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INTRODUCTION

Experiments, statistically designed or not, are a component of the learning process. We experiment
to learn. Learning through experimentation is a complex mechanism combining one’s hopes, needs,
knowledge, and resources. How well one succeeds will be a function of adherence to the scientific
method, the most rapid means for speeding the learning process.

The scientific method is an iterative process. Ideas based upon one’s current state of knowledge
lead to experiments designed to answer questions. The experiments in turn lead to data that serve
to confirm and modify these initial ideas. An iterative loop is established between ideas (hypothe-
ses), the design of the experiment, the production of data, and the subsequent analysis (inference)
leading on to new ideas, new experiments, new data, and newer inferences. This iterative process
continues until an adequate state of knowledge is acquired and confirmed. The entire process is
always slowed by “noise,” the results of “errors” of measurement and experimental “variability.”
We “see through the glass darkly” and thus data analyses must be conditioned by statements of
uncertainty, by considerations of probability. Statistics is the science, the provider of the language
and logic, that combines the roles of hypotheses, data, inference, and uncertainty within the scien-
tific method.

Two famous statisticians, G. E. P. Box and W. Edwards Deming, encapsulate the fundamentals of
the scientific method into four segments: Box’s “conjecture, design, experiment, analysis” and
Deming’s “plan, do, check, act.” Both statements illustrate the role of statistics as an integral part of
the scientific method; see Deming (1982), Box (1976), Ishikawa (1985).

In applying the scientific method, a worker’s intelligence, experience and resources dominate the
speed and success of any problem-solving program. The art of statistics comes into formal play in
two places: in helping design the experiments to produce data heavily laden with information and in the
data analysis wherein the statistician’s responsibility is to uncover all the information of value.
Simply stated: The application of the statistical design and analysis of experiments accelerates the
learning process.

An experiment has been defined as a “considered course of action aimed at answering one or
more carefully framed questions.” Framing the question and planning for action are best accom-
plished through a team effort. An isolated experimenter working alone has become an increasingly
rare phenomenon: the resources of information germane to any problem-solving and learning activ-
ity are too vast and varied to be left to a single individual.

Computing and Analysis. Almost 10 years have elapsed since the publication of the fourth
edition of Juran’s Quality Control Handbook (1988). This brief period has witnessed a spectacular
growth in the use of the personal computer. Today the personal computer and associated software not
only reduce the burdens of computations but can directly assist in the selection of an experimental
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design. Computer-constructed graphical displays of data quickly assist in data analysis. The users
manual accompanying many software programs is often equivalent to a reference book on the con-
struction and analysis of statistical designs, offering help in the pathways of analysis and providing
illustrative examples. Many statistical software programs go far beyond the subject of statistical
design of experiments and include elements of industrial quality control, linear and nonlinear regres-
sion, reliability and nonparametric studies, and multivariate and time series analyses. The reader is
encouraged to secure the use of a personal computer and software program capable of performing
the analyses associated with the statistical design of experiments.

The challenge, of course, is to be wise in the use of the powerful tools of statistics and modern
computation. This Handbook well serves as an introduction to the application of good statistical
practices devoted to the pursuit of quality. As a further aid the Statistics Division of the American
Society for Quality has produced a series of How To booklets (see ASQ in the references) designed
to assist beginners in the applications of statistics. The best advice for those just starting out in the
statistical design of experiments is KISS: Keep it simple statistician! One should first experience the
design and analysis of a small program with limited amounts of data, perhaps a replicated balanced
block to compare a few treatments, or a simple factorial to study the simultaneous influences of fac-
tors upon a response. Further, the beginner must recognize that there has never been a signal in the
absence of “noise” and then learn to measure the noise: to estimate the variance of the observations.
Beginners often confuse noise (errors) due to measurement and instrumentation with the more seri-
ous source of noise (error) caused by the failure of repeated experiments to provide identical results.
Experimental error encompasses measurement error and is far more serious. A beginner will also
quickly learn the importance of always plotting the data (Chambers et al. 1993; Cleveland 1993).

The methods of analysis and computation given here, and those found in most textbooks, are
intended for hand or desk calculation. The modern personal computer and associated software dra-
matically change this environment, with some computer software programs providing levels of assis-
tance that resemble artificial intelligence; the experimenter is asked questions and is guided through
almost every stage of experimental design and analysis. Two general cautions are in order: (1) the
hand-desk computing methods given here should not be literally translated into a computer program—
there are alternative powerful computer-based methods of data reduction and analysis; and (2) the user
of packaged statistical programs should be as critical a consumer of this as of everything else.

The journal Applied Statistics (The Royal Statistical Society, London) has in each issue a Statistical
Software Review section providing careful and critical commentary on the utility of various software pro-
grams along with, usually, the reply of the producer of the software. The quarterly journal The American
Statistician, of the American Statistical Association, has a section titled Statistical Computing Software
Reviews. The reviews in both these journals can be of great value in judging the value of software.
Applied Statistics also provides an additional section on Statistical Algorithms for those requiring 
special programs not commonly found in ordinary software. More general information on software for
statistical purposes is provided in Section 44, Basic Statistical Methods. See also Wadsworth (1990).

Basic Definitions. Several fundamental terms are widely used throughout this section. They
may be defined as follows:

Factor. A “factor” is one of the controlled or uncontrolled variables whose influence upon a
response is being studied in the experiment. A factor may be quantitative, e.g., temperature in
degrees, time in seconds. A factor may also be qualitative, e.g., different machines, different opera-
tors, switch on or off.

Level (Version). The “levels” (“versions”) of a factor are the values of the factor being examined
in the experiment. For quantitative factors, each chosen value becomes a level, e.g., if the experiment
is to be conducted at four different temperatures, then the factor temperature has four levels. In the
case of qualitative factors, switch on or off becomes two levels (versions) for the switch factor; if six
machines are run by three operators, the factor machine has six levels (versions) while the factor
operator has three levels (versions).

DESIGN AND ANALYSIS OF EXPERIMENTS 47.3



Treatment. A “treatment” is a single level (version) assigned to a single factor during an experi-
mental run, e.g., temperature at 800 degrees. A “treatment combination” is the set of levels for all
factors in a given experimental run. For example, an experimental run using an 800-degree temper-
ature, machine 3, operator A, and switch off would constitute one treatment combination.

Experimental Units. The “experimental units” consist of the objects, materials, or units to which treat-
ments are being applied. They may be biological entities, natural materials, fabricated products, etc.

Experimental Environment. The “experimental environment” comprises the surrounding condi-
tions that may influence the results of the experiment in known or unknown ways.

Block. A factor in an experimental program that has influence as a source of variability is called a
“block.” The word is derived from early agricultural usage, in which blocks of land were the sources
of variability. A block is a portion of the experimental material or of the experimental environment that
is likely to be more homogeneous within itself than between different portions. For example, specimens
from a single batch of material are likely to be more uniform than specimens from different batches. A
group of specimens from such a single batch would be regarded as a block. Observations taken with-
in a day are likely to be more homogeneous (to have smaller variance) than observations taken
across days. Days then becomes a block factor.

Experimental Design. The formal plan for conducting the experiment is called the “experimen-
tal design” (also the “experimental pattern”). It includes the choice of the responses, factors, levels,
blocks, and treatments and the use of certain tools called planned grouping, randomization, and
replication.

Models. Experimental designs are created to help explain the association between a response vari-
able ! (!"eta; sometimes the symbol #"mu is used) and other factors x " x1, x2, x3, …, xk (sometimes
called “variables”) thought to influence !. We say, “! (eta) is a function of x,” that is, ! " f(x). Of course,
observing the true response ! entrains “noise” or “error” and produces observations y " ! $ %. The
“expected value” of y is !. We are now faced with a “two model” problem: every observation y requires
a model for ! and another for %.

The Model for the Error %. The model for the % usually assumed is that the errors are independent,
normally distributed with an expected value of zero and a constant variance &2; that is, the errors are
white Gaussian noise. One’s ability to discern associations between a response of ! and factors x and to
make inferences about future performance are profoundly influenced by the %, the “errors” (noise). The
errors (noise) attending a series of experiments have two primary components, those due to measure-
ment and those attending the repetition of the experiment. Considerations of measurement error; the 
precision, traceability, specificity, calibration, and cost of the measurements; and variability due to sam-
pling are always important. However, measurement and sampling errors alone will underestimate the
contribution of errors associated with running and then repeating an experiment. Experimental error,
the failure of agreement between two or more separate experiments run under the same conditions, is of
crucial importance. Experimental error includes measurement and sampling errors as components.
Special experimental designs (the hierarchical designs, see below) can provide experimenters with the
ability to measure separately all error components.

The assumption that the errors % are normally distributed with zero expectation and constant vari-
ance is important. Transformations of experimental data are often required to accomplish these
attributes. However, the assumption of independent errors is especially crucial whenever probability
statements (hypothesis tests or confidence intervals) are made. To guarantee independence, acts of
randomization should be part of every experimental design protocol. Randomization also provides
support for the constant variance assumption.

The Model for the Response !. Implicit in every experiment is a response model ! " f(x) descrip-
tive of how ! changes as the factors x are changed. The specifics of this model are often not clear in
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the mind of the experimenter; one object of the experiments is to reduce this ambiguity. Most exper-
imental designs are constructed to provide sufficient data to estimate the parameters in a very gen-
eral model, thus allowing the data to identify appropriate subsets of models for the experimenter’s
appraisal.

The Model for the Observations y. The observation model is y ! " # $. Thus the experimenter
must separate motion among observations into two parts: one part assignable to " and ultimately to
the changes in the factors x, and a second part assignable to $, the noise. This separation of the roles
of " and $ is formally recognized in an analysis of variance (ANOVA) table, an easy computation
provided experiments are properly planned.

Tools for Good Experimentation. Good experimentation is an art and depends heavily
upon the prior knowledge and abilities of the experimenter. Some tools of importance in the statisti-
cal planning and analysis of the design of experiments follow.

Blocking (Planned Grouping). Beyond the factors x1, x2, …, xk selected for study, there are
often other “background” variables that may also influence the outcome of the experimental pro-
gram, variables such as raw material batches, operators, machines, or days. The influences of
these variables upon the response are not under the control of the experimenter. These variables
are commonly called “blocks,” a legacy of the day when different blocks of land were used in
agricultural experimentation. When an experimenter is aware of blocking variables it is often
possible to plan experimental programs to reduce their influence. In designing experiments, wide
use is made of the reduced variability occurring within blocks to accentuate the influences of the
studied factors. Designs that make use of this uniformity within blocks are called “blocked”
designs and the process is called “planned grouping.”

Randomization. The sequence of experiments and/or the assignment of specimens to various treat-
ment combinations in a purely chance manner is called “randomization.” Such assignment increas-
es the likelihood that the effect of uncontrolled variables will balance out. It also improves the
validity of estimates of experimental error variance and makes possible the application of statistical
tests of significance and the construction of confidence intervals. Whenever possible, randomization
is part of the experimental program.

Replication. “Replication” is the repetition, the rerunning, of an experiment or measurement in order
to increase precision or to provide the means for measuring precision. A single replicate consists of a
single observation or experimental run. Replication provides an opportunity for the effects of uncon-
trolled factors or factors unknown to the experimenter to balance out and thus, through randomization,
acts as a bias-decreasing tool. Replication also helps to detect gross errors in the measurements. In
replications of groups of experiments, different randomizations should apply to each group.

Rerun experiments are commonly called “replicates.” However, a sequence of observations made
under a single set of experimental conditions, under a single replicate, are simply called “repeated
observations.”

Reproducibility and Repeatability. In manufacturing, reproducibility measures the variability
between items manufactured on different days or on different machines. Repeatability measures
sources of variability that are more local or immediate, assignable to item measurements or to the
variability occurring between adjacent items manufactured in sequence.

Requisites and Tools. Table 47.1 lists some of the requisites for sound experimentation and shows
the way in which these tools contribute to meeting these objectives. A checklist that can be helpful
in all phases of an experiment is given in Table 47.2. Good references are Bicking (1954), Hahn
(1977, 1984), Bisgaard (1992), Bishop et al. (1982), and Hoadley and Kettenring (1990), and
Coleman and Montgomery (1993).
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CLASSIFICATION OF EXPERIMENTAL DESIGNS

Statisticians by themselves do not design experiments, but they have developed a number of struc-
tured schedules called “experimental designs,” which they recommend for the taking of measure-
ments. These designs have certain rational relationships to the purposes, needs, and physical
limitations of experiments. Designs also offer certain advantages in economy of experimentation and
provide straightforward estimates of experimental effects and valid estimates of variance. There are
a number of ways in which experiment designs might be classified, for example, the following:

1. By the number of experimental factors to be investigated (e.g., single-factor versus multifactor
designs)

2. By the structure of the experimental design (e.g., blocked, factorial, nested, or response-surface
design)

3. By the kind of information the experiment is primarily intended to provide (e.g., estimates of
effects, estimates of variance, or empirical mappings)

Some of the common statistical experimental designs are summarized in Table 47.3. Basic fea-
tures of the designs are summarized in terms of these criteria of classification, and the details of
design and analysis are given under the topics that follow. The analysis for observed responses is
always based on a statistical model unique to the specific design.
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Split Plot. When certain (major) factors are difficult to change, other (minor) factors are run in an
experimental design within each of the settings of the major factors. The Taguchi inner and outer
array designs are of this genre. Many split-plot designs confound minor factor interactions with
major factor main effects.

Major factors are not blocks. Major factors are studied for their main effects and interactions;
blocks identify random variables. Further, blocks are assumed to have no interactions with the fac-
tors under study. When both the major and minor factors are random variables, the designs are iden-
tified as “nested.”

COMPLETELY RANDOMIZED DESIGN: ONE FACTOR, k LEVELS

The completely randomized design is appropriate when a total of N experimental units are available
for the experiment and there are k treatments (or levels of the factor) to be investigated. Of the total
number N, it is usual to assign randomly an equal number of trials n to each of the k treatments.

Example. A study was made to investigate the effect of three different conditioning methods on
the breaking strength T (in pounds per square inch) of cement briquettes. Fifteen briquettes were
available from one batch and were assigned at random to the three methods. The results are sum-
marized in Table 47.4. The purpose of the experiment was to investigate the effect of conditioning
methods on breaking strength, and the analysis was designed to answer the question: Do the mean
breaking strengths differ for the different conditioning methods?

This is an example of a randomized one-factor experiment. Only one experimental factor (method
of conditioning) is under study. There are three methods; i.e., the number of treatments k equals 3.
The number of units n assigned at random to each treatment is 5. The total number of experimental
units N is 15.

Analysis. Almost everyone today possesses a computer and the software capable of performing
the arithmetic associated with the analysis of most experimental designs. Once the data for the fully
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randomized design displayed in Table 47.4 have been placed into a computer with an appropriate sta-
tistical design of experiments software program, then graphics similar to Figure 47.1 and an analy-
sis of variance table such as that displayed in Table 47.5 become available. Nevertheless, we include
here the details of the computations for the reader. The ability to perform one’s own hands-on cal-
culations is often of great value in reducing the “black-box” approach to data analysis.

The analysis of these data begins with a plot of the three treatment averages as shown in Figure
47.1. The “reference distribution” for these averages will be explained shortly. The average responses

47.12 SECTION FORTY-SEVEN

TABLE 47.3 Classification of Designs (Continued)

TABLE 47.4 Breaking Strength T of Cement Briquettes, lb/in2



are obviously different. The key question is whether the observed differences are due solely to the
inherent variability of the observations or caused by this variability plus real differences between the
treatment means. (In this section on experimental design the word “mean” is used to connote the
expected value of an average, that is, the value an average would take if an infinite number of obser-
vations were made.) The analysis of variance (ANOVA) is a basic statistical technique in the analysis
of such data and is illustrated for the data in Table 47.5.

