average, over 10 Tries of Each Algo-
rithm, of the Smallest D Value Found after a Given Number
of Evaluations of D for Example 1.
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al. (2003). As mentioned in that paper, a comparison
of the number of evaluations is not equivalent to a
comparison of the time taken to run the algorithms
because the EA can make use of updating procedures

for calculating determinants that are not available to
the GA.

Figure 3 shows the performance of the two algo-
rithms when applied to Example 1. For this exam-
ple, a design was required for three derived factors,
with seven model coefficients in a second-order model
and 11 runs in the experiment. For this small de-
sign, both algorithms converge in a small number
of evaluations. There is little difference between the
two methods, although the EA appears to converge
slightly faster. After about 10,000 evaluations of D,
little further improvement is evident.

The experiment of Example 2 has four derived fac-
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FIGURE 4. The Average, over 10 Tries of each Algorithm,

of the Smallest D Value Found after a Given Number of
Evaluations of D for Example 2.
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FIGURE 5. The Average, over 10 Tries of each Algorithm,
of the Smallest D Value Found after a Given Number of
Evaluations of D for Example 3.

tors and three conventional factors. A second-order
model with 36 coefficients was assumed for the re-
sponse and a design for 44 runs was required. Fig-
ure 4 shows that, iitially, the GA converges with
slightly fewer evaluations but that, ultimately, the
EA achieves small values of D in fewer evaluations.

Example 3 has four conventional factors and four
factors the values of which depend on the particular
set of components, with a second-order model with
36 coefficients assumed to describe the response. A
design was Tequired with 60 runs. Figure 5 shows
that, again, the GA gives an initial rapid drop in the
D value but, subsequently, converges more slowly.

Table 1 summarizes the final value of D achieved
after each of the algorithms had been used for a to-
tal of 100,000 D evaluations on each example. This
shows that, for all three experiments, the EA finds a
design with a lower value of D. For Examples 1 and
3, the difference in the final D value is not substan-
tial. The difference is greater for Example 2, where
the GA is 25% less efficient than the EA.

Conclusions and Discussion

Two different search algorithms have been applied
to find designs for three industrial experiments to im-
prove the engineering design and manufacturing pro-
cess of a product. In each case, the product has prop-
erties that preclude the use of standard methods to
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design the experiments. The methods presented ad-
dress the problems associated with experiments on
assembled products where some factors cannot read-
ily be set to specified values, samples of measured
components are used in the experiment, with each
component used only once, and some factor values
depend on measurements from more than one com-
ponent.

For these examples, the EA performed well rela-
tive to the GA, although in the early stages of the
search, the GA converges more quickly than the EA
for complex problems. This behaviour was consis-
tent, although the three examples varied consider-
ably in the number of factors and factor levels. The
two methods were also tested on two conventional
problems, and here the GA performed better than
the EA, with the difference increasing as the com-
plexity of the design problem increased, in agreement
with the findings of Heredia-Langner et al. (2003).

Possible reasons for the different relative be-
haviour of the algorithms for the two types of prob-
lems are the following. As discussed by Heredia-
Langner et al. (2003), at any iteration in the al-
gorithm, the EA search is constrained to consider
only points in a candidate list, whereas a GA has no
such limitation. In searches for conventional designs
with quantitative factors, there is no intrinsic reason
why the points in the design should be restricted and
hence the GA is able to slightly out perform the EA.
This can be viewed as the global searching of the GA
being more efficient than the local searching of the
EA.

For the assembly problems discussed in this pa-
per, the search is limited to those sets of combina-
tions of factor levels that are obtainable from the
available components. Thus, although initially the
global searching of the GA is more successful, the
constrained local searching of the EA gives an even-
tual advantage.

It is possible that, for some very large problems,
convergence to an optimal D value may be speeded
up by combining the two algorithms so that the GA
is used at the early stages before switching to the EA
to complete the search. This approach has not been
investigated. However, an efficient switch-over point
from GA to EA could be identified by investigations
similar to those used to optimize the parameter set-
tings for the GA.

In practice, a design for an experiment would not
be chosen on the basis of a single criterion such as
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D-optimality. Other properties of possible designs
should be examined, such as variance inflation fac-
tors and the variance—covariance matrix of the model
coefficient estimators. Such issues were considered
when applying the final designs to the industrial ex-
amples by using a short list of designs found from
the algorithms, but have not been presented here.

The EA algorithm was implemented within DEAP
to guide the design of experiments for assembled
products. This decision was made because the per-
formance of the EA and GA algorithms was similar
across the various problems; however, the EA did not
require the complication of automating an initial in-
vestigation in order to tune the parameters for each
particular problem.

The algorithm in DEAP has been further ex-
tended to allow experiments to be run as an inte-
gral part of the manufacturing process through the
use of sequential experimentation. At any time in
the experiment, a pool of measured components is
available. As each new set of components is added
to the pool, the algorithm determines which compo-
nents should be removed for assembly into the next
product to be tested prior to shipping. In our cur-
rent experience, economic considerations require the
pool to be small and so an exhaustive search can be
used to determine the optimal assembly to supple-
ment those products built in the earlier stages of the
experiment. Insight into the performance of the prod-
uct is thereby gained over a period of time. This ap-
proach is particularly useful when products are pro-
duced at a low rate or few can be made available for
testing at any one time.
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