Analysis of Variance. Referring to Table 47.4, the total T is

T ! 8196 N ! 15 n
i
! 5 i ! 1, 2, 3

Calculate the following:

The uncorrected total sum of squares "y2 ! 4,488,348

C ! correction factor (a special constant) ! ! ! 4,478,294.4

TSS!corrected total sum of squares 

! "y2 # C ! 4,488,348 # 4,478,294.4 ! 10,053.6

SSB ! between-treatments sum of squares 

! !
i

# C ! # C ! 4,481,803.6 # 4,478,294.4 ! 3509.2

SSW ! within-treatments sum of squares ! TSS # SSB ! 10,053.6 # 3509.2 ! 6544.4

22,409,018
$$

5

Ti
2

$
n

(8196)2

$
15

T2

$
N
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(SSW is here obtained by subtraction. It may be obtained directly for the special case of the completely
randomized design by calculating !y2"[(!y)2/n] for each treatment and summing for all treatments.)

The corrected total sum of squares TSS has N " 1 degrees of freedom (DF), the between-treatments
sum of squares SSB has (k " 1) degrees of freedom, and the within-treatments sum of squares SSW
has (N " k) degrees of freedom.

The mean-square column in the table is computed as follows:

Mean square between treatments MSB # 

Mean square within treatments MSW # 

These calculated quantities are inserted in Table 47.5.
Calculate F # MSB/MSW # 1754.6/545.5 # 3.22. Choose $, the significance level of the test.

If the calculated F exceeds F1" $
from Appendix II, Table K, for (k " 1) and k (n " 1) degrees of

freedom, conclude that there are differences among treatment means. For example, $ # 0.05 level,
F0.95 for (2,12) degrees of freedom # 3.89; the calculated F does not exceed this value, and we do
not have sufficient evidence to conclude that the mean breaking strength is different for the different
conditioning methods. The differences between the treatment averages are thus assumed to be due
to the error variance (the noise). Had the hypothesis that there are no treatment effects been rejected
by the F test, then one could conclude that at last one of the mean breaking strengths differs from
the others. The formal issue of comparing treatment means, the problem of “multiple comparisons,”
is discussed below.

In this example, the n
i
are all equal. Designs that have an equal number of observations in each

treatment are generally to be preferred. Such designs provide each treatment with an equal opportu-
nity for comparison against all other treatments. On rare occasions, as when one of the treatments is
a standard against which all other treatments are to be compared, more observations are placed in the
standard treatment than in the alternatives. When the n

i
are not all equal, use the following formula

for the between-treatments sum of squares:

SSB # % %…% " C

Here SSW # TSS " SSB and MSW # SSW/(N " k) as before. The MSW (the overall estimate of
variance) can also be obtained by estimating the variance within each treatment and pooling these
estimates. The pooled estimate has N " k degrees of freedom.

Graphical Analysis. An approximate graphical analysis of these data is provided by sketching an
appropriate “reference” distribution for the average, as illustrated in Figure 47.1. When &2 (the pop-
ulation variance) or, equivalently, & (the population standard deviation) is known, averages may be
referred to a normal distribution with standard error &/!n". Here &2 is unknown, and its estimate s2

must be determined from the data. Averages must be referred to a Student’s t-distribution, suitably
scaled by s/!n". The number of degrees of freedom in t is equal to the number of degrees of free-
dom in s2. The estimate of &2 is obtained from the analysis of variance table (s2 # MSW) or by pool-
ing the separate estimates of variance obtained from within each treatment classification. The pooled
estimate of variance is given by the weighted average of the individual estimates, the weights being
their degrees of freedom. Thus

s2 # #
i

# # 545.5

s # 23.34 with 12 degrees of freedom

4(145.7) % 4(626.2) % 4(864.2)
''''

16

(ni " 1)si
2

''
N " k

Tk
2

'
nk

T2
2

'
n

2

T1
2

'
n

1

SSW
'
N " k

SSB
'
k " 1
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A sketch of the appropriately scaled t-distribution appears in Figure 47.1. The distance from the
center of the t-distribution to each extremal point equals t12, 0.025s/!n" !2.18(23.35)/!5" ! 22.8, and
95 percent of the distribution falls within the range 2(22.8) ! 45.6. The distribution is easily
sketched; there is no need for great precision in its shape save that it look reasonably bell-shaped.
The distribution can be moved back and forth, and has been located in this instance so that it just fits
over the three averages. Thus, based on this graphical evidence, the suggestion that all three averages
could have come from the same parent distribution and hence could be estimates of the identical
mean seems reasonable.

This graphical interpretation is confirmed by using the F test in the analysis of variance table; that
is, the computed F ratio was not statistically significant. When averages do not fit reasonably under
the distribution, the graphical analysis suggests that the differences between the treatment averages
reflect real differences between the treatment means. Such graphical evidence could, of course, be
verified by an F test. The scaled reference distribution can be of great value in interpreting treatment
averages. Often, although it is technically possible to place the reference distribution over all the
averages and simultaneously to obtain a nonsignificant F test, interesting differences between groups
of the averages may become clear. The F test does not consider patterns among the averages, a fac-
tor that can be of great importance to the analyst (see Box, Hunter, and Hunter 1978). Alternative
approximate analysis techniques, in particular those based upon the use of the range statistic in place
of the estimated standard deviation, are available [see the papers by Kurtz et al. (1965) and by
Sheesley (1980)].

GENERALIZED COMMENTS ON A COMPLETELY RANDOMIZED
DESIGN

The completely randomized design is simple to organize and analyze and may be the best choice
when the experimental material is homogeneous and when background conditions can be well con-
trolled during the experiment.

The advantages of the design are

1. Complete flexibility in terms of number of treatments and number of units assigned to a treatment
2. Simple analysis
3. No difficulty with lost or missing data

In planning the experiment, n units are assigned at random to each of the k treatments. When the
data have been taken, the results are set out as in Table 47.6.
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Displayed this way, the results of experiments are indistinguishable from a situation in which
there has been no design and no allocation at all but in which several different samples have been
tested from each of several different sources of material or several observations have been made
under each of several different conditions. Whether the observations come from units randomly allo-
cated to several different treatments or from units obtained from several different sources, the data
table looks the same, and in fact the analysis will be essentially the same.

This simple one-factor design is called “completely randomized” to distinguish it from other
experiment designs in which either randomization is constrained or the principle of “blocking,” or
planned grouping, has been made part of the structure.

One-Way Analysis of Variance—Models. The results of an experiment run according to
a completely randomized design are summarized in a one-way table such as Table 47.6. The com-
pletely randomized design is called a “one-way” classification of data, whether or not the data came
from a designed experiment. To discuss the associated analysis of variance, statisticians require
“models” for the data. In the case of a one-way classification analysis of variance, the most appro-
priate model is determined by answering the question: Do the several groups (into which the data are
classified) represent unique groups of interest to the experimenter? If they do, the model is called
“Model I,” the “Fixed Effects Model.” If, on the other hand, the groups are considered to be a ran-
dom sample from some population made up of many such groups, the model is called “Model II,”
the “Random Effects Model.” For example, suppose that the data in Table 47.4 were not from a com-
pletely randomized design in which 15 briquettes were allocated at random to three unique condi-
tioning treatments of interest to the experimenter. Suppose instead the column headings were “Batch
1,” “Batch 2,” “Batch 3,” where the “batches” represented some convenient grouping of briquettes
so that five briquettes were tested per batch. In the original experimental program, in which the three
conditioning treatments of the designed experiment were the unique treatments of interest to the
experimenter, the data may be represented by the Fixed Effects Model (Model I), whereas in the sec-
ond program the three batches presumably were a random sample of batches, and hence these data
are represented by the Random Effects Model (Model II).

For both Model I and Model II, the experimenter is trying to determine whether the three groups
are different in mean value. For Model II the experimenter may also be interested in knowing about
the “components of variance”; that is, the variance between samples from the same batch and the
variance existing between batches. Knowledge of the variability of different samples within a batch
and between different batches is helpful in planning how many samples to test in future experiments.

Data obtained from a designed experiment, as described for this completely randomized design,
are usually considered to be represented by Model I, since presumably the experimenter includes the
treatments of interest. If the data correspond to Model II, the analysis of variance table and F test are
used with one extra step, which requires adding an extra column labeled “Expected Mean Square,”
to Table 47.5.

Expected mean square

Between groups !w
2 " n!

b
2

Within groups !w
2

For the data in Table 47.5, we have:

Mean square Expected mean square

Between groups MSB#1754.6 !w
2 " 5!

b
2

Within groups MSW#545.4 !w
2
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The quantity !b
2 is called the “between component of variance,” and !w

2 is called the “within com-
ponent of variance”; MSB is an estimate of the “Expected Between-Groups Mean Square”; and
MSW is an estimate of the “Expected Within-Groups Mean Square.” Estimates of s

b
2 and s

w
2 or !

b
2

and !w
2 can be obtained as follows:

MSB is set equal to sw
2 " nsb

2 and MSW is set equal to sw
2:

s
w

2 # 545.4

s
b
2 # # # 241.8

The total variance assignable to a single observation from one randomly chosen batch and a single
briquette is estimated as

s2 # s
b
2 " s

w
2

BLOCKED DESIGNS

The several levels, or versions, of a studied factor or group of studied factors are called “treat-
ments,” and the major objective of an experimenter is to study the influences of these different
treatment levels upon some response. Often all the levels of the studied factors are repeated each
day or with a different operator, machine, supply of raw materials, etc. Each complete replication
of the set of treatments is called a “block.” The experimenter should plan the treatments so as to
prevent differences between the blocks from influencing the comparisons between the treatments.
For example, if the blocks in the experiment are days, the first aim of the experiment is to evalu-
ate the effects of the studied factors free of the effects of day differences. A secondary aim might
actually be to measure the effects of the days to help in planning future experiments. In blocked
designs it is generally assumed that blocking factors do not interact with studied factors. In the
simplest block designs the data, when taken, can be summarized in a two-way table, as illustrated
in Table 47.7. Note that this design is not a factorial design. In a factorial design all the factors
(here rows and columns) are at predetermined levels, whereas in the design under consideration
here, the blocking factor is not under the control of the experimenter. The blocking factor is, how-
ever, recognized as capable of influencing the response. The experimenter’s objective is to remove
from the influences of the studied factors any possible contributions to the response that are pro-
vided by the blocking factors. Blocking factors are commonly environmental phenomena outside
the control of the experimenter.

The interest in the factor called blocks has several objectives. Some of these are:

1209.2
$

5
1754.6 % 545.4
$$

5
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1. The aim of the experimenter is to estimate effects of treatments free of block effects; numerical
estimates of block effects are not particularly needed. For example, if blocks are days, day-to-
day differences should be eliminated as sources of variability and are of no particular interest in
themselves.

2. The primary aim is to estimate effects of the treatments (the studied factors) and secondarily to
have estimates of block effects.

3. Sometimes the treatment effects and the block effects are of almost equal interest. In this case
“block design” is analogous to a “two-factor experiment,” but the experimenter must be sure that
the studied and blocking factors do not interact before using a block design data analysis. If inter-
action between factors exists or is suspected, the design and analysis for a factorial experiment
must then be used.

The simplest design with one-way blocking is the “randomized block design.”

RANDOMIZED BLOCK DESIGN

In comparing a number of treatments, it is clearly desirable that all other conditions be kept as nearly
constant as possible. Unfortunately, the required number of tests is often too large to be carried out
under similar conditions. In such cases, the experimenter may be able to divide the experiment into
blocks, or planned homogeneous groups. When each such group in the experiment contains exactly
one observation on every treatment, the experimental plan is called a randomized block plan. The
treatments are run in a random order within the blocks.

There are many situations in which a randomized block plan can be profitably utilized. For
example, a comparison of several levels of some factor may take several days to complete. If we
anticipate that the different days may also have an influence upon the response, then we might plan
to observe all of the factor levels on each day. A day would then represent a block. In another situ-
ation, several operators may be conducting the tests, and differences between operators may be
expected. The tests or observations made by a given operator can be considered to represent a block.
The size of a block—that is, the number of tests contained within the block—may be restricted by
physical considerations. In general, a randomized block plan is one in which each of the treatments
appears exactly once in every block. The treatments are allocated to experimental units at random
within a given block. The results of a randomized block experiment can be exhibited in a two-way
table such as Table 47.8, in which we have b ! 4 blocks and k ! 6 treatments. Since each treat-
ment occurs exactly once in every block, the treatment totals or averages are directly comparable
without adjustment.

Example. The data in Table 47.8 represent the conversion gain of four resistors measured under
six different conditions. The response, conversion gain, is defined as the ratio of available current-
noise power to applied dc power expressed in decibel units and is a measure of the efficiency with
which a resistor converts dc power to available current-noise power. Each test condition involves
the same four resistors. The experimenter is interested in comparing differences between conditions
(the studied factor) clear of possible influences due to the resistors (the blocking factor). A quick
review of Table 47.8 indicates large differences between the resistors, i.e., between the block aver-
ages. The key question is whether, with this resistor variability eliminated, the experimenter can
now detect real differences between the test conditions since the differences between the observed
condition averages are small and may merely reflect experimental error.

Analysis. Some computer software programs may title the analysis of variance associated with
the randomized block experiment as a “two-way” analysis of variance. In a randomized block exper-
iment primary interest rests in the treatment averages and their standard errors. Block averages are
always of interest, but since blocks cannot be controlled by the experimenter (they represent environ-
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ments within which the treatments have been randomly run) their importance is commonly secondary
to that of the treatments. Of course, comparisons between averages requires an estimate of the vari-
ance !2. The primary reason for the analysis of variance computations is to get an estimate of the
variance (to quantify the noise) clear of all assignable causes. Plots of the averages are always required.

The analysis of a randomized block experiment depends on a number of assumptions. We assume
that each of the observations is the sum of four components. If we let y

ij
be the observation on the

ith treatment in the jth block, then

y
ij

" # $ %
i
$ &

j
$ '

ij

The term # is the grand mean, %i is the effect of treatment i, &j the effect of block j, and 'ij the exper-
imental error associated with the measurement yi j . (The subscripts i " 1, 2, …, k and j " 1, 2, …, b.)
The mean for the ith treatment equals # $ %b and the mean for the j th block equals # $ &j. The terms
%i and &j represent, respectively, the unique contributions (effects) of treatments and blocks. The esti-
mate of the mean # is given by y!, the grand average. Letting y!i equal the average for the i th treatment,
the estimate of treatment effect %i is y!i ( y!. Similarly, y!j ( y! estimates the block effect &j.

In order to make interval estimates for or tests of hypotheses on the treatment or block contribu-
tions, we assume that the values of the experimental error ' ij are independently and normally distrib-
uted with constant variance. If the experiment is randomized properly, failure of these assumptions
will, in general, not cause serious difficulty.

A more serious difficulty occurs when count data are recorded. Count data are frequently
Poisson-distributed, and hence the variance of the observations is linked directly to their mean. In
such circumstances, it is best first to take the square roots of the count data and then to proceed with
the estimation of effects and the analysis of variance.

Reference Distribution for Treatment Averages. The plot of the k " 6 treatment aver-
ages is displayed in Figure 47.2

To construct the appropriate reference distribution to judge these averages and to test hypotheses,
an estimate of the experimental error variance !2 is required. Using the model, the associated analy-
sis of variance table can now be constructed.

Randomized Block Analysis of Variance. The analysis of variance table for this ran-
domized block experiment data with k " 6 treatments and b " 4 blocks is given in Table 47.9.
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To test the hypothesis that all the treatment means are equal select an ! risk level (commonly
0.05) and perform an F

!,"1,"2
test. Thus

F
"1,"2 # F5,15 # # # 1.247

The critical ! # 0.05 value of F0.05,5,15 # 2.90. (Critical values of the F ratio are found in Table K,
Appendix II.) The computed F is less than the critical F and we therefore declare there is insufficient
evidence to lead to the rejection of the hypothesis that all treatment effects are zero. We may not actu-
ally believe this hypothesis, but we cannot reject it. A similar test that all block effects are zero gives:

F
"1,"2

# F
3,15

# # # 344.345

The computed F is far greater than the critical F
0.05,3,15

# 3.29, and the hypothesis that there are zero
block effects is rejected.

Figure 47.2 shows the plot of the six treatment averages and their associated “reference distribu-
tion.” The reference distribution for averages is a normal distribution scaled by !$"2/"n" when $2 is
known. When, as in this case, only s2 # 0.898 with " # 15 degrees of freedom is known, the refer-

309.222
%

0.898
SSB/(b&1)
%%

s2

1.120
%
0.898

SST/(k&1)
%%

s2
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FIGURE 47.2 Plot of k#6 treatment averages and their reference
t-distribution. (Distance from a to b # 2ts/ !b" #2.02.) Numbers
above scale are treatment numbers from Table 47.8.

TABLE 47.9 Analysis of Variance Table: Randomized Block Design

Sum of squares (SSq) Degrees of freedom (DF) Mean square

Blocks: SSB 927.665 (b & 1) 3 309.222
Treatments SST 5.598 (k & 1) 5 1.120
Residual SSR 13.467 (b & 1) (k & 1) 15 0.898 # s2

Total corrected SSq 946.730 (bk & 1) 23

The details of these computations are as follows:
Let N # bk # total number of observations. Here N # (4)(6) # 24.
Let G # grand total of all the observations. G # 3523.1.
Let 'yij

2 # sum of the yij
2#518,123.13.

Total corrected SSq#'yij
2 & G2/N # 518,123.13 & (3523.1)2/24.

Let B
i
# total for block i, i # 1, 2, …, b. Here b # 4.

Blocks: SSB # 'iBi
2/k & G2/N # 518,104.065 & G2/N # 927.665.

Let Tj # total for treatment j, j # 1, 2, …, k. Here k # 6.
Treatments SST # '

j
T

j
2/b & G2/N # 517,181.998 & G2/N # 5.598.

The residual SSR is obtained by subtraction.
The “mean squares” # (sum of squares)/(degrees of freedom).
An excellent explanation of these computations can be found in Box, Hunter, and Hunter (1978).



ence distribution for averages becomes a t-distribution scaled by !s2"/n" . The distribution displayed
in Figure 47.2 is the bell-shaped t curve, 95 percent of its area contained within the interval

2t!,"!s2"/n" # 2(2.131)!(0".8"9"8")/"4" # 2.02

(The number of observations in a treatment average is n # b # 4.) The curve can be sketched in by
hand; great precision is not required. One imagines this bell-shaped t-distribution to move back and
forth horizontally. If two or more averages appear to be nested under a single location of the distri-
bution, the inference is that differences between these averages may be due solely to the variance of
the observations, a graphical test analogous to a nonsignificant F test. If some of the averages, indi-
vidually or in clusters, seem to aggregate beyond the bell curve, this is taken as a signal that real dif-
ferences exist, analogous to a significant F test.

Figure 47.3 displays the b # 4 block averages and their reference t-distribution. Once again, 95
percent of the distribution contained in the interval is given by

2t!,"!s2"/n" # 2(2.131)!(0".8"9"8")/"6" # 1.65

(The number of observations in a block average is n # k # 6.) It is obvious from viewing Figure
47.3 that the reference distribution, wherever horizontally positioned, cannot reasonably account for
the four averages. Block averages 1 and 4 are distinctly different from 2 and 3 and from one another.
There is some indication, though slight, that averages 2 and 3 may be from a single distribution and
hence merely reflections of the variability of averages about their expected mean value.

MULTIPLE COMPARISONS

An alternative graphical device for comparing treatment averages is the analysis of means, originated
by Ott (1967). A plot similar to the Shewhart control chart is constructed. The control limits for the
charts are easily obtained using special tables that adjust for the multiple comparisons that are pos-
sible. See Ott (1967), Schilling (1973), Nelson, L. (1983), Ott and Schilling (1990), Nelson, P.
(1993), and, for good examples, Ramig (1983).

The graphical technique of a sliding reference distribution is subjective, the experimenter’s eye
and good judgment called into play. Many alternative formal techniques are available to demonstrate
whether differences exist between the treatment means. Commonly, special intervals are computed
such that averages appearing together within an interval may not be declared statistically signifi-
cantly different. One approach is to compute the least significance difference (LSD) where

LSD
!

# t
",!/2 #$%% $%%%&%s2%

If the absolute value of the difference between any two averages is greater than the LSD, the two
treatment averages may be declared statistically significantly different. Of course, in comparing k
averages there are k(k % 1)/2 possible pairs, and many other comparisons (contrasts) are possible
when k is modestly large. In LSD comparisons a fixed ! risk (usually ! # 0.05) is maintained for
each comparison regardless of the number of comparisons made. The overall ! risk is considerably

1
&
nj

1
&
ni
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FIGURE 47.3 Plot of b # 4 block averages from Table 47.8 and their reference
t-distribution. (Distance from a to b # 2ts/ !k" # 1.65.)



increased when multiple tests are performed. For a fixed overall ! risk for all possible pairs of treat-
ments, one may wish to use the Tukey Studentized range statistic (Tukey 1949). Dunnett’s method
(Dunnett 1964; Bechofer and Tamhane 1983) is used for all (k " 1) differences from a standard. The
Scheffé test is used to make all possible comparisons (Scheffé 1953). Other multiple comparison
methods are the Bonferroni interval (Dunn and Clark 1987); and the Duncan multiple range
(Duncan, D. B., 1955). The Bonferroni and Duncan multiple range procedures can be found in most
computer software programs. A good overall reference to the problems of multiple comparisons is
Miller (1981). For multiple comparison of variances see Spurrier (1992).

BALANCED INCOMPLETE BLOCK DESIGNS

In an incomplete block design, all the treatments cannot be accommodated within a single block. To
illustrate, consider a production manager who wishes to study the differences between the products
supplied by six different suppliers. Unfortunately, personnel and equipment limit the number of sup-
pliers that can be studied to three a day. The production manager is concerned that day-to-day differ-
ences might upset comparisons between suppliers and wishes to block the contributions of days, but
the individual blocks are not large enough to encompass all six treatments. The appropriate experi-
mental design to use is a “balanced incomplete block design,” as illustrated in Table 47.10. The six sup-
pliers (treatments) labeled A, B, C, D, E, and F are then studied in groups of three within each day
(block). The blocks and the sequence of trials within the blocks are to be chosen in some random order.

Note that in the design displayed in Table 47.10 every letter supplier is tested the same number of times
and every pair of letters appears within a block the same number of times. Another design appropriate to
the case of six treatments constrained to be studied three at a time is the “combinatoric” design, that is, a
design consisting of all combinations of six things taken three at a time. The combinatoric balanced
incomplete block would have required 20 blocks; the design illustrated in Table 47.10 requires only 10.

One consequence of using an incomplete block design is that each treatment average must be
adjusted for the blocks in which it appears and the differences between the adjusted treatment aver-
ages appraised. The computations are straightforward but go beyond what can be accommodated in
this handbook. Interested readers are referred to Cochran and Cox (1957), Natrella (1963), and Box,
Hunter, and Hunter (1978).

To enumerate the situations in which it is possible to construct a balanced incomplete block
design, the quantities r, b, t, k, L, E, and N are defined as follows:

r # number of replications (the number of times a treatment appears)

b # number of blocks in the plan
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t ! number of treatments

k ! block size, i.e., the number of treatments that can appear in each block

L ! number of blocks in which a given treatment pair appears: L ! r(k " 1)/(t " 1)

E ! a constant used in the analysis: E ! tL /rk

N ! total number of observations: N ! tr ! bk

Plans are indexed in Table 47.11 for 4 # t # 10 and r # 10. For an extensive listing of the designs
and many worked examples see Cochran and Cox (1957) and Natrella (1963).

General Comments on Block Designs. In the simplest type of block design, Randomized
Blocks, each block is large enough to accommodate all the treatments one wishes to test. In
Incomplete Block Designs, the block size is not large enough for all treatments to be tested in every
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block. In Balanced Incomplete Block Designs, treatments are assigned to blocks that lead to equal
precision in the estimation of differences between treatments.

If Randomized Block and Balanced Incomplete Block Designs do not meet the needs of the
experimenter with regard to number of blocks, size of blocks, number of treatments, etc., other
kinds of plans are available, for example, partially balanced incomplete block designs (Clatworthy
1973), and “chain block” designs, which are useful whenever observations are expensive and the
experimental error is small. [See Natrella (1963) and Fleiss (1986) for the structure and details of
analysis.]

General-purpose software programs written initially for statisticians employing mainframe com-
puters rapidly perform the computations associated with the incomplete block designs. Only the
more advanced personal computer design of experiments software programs offer lists of balanced
incomplete block designs and assistance in their analysis. Despite their obvious importance and
value, the application of these designs within industry is slight.

LATIN SQUARE DESIGNS

A Latin square design (or a Youden square plan, described later) is useful when it is necessary to inves-
tigate the effects of different levels of a studied factor while simultaneously allowing for two specific
sources of variability or nonhomogeneity, i.e., two different blocking variables. Such designs were orig-
inally applied in agricultural experimentation when the sources of nonhomogeneity in fertility were
simply the two directions on the field, and the “square” was literally a square plot of ground. Its usage
has been extended to many other applications in which there are two sources of nonhomogeneity (two
blocking variables) that may affect experimental results—for example, machines and positions or oper-
ators and days. The studied variable, the experimental treatment, is then associated with the two block-
ing variables in a prescribed fashion. The use of Latin squares is restricted by two conditions:

1. The numbers of rows, columns, and treatments must all be equal.
2. There must be no interactions between the row, the column, and the studied factors (see Factorial

Experiments—General, for discussion of interaction).

As an example of a Latin square, suppose we wish to compare four materials with regard to their
wearing qualities. Suppose further that we have a wear-testing machine that can handle four samples
simultaneously. The two blocking variables might be the variations from run to run and the varia-
tions among the four positions on the wear machine. A 4 ! 4 Latin square will allow for both sources
of homogeneity. The Latin square plan is shown in Table 47.12 (the four materials are labeled A, B,
C, and D). Note that every letter (treatment) appears once in every row and once in every column.
Examples of Latin squares from size 3 ! 3 to 7 ! 7 are given in Table 47.13.

Strictly speaking, every time we use a Latin square we should choose a square at random from
the set of all possible squares of its size. The tables of Fisher and Yates (1964) give complete col-
lections of all the squares from 3 ! 3 up to 12 ! 12. Once a given square is chosen, permute the
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columns at random, permute the rows at random, and assign the letters randomly to the treatments
to provide a completely randomized design.

The analysis of the Latin square design is discussed in most textbooks and is available on most
design of experiments personal computer software programs. The analysis of variance table is a sim-
ple extension of the randomized block table. Plots of the treatment averages and their reference dis-
tribution and/or multiple comparison hypothesis tests are the major objective of the analysis. Plots of
the block averages and estimates of block effects are always informative, but since blocks cannot be
controlled by the experimenter, their importance is only tangential to the analysis of the treatments.
The reader is warned, firmly, that the mathematical model underlying the analysis of a Latin square
(or any of its associated designs, the Graeco-Latin and the hyper Graeco-Latin square) assumes that
no interactions exist between rows, columns, or any of the treatment classifications. Failure to meet
this “no interactions” requirement leads to biased estimates of the treatment effects and the row and
column (block) effects, and also biases the estimate of the variance !2. Unbiased estimates of !2 can
be obtained by repeating the entire design or by partial replication [see Youden and Hunter (1955)].

The Latin square is not a factorial design, i.e., a design that allows for interactions between the
separate factors composing the design. If there are interactions likely, the experimenter is advised to
use a factorial or fractional factorial design and associated mode of data analysis. The 3"3 Latin
square design is sometimes called the L9 orthogonal array. See Hunter (1989) for an example of the
dangers that can arise from the misuse of the Latin squares.

YOUDEN SQUARE DESIGNS

The Youden square, like the Latin square, allows for two experimental sources of inhomogeneity.
The conditions for the use of the Youden square, however, are less restrictive than those for the Latin
square. The use of Latin square plans is restricted by the fact that the number of rows, columns, and
treatments must all be the same. Youden squares have the same number of columns and treatments,
but a fairly wide choice in the number of rows is possible. We use the following notation:

t # number of treatments to be compared

b # number of levels of one blocking variable (columns)
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k ! number of levels of another blocking variable (rows)

r ! number of replications of each treatment

L ! number of times that two treatments occur in the same block

In a Youden square, t ! b and k ! r.
Some Youden square plans are given in Table 47.14. The analysis of the Youden squares must be

carefully handled; in particular, the treatment averages must be adjusted for the rows in which they
appear before they can be compared. Further, the standard error of the adjusted averages requires
special computation. Reference should be made to the textbooks listed at the end of this section for
the numerical details.

PLANNING INTERLABORATORY TESTS

We present here only a few simple techniques found useful in the planning and analysis of interlab-
oratory (round-robin) tests. The very early article by Wernimont (1951) remains an excellent intro-
duction to the general problem. Other early contributors to the field are Youden (1967) and Mandel
(1964), both members of the early National Bureau of Standards. An overall view of the importance
of interlaboratory comparisons can be found in Hunter (1980). The best source of detailed informa-
tion on round-robin procedures can be found in the publications of committee E11 of the American
Society for Testing and Materials (ASTM). The text by Moen, Nolan, and Provost (1991) has sever-
al worked examples including a graphical method of analysis due to Snee (1983). Repeatability and
Reproducibility (R&R) studies are often part of an interlaboratory testing program; see Barrentine
(1991), Montgomery (1991), and Automotive Industry Action Group (1990).

A Rank Sum Test for Laboratories. In almost any set of interlaboratory test data, some of
the reported results fall so far out from the main body of results that there is a real question as to
whether these data should be omitted in order to avoid distortion of the true picture. It is always a
difficult problem to decide whether or not outlying results should be screened. One does not wish to
discard a laboratory’s results without good reason; on the other hand, if a laboratory is careless or
not competent, one does not wish to “punish” the test method. A ranking test for laboratories due to
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Youden (1963) is described here. This is only one of several nonparametric ranking procedures that
may be of interest to the reader. Excellent references on these nonparametric approaches are the texts
by Hollander and Wolfe (1973), Conover (1980), Gibbons and Chakraborti (1992), and Iman (1994).

An interlaboratory test usually involves sending several materials containing some particular
chemical element or compound or possessing some physical quality to each of several laboratories.
The ranking test for laboratories uses the recorded measured responses of the materials to rank the
laboratories. The data from the interlaboratory test are summarized in a two-way table with materi-
als as rows and laboratories as columns (or vice versa).

For each material, the laboratory having the largest result is given rank 1, the next largest rank 2,
etc. (Tied values are treated as is usual in ranking procedures, each tied value being given the aver-
age of those ranks that would have been assigned if the values had differed.)

For each laboratory, the assigned ranks are summed over all materials. A laboratory that is con-
sistently high in its ability to measure the response will show a lower rank sum, and a laboratory that
is consistently low will show a higher rank sum than the average or expected rank sum. The ques-
tion is whether such rank sums are excessively high or excessively low. To decide this, tables have
been provided (see Table 47.15).

A Ruggedness Test for Use by the Initiating Laboratory. Very often a test method is judged to
have acceptable precision by the original laboratory, but when the test is performed by several labo-
ratories, the results are disappointing. The reason is usually that the original laboratory has carefully
controlled conditions and equipment and that the operating conditions in other laboratories are
slightly different. (There are always slight deviations, which are permissible within the instructions
contained in the standard procedure for the test method.) Youden (1967) proposed that the initiating
laboratory investigate the effects of such deviations by deliberately introducing small variations in
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the method, a “ruggedness test,” so as to be prepared for the variations resulting when the test is used
by other laboratories. In order to minimize the extra work required for the original laboratory, he pro-
posed that the Plackett-Burman designs for 7, 11, 15 factors be used to detect such effects. If signif-
icant effects result from such variations of conditions in a single laboratory, the method needs further
refinement before interlaboratory tests are run. (See Thomas and Kiwanga 1993.)

Youden Two-Sample Plan. A simple plan to investigate the performance of laboratories and
of the test procedure itself was suggested by Youden (1959) and reprinted in Ku (1969). Samples of
two materials (A and B) are sent to each laboratory in the program. The two materials should be sim-
ilar in kind and in the value of the property to be measured. The laboratories should have the same
internal precision. The pairs of results are used to plot a graph on which the x and y scales are equal
and each laboratory is represented by one point. A laboratory’s result on sample A is the x coordi-
nate and its result on sample B is the y coordinate of that point. There will be as many points as there
are laboratories. For graphical diagnosis, a vertical line is drawn through the median of all points in
the x direction and a horizontal line through the median of all points in the y direction. The lines
could be drawn through the x and y averages just as well, but the medians are convenient for quick
graphical analysis.

Individual points that are very far removed
from the main body of the results indicate labo-
ratories that should probably be screened from
the analysis. The two intersecting median lines
divide the space into four quadrants, and the first
(and often revealing) step in the analysis is to
look at the distribution of points among the
quadrants. If only random errors of measure-
ment were operating, there would be a circular
scatter of points with roughly equal numbers in
each quadrant. The plots of most real-life inter-
laboratory data, however, show concentrations
in the upper right and lower left quadrants (see
Figure 47.4). If a laboratory is high on both sam-
ples, its point will lie in the upper right; if a lab-
oratory is low on both samples, its point will lie
in the lower left. Being high (or low) on both
samples is an indication that a laboratory has
somehow put its own stamp on the procedure,

i.e., that there are systematic differences between the laboratories. Where these systematic differ-
ences exist, the points will tend to lie along a long, narrow ellipse. Assuming that the two materials
are similar in kind and in value of the property measured, as prescribed, and that the scatter in results
for sample A does turn out to be approximately the same as the scatter for sample B, we can calcu-
late an estimate of the standard deviation of a single result as follows:

1. Calculate the “signed differences” d ! A " B for each laboratory; that is, compute the difference
and keep the sign (for the ith laboratory d

i
! A

i
" B

i
).

2. Calculate d!, the algebraic average of the d’s.

3. Calculate d′
i
! d

i
" d!.

4. Take the absolute d′ values and calculate their average; that is, drop the signs before averaging.

5. Multiply this value by 0.886 to get an estimate s of the standard deviation of a single result. (The
value 0.886 is 1/d

2
, Appendix II, Table A, for n ! 2.)

A circle can now be drawn that is expected to contain any stated percentage of the points. The circle
is centered at the median point and its radius (for the stated percentage to be contained within it) is
obtained by multiplying s (from Step 5) by the factor given in Table 47.16.
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FIGURE 47.4 Percent phthalic anhydride in two paint
samples—Youden plot showing systematic differences.



Points lying outside the circle usually indicate laboratories with systematic differences. Further
deductions are possible from such plots (see Youden, 1959); they have been used in a wide variety
of applications, including chemical and engineering tests and standards comparisons.

NESTED (COMPONENTS OF VARIANCE) DESIGNS

Most experimental designs are primarily
intended to provide estimates of the means and
differences or other comparisons between the
means of experimental treatments. However, in
investigations associated with interlaboratory
comparisons, or the repeatability and repro-
ducibility of measuring instruments, sources of
variability become the studied factors, and the
primary knowledge sought concerns the rela-
tive importance of these sources. Such investi-
gations are called “components of variance”
studies. Designs intended to provide estimates
of the components of variance arising from
various sources are called “nested” or “hierar-
chical” designs. A simple nested design is
shown in Figure 47.5 wherein M samples are
taken and then within each sample duplicate
tests are made. The variance of all the obser-
vations is then partitioned into two compo-
nents: that assignable uniquely to the samples
and that uniquely to the duplicates. This is a
two-stage balanced nested design. Three or
more classifications can be nested, as illustrated
in Figure. 47.6.

The analysis of nested designs and estima-
tion of components of variance is based upon a
“random effects” model for the observations in 

which, except for a single constant term, all elements are random variables. (See further discussion
under the sections One-Way Analysis of Variance—Models and Split-Plot Factorial Experiments.)
Needed are the expected values of the mean squares obtained from an analysis of variance table; see
Snee (1974). The designs and their analysis is described in most textbooks on experimental design
[for example, Dunn and Clark (1987); Neter, Wasserman, and Kutner (1990); Hogg and Ledolter
(1992); Montgomery (1991); and Burdick and Graybill (1992)]. An example of the estimation of
components of variance that does not evoke the analysis of variance is given in Box, Hunter, and
Hunter (1978). A Bayesian method for estimating variance components is given in Box and Tiao
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TABLE 47.16 Radius of Circle on Youden Plot
in Terms of Multiples of the Standard Deviation

FIGURE 47.5 A two-stage balanced nested design.
(Reprinted with permission from Bainbridge 1965.)

FIGURE 47.6 Balanced nested designs for three, four,
and five factors. (Reprinted with permission from
Bainbridge 1965.)



(1973). An entire textbook devoted to the subject is Searle, Casella, and McCulloch (1992). Most
design of experiments software programs will provide the expected values of the mean squares needed
to determine the components of variance for the simple balanced designs.

In Figure 47.6, at each stage only two subunits of each unit are taken, but the total number of tests
multiplies rapidly as the number of stages increases. Because of the rapidly increasing total number
of tests, only a few units are usually used at the top levels. In other words, balanced nested designs
tend to provide too little information on the upper levels (the initial stages, or factors A and B) and
often provide more than enough information at the bottom levels (factors E, for example). Bainbridge
(1965) has considered alternative “unbalanced” nested designs with a fixed number of tests. He
prefers a design, which he calls a “staggered nested design” that is easy to administer and provides
about the same number of degrees of freedom for each factor. Bainbridge shows staggered nested
designs for three, four, five, and six factors (see Figure 47.7 for the designs and their analysis).

PLANNING THE SIZE OF THE EXPERIMENT

Methods for determining the number of observations required for estimating the mean and variance
with certain precision, or for comparing two sets of data with regard to mean and variance with cer-
tain risks of error, are given in Section 44, Basic Statistical Methods. A method for determining the
number of observations required for comparing several groups is given here.

For example, the analysis of variance F test (see Completely Randomized Design: One Factor, k
Levels) is designed to test the hypothesis that all group means are the same, i.e., !1 " !2…!k " !.
The corresponding averages y!1, y!2, …, y!k computed from the recorded data will, of course, be dif-
ferent. The outcome of the test of hypothesis depends on the significance level # at which the test is
performed, the true variability of individual observations, the number of observations per average,
and the size of the true difference (if any) between group means. When planning experiments, if
there are no restrictions on the number of observations that can be made, one should specify the size
of those differences in means that are considered important from a practical standpoint. When the
significance level at which the test is to be made is also specified, existing tables or charts can be
used to determine the necessary sample size (number of observations per average) for achieving a
stated probability (1 $ %) of detecting differences between the means of the required size. To use
such tables, we compute a quantity

&2 " " 

where n " number of observations per group (to be determined)
k " number of groups

'2 " true value of within-group variance (assumed same for all groups; can be estimated
from previous similar work)

!
i
" mean for ith group

! " grand mean

Let (!
i
$ !) " (i. The sum of the (

i
values must equal zero.

Appendix II, Table DD gives values &2 for # " 0.01 and % " 0.2, (1 $ % " 0.80), and DF1 and
DF2 degrees of freedom. In the simple case used in the example, DF1 " k $ 1 and DF2 " k(n $ 1).
Other charts and tables are available in slightly different form and for additional values of # and %.
See, for example, Dixon and Massey (1969), Owens (1962), or Odeh and Fox (1991).

Example. Consider the experiment shown in Table 47.4. Suppose that another experiment is to
be run and that we wish to determine beforehand how many briquettes to test using each method in

n)(
i
2

*
k' 2

n "
i

(!
i
$ !)2

**
k' 2
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FIGURE 47.7 Staggered nested designs for three, four, five, and six factors. (Reprinted with permis-
sion from Bainbridge 1965.)



order to achieve a certain discrimination between the means for the three methods. If the statistical
test is to be done at the !"0.01 level and if we want the probability of detecting the postulated dif-
ferences to be at least 0.8, we can use Appendix II, Table DD. Assume #2"545, an estimate of the
variance determined from the previous experiment. Suppose the following differences between the
means are considered practically important:

$
1
" %

1
& % " &30

$
2
" %

2
& % " '20

$
3
" %

3
& % " '10

(Obviously, many different values for the $’s will yield the same value for ($2 and therefore the
same )2.)

The $’s chosen should be meaningful for each experimental situation. Here we have postulated
three particular differences; in other situations the pattern of the differences might take on special
meanings. For example, if the groups were increasing levels of a quantitative variable such as tem-
perature, a meaningful pattern for the $’s might be a constant change in mean from one level to the
next higher one. (Remember that the $i’s must sum to zero.)

)2" 

)2" " " 0.86n

DF
1
" k & 1 " 3 & 1 " 2

DF
2
" k(n & 1) " 3n & 3

Using Appendix II, Table DD, we must find two values of n, one that gives )2 larger than required
and one that gives a smaller value than required:

n DF
2

" 3n & 3 Tabled )2 Desired )2 " 0.86n

7 18 6.05 6.02
8 21 5.83 6.88

The “tabled )2” for n " 8 was obtained by linear interpolation. The solution lies between n " 7
and n " 8, and we take the larger n. Eight observations per group will give us an 80 percent chance
of detecting the postulated differences when we do an F test at the ! " 0.01 level.

This method may be used for multifactor experiments provided the proper values for DF1 and
DF2 are used. It is used when the purpose of the experiment is to compare group averages, and it
works for any number of groups provided the number of observations per group is large enough.
In this case and in the case described below, equal numbers of observations should be taken in
each group.

For another kind of experiment, in which the purpose is to compare the between-group variance
with the within-group variance (see discussion of Model II, Random Effects Model, under One-Way
Analysis of Variance—Models), a minimum number of groups is required to achieve desired dis-
crimination in terms of the relative variability. For example, see Table 47.17, where ! and * are the
risks of the two kinds of error, $0 is an “acceptably small” value of the ratio #b/#w (large enough to
achieve a significant result), and $1 is an unacceptably large value for #b/#w.

1400n
+
1635

n(1400)
+
3(545)

n($i
2

+
k# 2
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Useful discussions on determining the number of observations are given in the texts by Cochran
and Cox (1957), Cox (1958), and Odeh and Fox (1991). Extensive tables are given in the papers by
Kastenbaum, Hoel, and Bowman (1970).

FACTORIAL EXPERIMENTS—GENERAL

Factorial designs are most frequently employed in engineering and manufacturing experiments. In a
factorial experiment several factors are controlled at two or more levels, and their effects upon some
response are investigated. The experimental plan consists of taking an observation at each of all pos-
sible combinations of levels that can be formed from the different factors. Each different combina-
tion of factor levels is called a “treatment combination.”

Suppose that an experimenter is interested in investigating the effect of two factors, amperage
(current) level and force, upon the response y, the measured resistivity of silicon wafers. In the past,
one common experimental approach has been the so-called one-factor-at-a-time approach. This
experimental strategy studies the effect of first varying amperage levels at some constant force and
then applying different force levels at some constant level of amperage. The two factors would thus
be varied one at a time with all other conceivable factors held as constant as possible. The results of
such an experiment are fragmentary in the sense that we learn about the effect of different amperage
levels only at one force level and the effect of different force levels at only one amperage level. The
effects of one factor are conditional on the chosen level of the second factor. The measured resistiv-
ity of the wafer at different current levels may, of course, be different when a different force level
has been chosen. Similarly, any observed relation of resistivity to force level might be quite differ-
ent at other amperage levels. In statistical language, there may be an “interaction effect” between the
two factors over the range of interest, and the one-at-a-time procedure does not enable the experi-
menter to detect the interaction.

In a factorial experiment, the levels of each factor are chosen, and a measurement is made at each
of all possible combinations of levels of the factors. Suppose that five levels of amperage and four
levels of force are chosen. There would thus be 20 possible combinations of amperage and force, and
the factorial experiment would consist of 20 trials. In this example, the term “level” is used in con-
nection with quantitative factors, but the same term is also used when the factors are qualitative.

In the analysis of factorial experiments, one speaks of “main effects” and “interaction effects” (or
simply “interactions”). Estimated main effects of a given factor are always functions of the average
yield response at the various levels of the factor. When a factor has two levels, the estimated main
effect is the difference between the average responses at the two levels, i.e., the averages computed
over all levels of the other factors. In the case in which the factor has more than two levels, there are
several main effect components (linear, quadratic, cubic, etc.), the number of estimable main effect
components being one less than the number of levels. Other comparisons, called treatment “con-
trasts,” are possible. If the difference in the expected response between two levels of factor A remains
constant over the levels of factor B (except for experimental error), there is no interaction between
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A and B; that is, the AB interaction is zero. Figure 47.8 shows two examples of response, or yield,
curves; one example shows the presence of an interaction and the other shows no interaction. If there
are two levels each of the factors A and B, then the AB interaction (neglecting experimental error) is
the difference in the average yields of A at the second level of B minus the difference in the average
yields of A at the first level of B. If there are more than two levels of either A or B, then the AB inter-
action can be composed of more than one component. If we have a levels of the factor A and b lev-
els of the factor B, then the AB interaction has (a ! 1)(b ! 1) independent components. A two-factor
interaction (e.g., AB) is also called a “second-order” effect or “coupled” effect.

For factorial experiments with three or more factors, interactions can also be defined. For exam-
ple, the ABC interaction is the interaction between the factor C and the AB interaction (or, equiva-
lently, between the factor B and the AC interaction or between A and the BC interaction). A
three-factor interaction (e.g., ABC) is a “third-order” effect.

FACTORIAL EXPERIMENT WITH TWO FACTORS

A two-factor experiment is the simplest kind of multifactor experiment; i.e., all possible combina-
tions of the levels of the two factors are run. For example, measurements of the response resistivity
of a silicon wafer are usually made at a standard amperage level while using 150 g of force. Let us
consider an investigation in progress to see what happens when other values of force and amperage
are employed. Four values of force are to be investigated (25, 50, 100, 150 g), along with five levels
of amperage (levels 1, 2, 3, 4, and 5, where level 3 is the standard level). An experimental trial is
made at each of the 4"5#20 possible combinations. The data can be displayed in a two-way array,
as in Table 47.18. This is an unreplicated two-factor multilevel factorial experiment. Some textbooks
will describe it as having two “crossed” factors.

Analysis. The data for this 4 " 5 factorial are displayed in Table 47.18. The first stage of the
analysis is to compute, plot, and review both the column and row averages shown in Table 47.19.
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FIGURE 47.8 Response curves showing presence or absence of
interaction.



Plots of the response versus the factor levels are always useful; in this case they would point up
the noticeably higher resistivity values at amperage level 5 and the apparent changes in the resistiv-
ity with increasing force, particularly at the outer values of amperage. When the factors are quanti-
tative and the levels equally spaced, there are simple methods to check on various types of trends
(linear, quadratic, etc.) in the response measurements as a function of varying levels of a factor (see
Hicks 1982).

The analysis of variance can be used to test two hypotheses: (1) the mean resistivity at all levels
of force is the same and (2) the mean resistivity at all levels of amperage is the same.

The construction of the analysis of variance table would proceed as follows:

r ! number of rows ! 4

c ! number of columns ! 5

T ! grand total ! !
j

C
j
! !

i

R
i
! 236.77

N ! total number of observations ! r " c ! 20

C ! the correction factor ! ! 2803.001645

SSR ! row sum of squares ! # C ! 0.014855
!

i
R

i
2

$
c

T 2

$
N
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TABLE 47.18 Resistivity Measurements

Current level

Force, g 1 2 3 4 5 Row totals Ri

25 11.84 11.83 11.84 11.81 11.96 R1 ! 59.28
50 11.84 11.88 11.88 11.87 11.90 R2 ! 59.37

100 11.77 11.80 11.80 11.81 11.88 R3 ! 59.06
150 11.79 11.80 11.80 11.80 11.87 R4 ! 59.06

Column totals Cj 47.24 47.31 47.32 47.29 47.61 T ! 236.77

TABLE 47.19 Table of Averages and Effects



SSC ! column sum of squares ! " C ! 0.021430

TSS ! total corrected sum of squares

! (all observations squared) " C

! 2803.043500 " 2803.001645 ! 0.041855

SSE ! error (or residual) sum of squares

! TSS " SSR " SSC ! 0.005570

The analysis of variance table for this (unreplicated) two-factor crossed factorial is shown in Table
47.20. Tests of hypotheses that no treatment effects exist are now possible. For rows conclude that
statistically significant effects exist between rows if F ! (row mean square)/(error mean square) is
greater than F1 " #

for (r " 1) and (r " 1)(c " 1) degrees of freedom (from Appendix II, Table K).
Similarly, for columns conclude that statistically significant effects exist if F ! (column mean
square)/(error mean square) is greater than the tabulated value of F for (c " 1) and (r " 1)(c " 1)
degrees of freedom. In this example, both F tests reject the hypothesis that no effects exist.

The analysis of variance table and its associated tests of hypotheses are only one part of the analy-
sis of data from a factorial design. The model postulated for the data assumes that the force and
amperage factor effects are additive. Thus there can be no interactions; that is, the effects of force upon
resistivity remain unchanged whatever the levels of the second factor. One way to check this assump-
tion is to compute Tukey’s one-degree-of-freedom test for nonadditivity (see Snedecor and Cochran
1967 or Box, Hunter, and Hunter 1978). The test for nonadditivity here proved to be nonsignificant.

Table 47.19 has been extended to include the estimated row and column effects (an estimated row
effect is the row average minus the grand average; an estimated column effect is the column average
minus grand average). The row and column effects can then be used to make a two-way table of
“residuals” in which the residual for the cell in the ith row and jth column is equal to the observa-
tion in that cell minus the sum of the grand average, the ith row effect, and the jth column effect. The
table of residuals, Table 47.21, is examined for individual large values (indicating a possibly erro-
neous observation) and for unusual patterns in sign and size (indicating possible interaction effects).
The residuals should be plotted in the time order in which the treatment combinations were run; any
indication of trends indicative of other factors disturbing the response. The residuals can also be plot-
ted on normal probability paper as a check on the normality assumption.

The discussion thus far assumes that only one determination per cell was made. To obtain a truly
valid estimate of the error variance from this experiment, the cell’s observations must be replicated.
When experiments are replicated (ideally with each cell containing the same number of observa-
tions), it is useful to have a table similar to Table 47.18, where now in each cell both the average and
the estimate of variance are recorded. Homogeneity of variance tests may be made (see Snedecor and
Cochran 1967; Duncan 1974; Dyer and Keating 1980), although it is well to remember that such

!
j

C
j
2

$
r

47.36 SECTION FORTY-SEVEN

TABLE 47.20 Analysis of Variance of Resistivity Measurements Given in Table 47.18



tests require near exact normality if they are to be useful. The analysis of variance assumes these
variance estimates to be homogeneous and pools them.

A plot of each cell average versus cell estimate of variance (or standard deviation) is often reveal-
ing. Individual outlying points or a pattern of dependence of variability on average value should be
looked for. (In the latter case, the need for a transformation of the data should be considered; see
Box, Hunter, and Hunter 1978.)

In this experiment, replicate measurements were made in each cell of the table since the investi-
gator was interested in finding out about possible interactions and whether the variance of the resis-
tivity measurements would be constant at the extreme values of the factors. In this original
experiment, no significant interactions were found, nor was the variance nonhomogeneous.

The analysis of variance of a replicated two-factor crossed factorial design experiment is easily
modified from that of the unreplicated one. The procedure is to calculate the following quantities and
insert them in Table 47.22:

r ! number of rows

c ! number of columns

k ! number of determinations per cell

N ! total number of observations ! krc

T ! grand total

C ! T 2/N

SSR ! row sum of squares! " C

SSC ! column sum of squares ! " C

SSI ! Interaction sum of squares

! " SSR " SSC " C

TSS ! total sum of squares ! #y2 " C

SSE ! error sum of squares ! TSS " SSR " SSC " SSI

!
ij

(cellij total)2

$$
k

!
j

C
j
2

$
kr

!
i

R
i
2

$
kc
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The above instructions will fill in all the cells in the “Sum of squares” column of the analysis of
variance table (Table 47.22), but the similarities to Table 47.5 should be noted. The value of the mean
square error (MSE) in Table 47.22 can also be obtained by pooling the (r ! c) estimates of the
within-cell variance.

SPLIT-PLOT FACTORIAL EXPERIMENTS

In general a factorial design is a program of experiments consisting of all possible combinations of
levels (versions) of k different factors (variables). There can be m1 levels of factor 1 combined with
m2 levels of factor 2,…, combined with m

k
levels of factor k to give a total of N " m

1
! m

2
! … !

m
k

experimental trials.
Care must be taken that the N experimental trials composing a factorial design are all run in a ran-

dom sequence. Consider for example an experimental program for studying temperature and pres-
sure each at three levels along with four different versions of catalyst, that is, a 3 ! 3 ! 4 factorial
design in N " 36 trials. To be a standard factorial all 36 runs would be performed in random order.
However, it is very likely that the experimental design will be run in a split-plot (nested) arrange-
ment; that is, the nine temperature-pressure runs will be randomly performed for each catalyst sep-
arately. The analysis of a split-plot factorial design, most particularly the computation of correct
confidence intervals and tests of hypotheses concerning treatment means, usually requires the atten-
tion of a professional statistician. In this handbook only fully randomized designs are discussed.

Split-plot designs are alike in structure to the “nested” designs discussed earlier. Commonly, the
designs are called “split-plot” when the objective is the study of treatment means and called “nested”
when the objective of the experimenter is to estimate components of variance. Statisticians, and most
computer software programs, distinguish between these two forms of experimental design with their
different objectives. The factorial split-plot arrangement requires a “Type I” analysis of variance
while that for the nested designs requires a “Type II.” Occasionally, experimental designs are
employed in which estimates of both means and components of variance are required. The subtleties
of analysis become important and one should seek the advice of a professional statistician.

FACTORIAL EXPERIMENTS WITH k FACTORS (EACH FACTOR AT
TWO LEVELS)

The 2k factorial designs have widespread industrial applicability. The designs permit the separate
estimation of the individual effects and the interaction effects of the k factors in an experimental pro-
gram in which all k factors are varied simultaneously in a carefully organized pattern of trials.

Symbols. A factorial experiment with k factors, each at two levels, is known as a 2k factorial
experiment. The experiment consists of 2k trials, one trial at each combination of levels of the fac-
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tors. To identify the individual trials, different notations are used, as illustrated in Table 47.23. One
convention is to label each factor by a letter (or numeral) and then to denote the two levels (versions)
of each factor by a plus (!) and a minus (") sign. Commonly the minus sign refers to the lower
level, the standard conditions, or the absence of the factor. Thus, if there are three factors labeled A,
B, and C, the eight trials comprising the 23 factorial design are as shown in Table 47.23. The (!, ")
notation is sometimes referred to as “geometric.” For example, the eight (±, ±, ±) factor settings for
the 23 design may be interpreted as giving the (±1, ±1, ±1) coordinates of the eight vertices of a cube.
Alternative notations are to employ 0 and 1, respectively, or, following the Japanese tradition earlier
established by Taguchi, 1 and 2 for the two versions of each factor. The classical convention is to
denote the two versions of each lettered factor by the presence and absence of its corresponding low-
ercase letter, as is also illustrated in Table 47.23. Here the trial in which all factors are at their “low”
level is denoted by a 1. The sequence of trials in Table 47.23 is written in standard or “Yates” order.
The trials would, of course, be run in random order.

Example. The data in Table 47.24 are taken from a larger experiment on fire-retardant treatments
for fabrics. The excerpted data are intended only to provide an example for demonstrating the tech-
nique of analysis. The experiment has four factors, each at two levels, i.e., it is a 24 factorial. Note
that all factors are qualitative in this experiment. The experimental factors and levels (versions) are

Factors Levels

A—Fabric "Sateen
!Monk’s cloth

B—Treatment "Treatment x
!Treatment y

C—Laundering "Before laundering
!After one laundering

D—Direction "Warp
!Fill

The observations reported in Table 47.24 are inches burned, measured on a standard-sized sam-
ple after a flame test. For convenience, alternative design notations representing the treatment com-
binations appear beside the resulting observation.

Estimation of Main Effects and Interactions. Obtaining the estimates of main effects
and interactions from a 2 k factorial design (and 2 k"p fractional factorial designs) is available on
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almost all design of experiments software programs. The computations are simple to do by hand but
become quickly tedious and hence ideal work for a computer (see Bisgaard 1993a). Further, the asso-
ciated analysis of variance table is similarly easy and hence widely available. Nevertheless, we
include here a description of the hand computations for the interested reader, since they are also eas-
ily done on a spread sheet.

The 2k factorial designs permit the estimation of all k main effects (first-order effects), all
k(k ! 1)/2 two-factor interactions, all k(k ! 1)(k ! 2)/3! three-factor interactions, etc. Each
estimated effect is a statistic of the form y!" 

! y!!
; that is, it is expressed by the difference

between two averages, each containing 2 k ! 1 observations. For a 24 design the analyst would
thus be able to estimate, in addition to the grand average, four main effects, six two-factor inter-
actions, four three-factor interactions, and a single four-factor interaction, giving a total of 16
statistics. Remarkably, all these statistics are “clear” (orthogonal) of one another; that is, the
magnitudes and signs of each statistic are in no manner influenced by the magnitude and sign
of any other.

The question as to which observations go into which average for each estimated effect is deter-
mined from the k columns of " and ! signs that together form the experimental design (the design
column “vectors”). Additional column vectors of " and ! signs are then constructed for each inter-
action, as illustrated in Table 47.25. For example, the vector of signs labeled AB is obtained by alge-
braically multiplying, for each row, the " or ! sign found in column A by the " or ! sign found
in column B.

Table 47.25 also contains the column of observations. To estimate the AB interaction effect, all
the observations carrying a " sign in the AB column are placed in y!"

and those with a minus sign in
y!!

. The estimated AB interaction effect (y!" 
! y!!

) is therefore:

! # ! # # !0.4375
!3.5
$

8
30.5
$

8
27.0
$

8
3.1 " 4.5 " … " 5.0
$$$

8
4.2 " 2.9 " … " 2.3
$$$

8
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Yates’ Algorithm. An alternative and more rapid method for obtaining estimates of main effects
and interactions for two-level factorials, called “Yates’ algorithm,” applies to all two-level factorials
and fractional factorials. The first step in Yates’ algorithm is to list the observed data in Yates order,
as illustrated in Table 47.26. The generation of the values in Table 47.26 proceeds as follows:

1. A two-level factorial with r replicates contains N ! r2 k runs. The associated Yates’ algorithm
table will have k " 2 columns, the first of which contains the experimental design, i.e., the 2 k

treatment combinations in standard (Yates) order.
2. In column 2, enter the observed yield corresponding to each treatment combination listed in col-

umn 1. If the design is replicated, enter the total for each treatment combination.
3. In the top half of column 3 enter, in order, the sums of consecutive pairs, of entries in column 2,

i.e., the first plus the second, the third plus the fourth, and so on. In the bottom half of column 3
enter, in order, the differences between the same consecutive pairs of entries, i.e., second entry
minus first entry, fourth entry minus third entry, etc. Change the sign of the top (first of the pair)
and algebraically add.

4. Obtain columns 4, 5, …, k"2, in the same manner as column 3, i.e., by obtaining in each case
the sums and differences of the pairs in the preceding column in the manner described in step 3.

5. The entries in the last column (column k " 2) are labeled g(T ), g(A), g(B), g(AB), etc. The let-
ters in the parentheses correspond to the " signs in the geometric notation. The first value g(T )
is divided by N to give the grand average. Estimates of the remaining main effects and interac-
tions are obtained by dividing each g(…) by N/2. (Note: The remaining steps of this procedure
are checks on the computations.)

6. The sum of all the individual responses (column 2) should equal the total given in the first entry
of column 6, i.e., g(T) must equal the grand total.

7. The sum of the squares of the quantities in column 2 should equal the sum of the squares of the
entries in column (k " 2) divided by 2 k.

8. Each g(…) in the last column equals the sum of observations carrying a " sign minus the sum of
observations carrying a # sign when the columns of signs displayed in Table 47.25 are employed.
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The corresponding estimated effects are given by g(…)/(N/2). The algorithm is best explained
with an example.

Example. The example shown in Table 47.24 has 24 runs. Thus the associated Yates algorithm will
have six columns, as shown in Table 47.26. The grand average is y! ! 57.5/16 ! 3.5938. The next
entry in column 6 is g(A) ! "12.9. The estimated main effect of factor A is then

A effect ! ! "1.6125

The estimate of the main effect of A can be checked by taking the average of the responses recorded
on the high (#) side of the factor A and subtracting the average response on the low (") side to give
y!#

" y!"
! 22.3/8 " 35.2/8 ! "12.9/8 ! "1.6125.

The remaining effects are similarly computed. Thus, the estimated AD interaction effect !
"2.5/8 ! "0.3125.

The following steps are checks on the computations in Table 47.26:

6. The sum of column 2 equals g(T).
7. The sum of squares of the entries in column 2 equals 219.5. The sum of squares in column 6

divided by 24 ! 3506.4/16 ! 219.15.

Testing Main Effects and Interactions. The grand average and 15 estimated effects
obtained from the 24 design appear in the right-hand column of Table 47.26. The standard error (SE)
of each estimated effect is given by

SE(effect) ! SE(y!#
" y!"

) ! 2s\"N!

where N!total number of observations. The 100(1"$) percent confidence limits are given by

Effect ± t
$/2

[SE(effect)]

Needed is s2, the estimate of the experimental error variance %2. An estimate of %2 can always be
obtained from truly replicated trials, each set of replicates providing a single estimate of variance and
then all the estimates pooled. However, in this example each trial was performed only once and some
alternative procedure for securing an estimate of %2 is needed. We turn now to the analysis of vari-
ance table for the 2 k factorial design.

The Analysis of Variance for the 2k Factorial. It is a rare design of experiments com-
puter software program that omits the computations for a factorial design analysis of variance table.
The computations are easy, though lengthy, when done by hand. We use our 24 example to demon-
strate these computations for the interested reader. They are easily done with a computer spread sheet
program.

The total variability of the observations is measured by &(yi " y!)2!&yi
2"(&yi)

2/N, i ! 1, 2, …, N.
In this example &(yi " y!)2 ! 219.15 " (57.5)2/16 ! 12.51. If this variability could be completely
assignable to random errors, then the estimate of the variance %2 is given by s2 ! &(yi " y!)2/(N"1)
with (N " 1) degrees of freedom. However, some of the movement amongst the observation yi is like-
ly caused by the influences of the controlled factors which make up the experimental design. The con-
tribution of each factorial effect is given by its “sum of squares” ! N(effect)2/4, labeled SSq, with one
degree of freedom, as illustrated in Table 47.27.

The residual sum of squares represents variability remaining after all assignable causes have been
subtracted. In Table 47.27 all 15 degrees of freedom with their associated SSq “sum of squares” are
present, and thus the residual sum of squares and degrees of freedom are both zero.

To estimate the variance %2 in this unreplicated factorial design, we must declare some of the esti-
mated effects to be manifestations of noise, i.e., not real effects and likely equal to zero. The most

"12.9
'

8
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reasonable collection of such effects is the three and four factor interactions. We thus sum their sum
of squares and degrees of freedom and compose an estimate of variance s2 ! 0.323125/5 ! 0.064625
with " ! 5 degrees of freedom. The estimated standard deviation is s ! 0.254. The standard error of
an effect is then SE(effect) ! 2s/!N" !0.127, and the 100(1 # $) percent confidence limits for an
effect are

± t
"$/2

SE(effect) ! ± t
5,0.025

(0.127) ! ±2.571(0.127) ! ±0.326

Thus, an (approximate) 95 percent confidence interval for all remaining effects is given by effect
± 0.326. Any estimated effect whose confidence interval “effect ± 0.3265” includes zero may be
declared not statistically significant. Of the estimated effects in this example only A and AB can be
declared statistically significant and the effects B and AD nearly so. Computer software programs
will perform analysis of variance F tests (or equivalent t tests) and compute their probabilities. These
tests provide identical inferences. The analyst is advised to look at the interval statements rather than
try to judge the differences between small probabilities. It is a rare individual who can really appre-
ciate the true meaning of probabilities such as 0.07 versus 0.035.

A less formal analysis is to plot the absolute values of the estimated effects into a Pareto diagram.
Here a Pareto diagram of the estimated effects indicates that factors A, AB, AD, and B are the “vital few.”
A Pareto diagram will identify “significant” effects almost as well as a collection of confidence intervals
or a set of F tests in an ANOVA table (Hunter, W.G. 1977; Lenth 1989; Schmidt and Launsby 1991).

Collapsing the 2k Factorials. Collapsing 2k designs into lower “dimensionality” is an impor-
tant strategy in the application of factorial designs. In practice it is very unlikely that all the possible
main effects and interactions are real when the number of factors k ≥ 3. In fact, particularly in screen-
ing situations where many factors are being co-studied, several individual factors may have no
detectable main effect or interaction influences upon a response. Factorial designs for k modestly
large are thus said to have “hidden replication,” that is, an excess of degrees of freedom over and

47.44 SECTION FORTY-SEVEN

TABLE 47.27 Analysis of Variance Table: 24 Factorial

Source of variation SSq DF

Total ! %(yi # y")2 12.509375 15

A effect ! 16 (#1.6125)2/4 10.400625 1

B effect ! 16 (&0.3125)2/4 0.390625 1

C effect ! 16 (#0.1125)2/4 0.050625 1

D effect ! 16 (#0.1125)2/4 0.050625 1

AB effect ! 16 (#0.4375)2/4 0.765625 1

AC effect ! 16 (#0.0625)2/4 0.015625 1

AD effect ! 16 (#0.3125)2/4 0.390625 1

BC effect ! 16 (&0.1625)2/4 0.105625 1

BD effect ! 16 (&0.0125)2/4 0.000625 1

CD effect ! 16 (#0.0625)2/4 0.015625 1

ABC effect ! 16 (&0.0625)2/4 0.015625 1

ABD effect ! 16 (#0.2375)2/4 0.225625 1

ACD effect ! 16 (#0.1125)2/4 0.050625 1

BCD effect ! 16 (#0.0875)2/4 0.030625 1

ABCD effect ! 16 (&0.0125)2/4 0.000625 1

Residual sum of squares 0 0



beyond those necessary to explain the response. Thus, when a factorial design is unreplicated, many
estimated effects and their associated sums of squares and degrees of freedom may become available
to employ in the estimate of variance. In this 24 example it appears that factor C makes no large con-
tribution to the response, either as a main effect or as an interaction. The factor’s effects are so small
over its region of exploration as to be indistinguishable from noise. The 24 factorial now collapses
into a replicated 23 design in the effective factors A, B, and D. The collapsed design is displayed in
Table 47.28.

The estimated effects for factors A, B, and D remain unchanged. An estimate of variance can now
be obtained from the repeated runs. When there are pairs of observations, a shortcut computation for
s2 is given by:

s2 ! 

where the d
i
are the differences between the i!1, 2 ,…, d pairs of observations and n

d
is the number

of differences. This estimate of variance has "!n
d

degrees of freedom. Thus, for this example:

s2 ! ! 0.0356

with " ! 8 degrees of freedom and s ! 0.1887. The standard error of each effect (excluding all those
carrying the label C, of course), is

SE(effect) ! ! ! 0.0943

Using t with "!8 degrees of freedom, the 95 percent confidence limits for the estimated effects are
given by

(t
#/2

)SE(effect) ! ±2.306(0.0943) ! ±0.2175

Half-Normal Plots. Daniel (1959) proposed a simple and effective technique for use in the
interpretation of data from the two-level factorial designs. This technique consists of plotting 
the absolute values of the estimated effects on normal probability paper (dropping the effect’s
signs), leading to “half-normal” plots. Effects indistinguishable from noise will fall along a straight
line; effects that are statistically significant will fall well off the line. Full-normal plots consisting
of the estimated effects with their signs are also possible; see Box, Hunter, and Hunter (1978).
Normal probability plot routines are found in most statistical software programs. Half-normal plots
are a particularly useful diagnostic tool offering evidence of wild observations and other conditions

2(0.1887)
$$

!1"6"
2s

$
!N"

0.57
$
(2)(8)

#
i

d
i
2

$
2n

d
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that violate the assumptions of homogeneous variance, normality, and randomization. “Guardrails”
can be used to judge the divergence of the plotted effects from the line; see Zahn (1975) and Taylor
(1994). The Lilliefors (1967) test for normality can be helpful in judging all normal plots. For this
and other nonparametric methods see Iman (1994).

EVOP: EVOLUTIONARY OPERATION

An important application of experimental design in the production environment was proposed by
Box (1957). Essentially, a simple experimental design, run repeatedly, provides a routine of small
systematic changes in a production process. The objective is to force the process to produce infor-
mation about itself while simultaneously producing product to standards. Only small changes in the
process factors are allowed, and the consequences of these changes must be detected in the presence
of the many natural variabilities that surround the process. The repetition of an experimental design,
commonly a 22 factorial with center point, permits the blocking of many of the disturbances that
commonly influence production. Through the process of replication, the design provides steadily
improving estimates of the main effects and interactions of the studied factors.

Response Surface. A response surface (see Box 1954) is a graphical representation of the
connection between important independent variables, controlled factors, and a dependent variable.
(An independent variable is a factor that is, or conceivably could be, controlled. Examples are flow
rate and temperature. The value of a dependent variable is the result of the settings of one or more
independent variables.) Most processes have several dependent variables, such as yield, impurities,
and pounds per hour of a byproduct. These responses are usually smooth and may be graduated
approximately by simple contours such as a family of lines or arcs. We ordinarily work on process-
es that have unknown response surfaces—if they were known, the work would not be necessary. See
Response Surface Designs below.

A response surface for a process might look like the one in Figure 47.9, which shows the yield of
a catalytic oxidation as a function of temperature and feed rate of hydrocarbon. If this information
were known, the pounds per hour of product could be determined and better operating conditions
selected for any desired production rate. The response surface is initially unknown, but improvement
can be made if we only find out which way is up. Multiple regression can be used to approximate the
response contours (see Section 44, under Multiple Regression).

EVOP Technique. The problem, then, is to increase profit in an operating plant with minimum
work and risk and without upsetting the plant. These are the steps:

1. Survey company reports and open literature on the process. Study cost, yield, and production
records.

2. Study this section on EVOP and preferably the definitive text (Box and Draper 1969).
3. Obtain agreement and support from production management. Organize a team and hold training

sessions.
4. Select two or three controllable factors that are likely to influence the most important response.
5. Change these factors in repeated small steps according to a plan.
6. After the second repetition of the plan (Cycle 2) and each succeeding cycle, estimate the effects.
7. When one or more of the effects is significant, move to the indicated better operating conditions

and start a new EVOP program, perhaps with new ranges or new factors.
8. After eight cycles, if no factor has been shown to be effective, change the ranges or select new

variables (Box and Draper 1969).
9. Continue moving the midpoint of the EVOP plan and adjust the ranges as necessary.
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10. When a maximum has been obtained, or the rate of gain is too slow, drop the current factors
from the plan and run a new plan with different factors.

The following topics explain these steps in detail.

Literature Search. Sources of information include the process instructions, company reports, man-
ufacturers’ literature, patents, textbooks, and encyclopedias of technology. Do not neglect people.
Company personnel, consultants, and operators can all contribute. Search for information on

1. Important independent variables
2. Test methods for intermediate and final results
3. Recommended procedures
4. Records of good and bad results and their causes
5. Long-term history of results; plant production rate and yield by week or month and similar data;

effect of past changes in equipment and conditions

When information is contradictory, an EVOP program is an ideal strategy for resolving the conflict.
Always consider the physical and chemical principles that apply.

The EVOP Design. EVOP uses planned runs that are repeated over and over (replicated). One plan
in wide use is the two-level complete factorial. There are important reasons to maintain observations
on a known set of conditions, called a “reference point.” For simplicity in the present discussion, let
this point be the center of the square formed by the vertices of the factorial.

Example. This example shows coded data from an actual EVOP program (Barnett 1960). The
problem involved a batch organic reaction, and after the steps above were followed, the two fac-
tors and their ranges were selected as shown in Figure 47.10. The response Y is a coded yield in
pounds per batch and should be maximized. In this diagram, the reference run (batch) was made
at 130°C for 31!2 h. The next batch was made at 120°C for 3 h, and so on. The first cycle con-
tains five runs, one at each of the conditions. Samples were taken from each batch and analyses
were obtained. If the process were continuous, it would be allowed to stabilize after each change
of conditions.
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FIGURE 47.9 Typical response surface: yield as a function of feed
rate and temperature for a catalytic reactor.



Warning: It is not unusual to have difficulty
in obtaining a representative sample. Procedures
and tests are discussed in Sections 44 and 46.

Effects can be estimated at the end of Cycle
1, but in the absence of repeated trials, no esti-
mate of error variance is available. At the con-
clusion of Cycle 2 both estimated effects and
error variance are possible. The estimated
effects and their confidence intervals may be
computed on a form such as Figure 47.11,
which shows this example. The form helps
reduce the work and minimizes mistakes.
Instructions should be printed on the reverse
side (see Figure 47.12).

The error term that puts the magnitude of
effects into perspective is obtained from the range
by use of factor K first derived by Box and Hunter
(1959). The uncertainty in estimating the effects
is stated as a confidence interval and the
Change-in-mean effect (CIM) is calculated by 

comparing the results at the outer four corners with the result in the center. The use of this last infor-
mation is discussed below.

A “phase” is defined as all the cycles that use the same settings of the same factors. The phase
average shows the general level of the response and can be used to compare different phases.

The left part of the form is used to record data and estimate effects. It also has the scaled dia-
gram of the phase. The right third is used to determine the error limits of effects and corner aver-
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FIGURE 47.11 Calculations form at the end of Cycle 2. (Modified from Barnett 1960.)

FIGURE 47.10 An EVOP plan. Numbers are in run
order; 0 is the reference run.



ages. The error limits are called “2 S.E.” for “two standard errors.” The estimated effect ±2 S.E.
covers the usual 95 percent confidence region. Caution should be exercised in claiming statistical
significance until after two or three cycles.

For the present example, at the end of Cycle 2 the A effect (time) is estimated as 66 ± 166; it lies
somewhere between !100 and "232. Thus, the true value of this effect could be negative, positive,
or nil. The B (temperature) effect, however, is estimated to be 174 ± 166, or in the range of "8 to
340. Technically, it is likely to be a positive real effect. The interaction AB is small, and so is the
change in mean. Since the confidence region for B is so close to zero and following the advice above
to be cautious at Cycle 2, another cycle is run. Its results are shown in Figure 47.13.

After Cycle 3, the B effect (temperature) was declared statistically significant, since its likely val-
ues fall in the range of 169 ± 92, or "77 to "261. It does not appear that data from more cycles
would change the conclusion that temperature should be increased to increase the response y.

When statistical significance is found for one factor but not for the other, move the plan in the
desirable direction for the “discovered” important factor and increase the range for the second (non-
significant) one. Possible old and new phases of an EVOP program are shown in Figure 47.14. When
significance is found for both variables, the center of the plan is moved in both directions in pro-
portion to the size of the effects. This is the direction of steepest ascent (see Determine Direction of
Steepest Ascent below, under First-Order Strategy). Whenever the plan is changed, a new phase is
started. During the second and later phases, the previous estimate of standard deviation is often used
since it was obtained under the current operating method.

Moves. To be conservative, as EVOP should be, moves are contiguous; i.e., one or more of the points
in the old phase and new phase coincide. This limits the moves to those types shown in Figure 47.14.

There is nothing “magic” about drawing these plans as squares—1 h does not equal 20°C any-
way. A particularly strong signal may justify a move to a plan that does not adjoin the previous one.

Change-in-Mean. The Change-in-mean effect is the difference between the results at the center
point and the average of the other four peripheral points. It is therefore a signal of curvature as shown
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FIGURE 47.12 Instructions for EVOP form.
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FIGURE 47.13 Calculation form after Cycle 3.

FIGURE 47.14 Possible relations of old phase and new phase.



in Figure 47.15. It is used in conjunction with
the effects to indicate when a maximum (or a
minimum) has been reached and to indicate the
sensitivity of the response to changes in the inde-
pendent factors. In the Taguchi literature the
response would be termed “robust” to changes
in the independent variable (Taguchi 1978). In
rare cases it may happen that the first phase is
located symmetrically about the maximum with
respect to the two independent factors chosen. In
this case the factors should be nonsignificant but
the Change-in-mean may be significant.

Blocking. A process response ordinarily
changes slightly with time, reflecting changes in
sources of raw material, changes in air tempera-
ture from day to night, and so on.

Runs made close together in time are expected
to be more nearly alike than those over a longer
interval. Blocking is used to minimize the trou-

ble caused by temporal changes of this type. For the EVOP calculations shown here, a block is one
cycle. Changes in average level that occur between cycles are completely eliminated from the esti-
mated effects, as can be seen by adding a constant to the five runs of Cycle 3, and recalculating the
effects. (The phase average is changed, of course.)

Multiple Dependent Responses. So far the explanation has been in terms of a single dependent
response. This is rather unrealistic, except for the profit variable. Most processes have several depen-
dent responses that must be measured or calculated, such as yield, production rate, percent impurity,
or pounds of byproduct. A calculation sheet is made for each dependent response, and statistical sig-
nificance may be noted on one dependent sheet but not on others. In this case, it may be well to run
another cycle or two to get more information on the other dependent responses before a move is made.

The most troublesome case occurs when the indicated directions for improvement of two responses
(say production rate and percent impurity) do not agree. The EVOP program has brought information
from the production process. Decisions as to what to do next now rest upon information supplied by
the EVOP program coupled with information to be supplied by the subject matter experts.

BLOCKING THE 2k FACTORIALS

Experimenters often find difficulty in maintaining a homogeneous experimental environment for all
the experiments required in a 2k factorial. For example, an experimenter might need 2 days to run the
eight trials required in a 23 factorial. The question is how to choose the trials to be run each day so
as not to disturb the estimates of the major effects of the three factors, i.e., how to “block” the design
into two blocks of four runs each. Here blocking is accomplished by sacrificing the interaction esti-
mate of least concern, i.e., the three-factor interaction. The procedure to be followed is illustrated in
Table 47.29, part a, for a 23 factorial. First, the plus and minus signs of the 23 design are written
down. Next, the columns of plus and minus signs commonly used to estimate the ABC interaction is
constructed and labeled the block “generator.” Those runs carrying a plus sign in the block genera-
tor column form the first block; those carrying a minus sign form the second block.

When this design is employed, the estimate of the three-factor interaction (abbreviated 3fi) can-
not be distinguished from the block effect; the block effect and 3fi effect are “confounded.” All other
estimated effects are clear of the block effect.
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FIGURE 47.15 Cross section through a response sur-
face. CIM indicates curvature.



To partition the design into four blocks of two runs each, the proper block generators are provid-
ed by the two columns of plus and minus signs associated with the interactions AB and BC as illus-
trated in Table 47.29, part b. Note that the generators produce four combinations of minus and plus
signs, each combination identifying a block of two runs. In this particular design all 2fi (two-factor
interactions) are confounded with blocks.

The block generators must be carefully chosen. The blocking arrangements for the 23, 24, and 25

designs appear in Table 47.30. A more complete table and description of factorial design blocking
appears in Box, Hunter, and Hunter (1978).

FRACTIONAL FACTORIAL EXPERIMENTS (EACH FACTOR AT TWO LEVELS)

If there are many factors, a complete factorial experiment, requiring all possible combinations of
the levels of the factors, involves a large number of tests—even when only two levels of each fac-
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tor are being investigated. In these cases, it is useful to have a plan that requires fewer tests than
the complete factorial experiment. The fraction is a carefully prescribed subset of all possible
combinations. The analysis of fractional factorials is relatively straightforward, and the use of a
fractional factorial does not preclude the possibility of later completion of the full factorial
experiment.

Confounding (Aliasing, Biasing). In a complete factorial experiment we have 2k experi-
mental trials. The 2k experiments can be used to give independent estimates of all 2k effects. In a frac-
tional factorial (say the fraction 1/2p) there will be only 2k!p experiments, and therefore only 2k!p

independent estimates are possible. In designing the fractional plans (i.e., in selecting an optimum
subset of the 2k total combinations), the goal is to keep each of the 2k!p estimates as unbiased or
“clear” as possible, i.e., to keep the estimates of main effects and if possible second-order interac-
tions mutually unbiased, or nearly so.

To explain, consider the following 23!1 fractional (the one-half, 2!1, of the 23 factorial):

A B C Observed

! ! " y
1

# 8
" ! ! y

2
# 11

! " ! y
3

# 9
" " " y

4
# 14

The main effects are given by the statistics y!" 
! y!!

, where once again the plus and minus subscripts
of each letter in the design identify the observations entering each average. Thus, the main effect of
A is estimated to be (11 " 14)/2 ! (8 " 9)/2 # 4.0. The main effects of B and C are, respectively,
(9 " 14)/2 ! (8 " 11)/2 # 2 and (8 " 14)/2 ! (11 " 9)/2 # 1.0. Now consider the estimate of the
two-factor interaction AB. The analyst will find that the signs required to estimate the AB interaction
are identical to those already employed to estimate the main effect of C. The main effect of C and
the two-factor interaction AB are confounded. Said another way, the statistic y!" 

! y!!
#1.0 has an

“alias” structure; that is, the statistic may be identified as either C or AB. In fact, the expected value
of the statistic equals C"AB, the sum of the two effects, and in the absence of clear information on
the main effect of C, we cannot tell whether the AB effect is plus, minus, large, or small. The read-
er will note that estimate A is confounded with BC, as is B with AC.

When some or all main effects are confounded with two-factor interactions, the fractional facto-
rial design is said to be of “Resolution III.” When one or more of the main effects are confounded
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with (at least) three-factor interactions, the fractional is said to be a “Resolution IV” design.
Fractionals with main effects confounded with (at least) four-factor interactions are of “Resolution
V,” etc. (See Box and Hunter 1959).

DESIGNING A FRACTIONAL FACTORIAL DESIGN

Let N equal the number of runs and k the number of factors to be investigated. When N ! 2k, we
have a full factorial design. When N ! 2k"p, we have a (1#2)p replicate of the 2 k factorial; for exam-
ple, a 27"3 is a one-eighth replicate of a 27 factorial and contains 16 runs.

To design a one-half replicate design in N runs, first write down (Yates order is best) the full fac-
torial design in (k " 1) factors. Next write down the column of signs associated with the highest-
order interaction. These signs are now used to define the versions of the kth factor. For example, to
construct the 24"1 design, begin with a 23 factorial in factors A, B, and C as illustrated in Table 47.31.
Next to the columns for A, B, and C write down the column of signs associated with the ABC inter-
action. Use these signs to identify the two versions of factor D. (The other one-half fraction is
obtained by reversing the signs of the column ABC.)

To construct a one-quarter replicate design, two columns of signs are required in addition to the
standard factorial in N runs; the one-eighth replicate design requires three additional columns, etc.
The columns of signs to be used must be carefully chosen; they are listed in Table 47.32 for designs
up to k ! 7 factors. Table 47.32 is an adaptation of a much more extensive table given in Box,
Hunter, and Hunter (1978). Extensive listings of fractional factorial designs can also be found in
Diamond (1989).

Most design of experiment software programs provide two-level fractional factorial designs of any
desired resolution along with the alias-confounding patterns associated with each estimated effect.
Given below is an example of the construction of a 24"1 and design and analysis of a 26"2 factorial.

Example. To construct a fractional factorial design for k ! 6 factors in N ! 16 runs, first write
down the full factorial 24 design in factors A, B, C, and D. Consulting Table 47.32, the vectors of plus
and minus signs associated with the interaction ABC are now used to define the versions of factor E.
The signs of the BCD interaction are similarly used to define the versions of factor F. The completed
26"2 design is displayed in Table 47.33 along with observed responses, Yates’ algorithm, and identi-
fied effects.
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TABLE 47.32 Vectors Used for the Construction of Fractionals

TABLE 47.33 A 26!2 Resolution IV Fractional Factorial and Associated Yates Analysis

Generators: E"ABC and F"BCD
Defining relation: I"ABCE"BCDF"ADEF

A B C D E F Obs.* Yates algorithm Effects Identification†

!!!!!! 124 271 541 1137 2405 150.3125 Average

#!!!#! 147 270 596 1268 11 1.375 A # BCE # ABCDF # DEF

!#!!## 145 284 615 !1 35 4.375 B # ACE # CDF # ABDEF

##!!!# 125 312 653 12 !139 !17.375 AB # CE # ACDF # BDEF

!!#!## 138 307 3 27 93 11.625 C # ABE # BDF # ACDEF

#!#!!# 146 308 !4 8 !1 !0.125 AC # BE # ABDF # CDEF

!##!!! 162 323 3 !63 35 4.375 BC # AE # DF # ABCDEF

###!#! 150 330 9 !76 169 21.125 ABC # E # ADF # BCDEF

!!!#!# 125 23 !1 55 131 16.375 D # ABCDE # BCF # AEF

#!!### 182 !20 28 38 13 1.625 AD # BCDE # ABCF # EF

!#!##! 181 8 1 !7 !19 !2.375 BD # ACDE # CF # ABEF

##!#!! 127 !12 7 6 !13 !1.625 ABD # CDE # ACF # BEF

!!###! 168 57 !43 29 !17 !2.125 CD # ABDE # BF # ACEF

#!##!! 155 !54 !20 6 13 1.625 ACD # BDE # ABF # CEF

!###!# 154 !13 !111 23 !23 !2.875 BCD # ADE # F # ABCEF

###### 176 22 35 146 123 15.375 ABCD # DE # AF # BCEF

*Obs."observations.
†Expected value of the effect from the defining relation.



Identifying the Estimates. The 26!2 design was generated by setting E " ABC and F "
BCD. A simple procedure for identifying the biases (aliases) of the effects estimable from this
design is as follows. Multiply the expression E"ABC by E and the expression F"BCD by F. This gives
E2 " ABCE and F2 " BCDF. Now adopt the rule that whenever a symbol appears squared, it is
replaced by an I, the “identity,” a symbol equivalent to the numeral 1. We now have for the design
“generators” I " ABCE and I " BCDF. Multiplying the generators together gives the defining rela-
tion I " ABCE " BCDF " AB2C2DEF, which reduces to I " ABCE " BCDF " ADEF.

When Yates’ algorithm is applied to the 16 runs of the 26!2, the algorithm estimates 15 effects and
provides each with its initial name, as illustrated in Table 47.33. The defining relation is now
employed to determine the additional names (aliases or biases) of each of these statistics. Thus, the
statistic labeled the “main effect” of A actually equals A " BCE " ABCDF " DEF, an expression
obtained by multiplying through the defining relation by the symbol A. Similarly, the statistic ini-
tially called the “ABC interaction” actually estimates ABC " E " ADF " BCDEF. The estimates
and their full names are given in Table 47.33.

Five of the estimates appear unusually large and are good candidates for measured phenomena
distinguishable from natural variability (noise). Using only their first- and second-order names we
have: !17.375 estimates AB # CE, 11.625 estimates C, 21.125 estimates E, 16.375 estimates D,
and 15.375 estimates DE # AF. A reasonable interpretation of these statistics is that factors C, D,
and E have detectable important influences upon the response over their studied ranges, while fac-
tors A and B do not. This conclusion obviously needs confirmation, but it represents a good first
guess. The 26!2 design now collapses into a 23 factorial repeated in factors C, D, and E.

OTHER FRACTIONAL FACTORIALS

Although the 2k!p fractional factorial designs discussed here are the most frequently used, many
other fractionals exist. For example the Plackett and Burman (1966) designs are two-level frac-
tional factorials whose number of runs N is not a power of 2 but a multiple of 4. The N " 12
design for k ≤ 11 factor design is displayed in Table 47.34. The templates for producing the
designs for N " 20, 24, 28, and 36 can be found in Box and Draper (1987) and Myers and
Montgomery (1995).

All Plackett and Burman designs are Resolution III. The alias structure associating main effects
and two factors interactions is not as readily available as those of the regular 2III

k!p designs. However,
every Resolution III design can be made into a Resolution IV design by the principle of “fold-over.”
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TABLE 47.34 A Plackett and Burman Design

(k " 11 factors, N " 12 runs)



To “fold over” a design one merely writes it down again with all signs reversed. A fold-over design
combined together with its original Resolution III design forms a design of Resolution IV.

Fractional factorials are not limited to the 2k!p designs. The 33 factorial design can be reduced
into a variety of fractions including the Latin Square, see Hunter (1985a) for graphical displays.
Mixed level fractional factorials are also available; see Addelman (1962). Many novel fractionals
have been published: Hahn and Shapiro (1966), Webb (1968a, b), Margolin (1969), Anderson and
Thomas (1978), and Rechtschaffner (1967). Fractional factorials when the number of runs is less
than the number of variables, “supersaturated” designs, are also possible; see Booth and Cox (1962)
and Lin (1993, 1995).

Several design of experiments computer software programs will construct unique fractional fac-
torial designs, allowing the experimenter to not only choose the number of runs, but also the num-
ber of factors and levels. The reader can only be warned that the application of designs with small
numbers of runs and many factors assumes great simplicity in the mathematical model for the
response function under study, most particularly that only main effects exist and that all interactions
are either zero or truly near zero. One is also well advised to leave some redundancy in one’s design,
i.e., extra runs to provide degrees of freedom that can be employed in estimating the experimental
error variance " 2 [see Snee (1985) and Berk and Picard (1991)]. (There has never been a signal in
the absence of noise, and one should plan on measuring the noise as well as possible signals.

Screening Experiments. The saturated 2 III
k!p designs for studying k factors in N # k $ 1 runs

can be of value in early screening efforts to detect important factors among many candidates. The
possible biasing influences of interactions is very serious in these applications and should always be
kept in mind. Certain software programs can construct fractional factorial designs to provide esti-
mates of all k main effects and certain prechosen two-factor interactions. However, the assumption
that all interactions of importance can be announced prior to the experimental program being
designed and run can be naive when one considers the number of such interactions that may be pos-
sible. Furthermore, the discovery of interactions can easily be as important as the identification of
main effects. Conservative practice in the use of fractional factorials generally requires designs of
Resolution IV, i.e., the ability to separate main effects from two-factor interactions. See Hurley
(1994); Tang and Tang (1994); and Haaland and O’Connell (1995).

Orthogonal Arrays. The terminology “orthogonal array,” used by the earliest creators of bal-
anced block experimental designs, has been popularized by Taguchi (1987); see below. All the 2k,
2k!p, Plackett and Burman, and Latin square type designs can be called “orthogonal arrays.” The
number of runs associated with each orthogonal array is often identified by the notation L(N), as for
example the L8 orthogonal array is the 23 (or 27!4) two-level factorial and the L9 and the L27 are the
32 and 33 factorials. The L36 can be viewed either as a three-level design or as a 6 % 6 Latin square.

The classification “orthogonal array” is appropriate to any experimental design that can pro-
vide estimates of effects having zero correlations. The designs are sometimes described as “main
effect clear” designs, although they are often adapted to take into account certain interactions. The
2k!p and 3k!p fractionals, the Latin square designs (and the Graeco-Latin and Hyper-Graeco-Latin
square designs) thus qualify, as do the mixed-level factorials and fractional factorials and the bal-
anced block designs. The Box and Behnken (1960) designs form novel fractions of the three-level
orthogonal arrays. The terminology “orthogonal arrays” recognizes the geometric multidimen-
sional nature of all these designs; that is, in the N-dimensional space of the observations, the vec-
tors representing the effects to be estimated are all mutually perpendicular. One orthogonal array
design popularized by Taguchi is the L9 design, the 34!2 for studying four factors each at three lev-
els in nine runs. A critique of the application of this and other three-level orthogonal arrays is
found in Hunter (1985).

In listing orthogonal array designs the Taguchi literature uses the notation (1, 2) and (1, 2, 3) to
identify the levels (versions) of each variable instead of the geometric notation (!1, $1) and (!1,
0, $1). Examples of the analysis of orthogonal arrays employing the Taguchi terminology and
methodology are provided by Barker (1990, 1994), Kacker (1985), Phadke et al. (1983), Phadke
(1989), and Taguchi (1978, 1987). These authors pay particular attention to the use of “inner” and
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“outer” orthogonal arrays, or in a parallel terminology, to “design” and “noise” matrices. The designs
are similar in structure to the classical split-plot designs.

To construct unique designs for estimating main effects and selected interactions, Taguchi
employs “linear graphs” associated with each orthogonal array; see Kacker and Tsui (1990), Wu
and Chen (1991), and Wu, Mao, and Ma (1990). Linear graphs provide a geometric analogue to
the use of fractional factorial defining relations (see Identifying the Estimates under Designing a
Fractional Factorial Design, above). Almost always, classical methods employing defining relations
can provide experimental designs identical to or better than those provided by the application of
linear graphs.

TAGUCHI OFF-LINE QUALITY CONTROL

The Japanese engineer–quality expert Genechi Taguchi must be credited with much of today’s inter-
est in the use of factorial and fractional factorial designs on the part of the automotive, communica-
tion, and assembly industries; see Taguchi (1978). Within these industrial environments experiments
are run to identify the settings of both product design parameters and process variables that will
simultaneously provide a manufactured item whose response is robust to process variability while
meeting the customer’s product expectations and possible environmental challenges. The adaptation
of statistical experimental design to these objectives has its origins in Taguchi’s early work in the
communications industries in Japan in the 1950s. The strategy is called “parameter design” or
“robust design.” It is important to note that the word “design” takes differing connotations: product
design, process design, and statistical design.

Taguchi requires manufactured products be created to meet the following criteria:

1. To protect the product from sources of variability occurring within the manufacturing process
2. To have minimum variability about the customer’s target values
3. To be robust to environmental factors encountered by the customer

More formally, a product’s response y is considered to be a function of “controllable” factors x and
“noise” factors z. The objective is to choose settings of x that will make the product’s response y
insensitive to variability associated with both x and z and still meet target specifications with least
variability.

Inner and Outer Arrays. The statistical designs associated with the Taguchi approach to
product and process design usually contain both an “inner” and “outer” array, or “design matrix” and
“noise matrix,” each constructed from the orthogonal arrays. (See previous section.) The inner array
consists of a statistical experimental design employing the controllable factors x, while the outer
array is a statistical experimental design in the noise factors z which are now intentionally varied.
(Occasional x factors may also be included as “noise” factors in an outer array.) The entire design
forms a split-plot-like experimental array with the z outer array repeated within each of the settings
of the x inner array. For example, if the inner array were a L16 ! 28"4 and the outer array a L9 !
34"2 there would be a total of 16 # 9 ! 144 experiments, each of the 16 runs of the L16 containing
its own 9-run L9 design. Experimental designs providing for inner and outer arrays that employ frac-
tional factorial arrangements are also possible; see Shoemaker, Tsui, and Wu (1991) and
Montgomery (1991).

At each setting of the inner array Taguchi now determines a “signal to noise” statistic com-
posed from the outer array, noise matrix, observations. Taguchi focuses on a quadratic loss func-
tion Q ! ($ " %)2 & '2, where $ is the expected product response, % the target value (the quantity
$ " % is bias), and '2 the variance of the observed responses. To aid in minimizing the loss func-
tion, Taguchi defines the “signal to noise” ratio SN, where commonly SN ! 10 log10 ($/')2, $ ! E(y),
and '2 ! Var (y). At each setting of the inner array the statistic SN ! 10 log10 (y!/s)2 is computed
using the n observations from the outer array occurring only at that setting. Other definitions for

47.58 SECTION FORTY-SEVEN



SN are also suggested. For example, when a higher response is preferred, Taguchi proposes SN!10
log10 [(y1

2 " y2
2 " … " y

n
2)/n] and, for lower desired response, the statistic SN ! 10 log

10
[(1/y

1
2 "

1/y
2
2 " … " 1/y

n
2)/n], where y

1
, y

2
, …, y

n
are the n observations from the outer array unique to each

setting of the inner array.
Most statisticians recommend that the averages and estimated variances obtained at each of the

points of the inner array be separately analyzed. Members of the Taguchi school continue to recom-
mend the analysis of the various signal to noise statistics. No closure to the debate seems imminent.
One thing is clear. The fraternity of quality engineers and statisticians is indebted to Prof. Taguchi
for proposing the concept of the design of robust products (parameter design) and for adapting the
arts of statistical design of experiments to that end use.

A large body of literature exists describing and offering examples of the Taguchi approach. An excel-
lent summary and critique of the methodology identified with Prof. Taguchi, and possessing an
extensive bibliography, appears in a discussion organized by Nair (1992). Major authors identified
with the Taguchi approach are Taguchi (1978, 1986, 1987); Kacker (1985); Kacker and Shoemaker
(1986); Kacker and Tsui (1990); Barker (1990, 1994); Phadke (1989); Phadke et al. (1983); Leon,
Shoemaker, and Kacker (1987); and their various coworkers. Authors who have discussed the
Taguchi work include Bisgaard (1993b), Box (1988), Box and Jones (1986), Box and Myers (1986),
Easterling (1985), Goh (1993), Grove and Davis (1991b), Hunter (1985a, 1989), Hurley (1994),
Lucas (1985), Miller et al. (1993), Montgomery (1991), Nair and Shoemaker (1990), Stephens
(1994), Tribus and Sconyi (1989), and Vining and Myers (1990).

RESPONSE SURFACE DESIGNS

Response Surface Methodology (RSM) has been successfully used to optimize many different kinds
of industrial units, processes, and systems. It is an experimental approach and has been applied in
research and development laboratories and sometimes on actual plant equipment itself. In the latter
situation, however, Evolutionary Operation is often more appropriate. Evolutionary Operation is an
alternative form of RSM that is useful for both objectives of screening and optimizing.

RSM experimental designs require that important factors influencing a process, identified per-
haps by a screening experiment, be varied in a carefully chosen pattern of experiments. Commonly
two controlled variables and a single response variable are studied. The data obtained are then ana-
lyzed with the primary objective of providing a rough map (usually a contour representation) of the
response surface over the region of the controlled variables investigated. The mathematical models
employed are the first-order and second-order polynomials. Thus, the fitted response surface may be
planar (a first-order approximation to the “true” surface) or nonplanar or curved (a second-order
approximation). The fitted models are obtained using ordinary least squares estimation procedures
(regression analysis). Often a fitted response surface will suggest alternative levels of a factor to pro-
vide better yields. Thus, a program of RSM may go through several stages of mapping before “best”
conditions are identified. When more than two controlled variables are studied, contour surfaces are
employed. See Box and Draper (1987). Nor is it necessary to map only a single response. Two or
more responses can be separately mapped and their maps superimposed to identify regions of “opti-
mum” operability. Finding “optimum” operating conditions does not always mean finding the factor
settings that give the biggest or smallest response. Suggestions for further reading include Box,
Hunter, and Hunter (1978); Box and Draper (1987); Khuri and Cornell (1987); Mason, Gunst, and
Hess (1989); Haaland (1989); and Myers and Montgomery (1995). A history of RSM appears in
Myers, Khuri, and Carter (1989).

Modern computers and software programs have made RSM a most useful and valuable statistical
tool. Not only are the burdens of computation minimized, but the ability of computers to display maps
of the fitted response surfaces provides the analyst with vivid insights into the nature of the respons-
es and factors under investigation. Most software programs will allow an experimenter to obtain a
first- or second-order mapping of an unknown response surface employing almost any collection of
data; all that is needed is a good least-squares regression program. However, good experimentation
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requires a careful selection of points. A poorly designed response surface program is analogous to
viewing a scene through an astigmatic lens. The consequence is a warped view. In most circum-
stances a first- or second-order rotatable (nonastigmatic) response surface design offers the best
strategy. Fitting response surfaces to haphazardly acquired data is called PARC analysis by some sta-
tisticians (PARC: Practical Accumulated Records Computations, or Planning After Research is
Completed.) The use of the standard first- and second-order RSM designs for k ! 2 factors and a
single response is described here.

In implementing RSM, a number of statistical procedures discussed in other sections of this
Handbook are used. The concept of RSM was first developed and described by Box and Wilson
(1951). At first RSM was used primarily as an experimental optimization technique in the chem-
ical industry. Since then, however, it has found application in many other fields (see Hill and
Hunter 1966).

RSM can be usefully regarded as consisting of two stages:

1. First-order stage, in which a first-order mathematical model is contemplated, a factorial or other
first-order design performed, the data fitted, the contours of the response drawn, and the direction
of steepest ascent determined and pursued

2. Second-order stage, in which a second-order mathematical model is contemplated, a central-
composite or other second-order design performed, the data fitted, the contours drawn, a canon-
ical analysis performed, and an optimum located

Response Surface Methodology is actually more flexible than these brief definitions indicate. A
skeletal outline, which shows some of the possible paths through an RSM study, is given in flow-
diagram form in Figure 47.16.

Weakness of One-Variable-at-a-Time Approach. A popular method of experimentation
is the one-factor-at-a-time approach. Each factor, in turn, is varied while all the rest of the factors are
held at some fixed, constant levels. One trouble with this approach is that a false optimum can be
reached. Consider the following hypothetical illustration.

Example. Under study is a chemical reaction in which there are two factors of interest, the con-
centration of one of the reactants and the reaction time. What settings for these two factors will max-
imize the yield? The best known settings, at the outset of the investigation, are a concentration of 25
percent and a time of 1 h (see Figure 47.17).

Following a one-factor-at-a-time approach, the engineer first runs a series of experiments by
varying the time, while holding the concentration at 25 percent. The results show that a maximum
yield of about 65 percent is obtained when the time is 1.9 h (position E on the line A to B in Figure
47.17). Holding the time fixed at this value, varying concentration along the line C to D, and obtain-
ing a maximum at 25 percent, the engineer reaches the conclusion that the maximum yield (65 per-
cent) is achieved when the concentration is 25 percent and the time is 1.9 h. This conclusion,
however, is incorrect.

Response Surface Approach. The actual situation, unknown to the experimenter, is shown
in Figure 47.17. Here the yield is shown as a function of both concentration and time. The solid
curved lines in the figure are contour lines of constant yield. For example, there is an entire set of
conditions of concentration and time that give an 80 percent yield. The contour surface can be
viewed as a mountain; the peak of the mountain is the point P. The contours of 90, 80, and so forth,
can be viewed as altitudes. These numbers represent the percentage yields.

The engineer’s objective was to find those settings for the concentration and time that would give
the maximum yield. Viewed geometrically, what the engineer was trying to do was to climb to the
highest point on the mountain. The attempt failed for a fairly simple reason.

Figuratively speaking, by varying time, the engineer first traversed the hill going along a path
from point A to point B (see Figure 47.17). Between A and E the path led up the mountain, but then
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FIGURE 47.16 Outline of main ideas of Response Surface Methodology.



at point E it started to go down the other side. From point E to point B the engineer was walking
down the other side of the hill. The traverse for varying concentration (C to E to D) is shown.

The experimenter has achieved a yield of only 65 percent (at E), whereas a yield in excess of 90
percent (at P) is possible. This higher yield can be achieved by simultaneously increasing concen-
tration and decreasing time from the experimenter’s reported “optimum” values.

If the contours of the hill were circular and there were no experimental error, this one-at-a-time-
procedure would have taken the engineer to the highest point on the hill. In general, the contours of
real response surfaces are not circular nor experimental error (noise) absent, and thus what is need-
ed is a more sophisticated experimental strategy such as RSM.

Beginning of Program. The RSM approach (see Figure 47.16) will now be applied to the
example of maximizing the yield.

Define Objective of Investigation. It is of the utmost importance to define clearly the objective of
the study to be undertaken. It is surprising how often in practice this step is either ignored or not
given the careful attention it deserves. This often leads to difficulties later on. In the present exam-
ple the objective is to maximize the yield. The objective, in general, may involve multiple criteria,
that is, to maximize yield while simultaneously meeting other objectives such as minimizing impu-
rity and obtaining an acceptable range of viscosity.

Select Factors and Ranges. The next step is to select the factors to be studied together with the
ranges over which they are to be studied. It is necessary to understand the technical aspects of
the experimental situation for this to be done intelligently. The specific scale over which each
factor is to be studied must also be chosen. For example, instead of varying time linearly in units
of hours, the experimenter might choose the basic scale to be the logarithm of the number of
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FIGURE 47.17 Response surface showing yield of a chemical reaction as a
function of concentration and time.



hours. In the present example, the variables concentration and time are selected. Initially, it is
decided to vary concentration from 23 to 27 percent and time from 0.9 to 1.1.

First-Order Strategy

Construct Design and Collect Data. The 22 factorial design with three center points, shown in
Tables 47.35, is constructed. [Further discussion of the number of center points and other matters on
setting up the design is given in Cochran and Cox (1957), Hunter (1959), Box and Draper (1987),
and Myers and Montgomery (1995).] The order of the seven runs is randomized, the experiments are
performed, and the results shown in Table 47.35 are obtained. The results are displayed in Figure
47.18.

Fit First-Order Model and Check for Lack of Fit. The analysis of these results can be carried
out in either one of two equivalent ways. The effects and interaction of the factorial design can
be calculated with their associated 95 percent confidence intervals, as is also shown in Table
47.35.
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As the center-point conditions have been repeated three times, an estimate of the variance can be
readily obtained. (If repeat runs have not been performed, it might be possible to obtain an appro-
priate estimate in some other way, for example, from some external source, past experience, or from
a technique like half-normal plots; see Daniel 1959.) With the three values 46.8, 45.9, and 45.3, s2 !
0.57 is calculated as an estimate of the variance of an individual observation with two degrees of
freedom.

Employing the estimated standard deviation s = 0.755 with two degrees of freedom, the confi-
dence intervals suggest that the main effects of concentration and time are significant while the
estimates of second-order effects (interaction and curvature) are indistinguishable from zero. We
are thus able to employ as an approximation to the unknown response surface the first-order
model

Y ! "
0
# "

1
X

1
# "

2
X

2
# $

where Y is the observed response and the "’s are coefficients to be estimated from the data. The
quantities X

1
and X

2
are independent variables representing the experimental factors concentration

and time, where

X
1
! 

X
2
! 

These expressions for X
1
and X

2
code the original settings of concentration and time to match

those of the 22 factorial design with center point given in Table 47.37 and displayed in Figure
47.18. For example, when concentration = 23 and time = 0.9 hours, X

1
= -1 and X

2
= -1. The quan-

tity $ in the model is assumed to be a random error normally distributed, independent, with con-
stant variance %2 . Although standard regression techniques (see Section 44) can be used to fit the

hours & 1.0
''

0.1

concentration(%) & 25
'''

2
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FIGURE 47.18 Results of first-order design with fitted first-order
(planar) response surface.



first-order model, estimates of the !’s are readily obtained as a consequence of the 22 factorial
design with center point. The estimate of !

0
is is the average, the estimate of !

1
one half the con-

centration effect, and the estimate of !
2

one half the time effect. Thus the fitted equation becomes

Ŷ " 46.46 # 1.35X
1
# 2.70X

2

The equation in terms of the original variables is

Ŷ " 28.23 # 0.675[conc%] + 1.35[hours]

Setting Ŷ = 44.0 will produce the straight line contour labelled 44 in Figure 47.18. The fitted con-
tours suggest the response surface to be well represented by the plane.

Ŷ " B0 + B1X1 + B2X2 = 46.46 + 1.35X1 + 2.70X2

in the X1,X2 coordinate system.
A second method for evaluating the fit is to use the analysis of variance. The resulting ANOVA

table (Table 47.36) indicates that the first-order model (above equation) adequately fits the data. (See
Section 44; also Draper and Smith 1981.) The ratio of the lack of fit mean square divided by the pure
error mean square is 4.13, and since this value is less than F2.2(0.95) " 19.0, there is no evidence of
lack of fit of the first-order model. Since there is no evident lack of fit, it is reasonable to study the
implications of the fitted first-order model (above equation). The plane described by this equation is
represented in Figure 47.18 by the straight contour lines.

Determine Direction of Steepest Ascent. The direction of steepest ascent is indicated in Figure
47.18. (For further details on direction of steepest ascent, see Cochran and Cox 1957, p. 357, and
Box and Draper 1987.) It is perpendicular to the contour lines. Four experiments (numbers 8 to 11)
in this direction indicate that the center of a second design should be approximately at a concentra-
tion of 31 percent and a time of 1.6 h. The design employed and the data obtained after performing
the runs in random order are shown in Table 47.37 as runs 12 to 18. An analysis of the data shows
apparent lack of fit (Table 47.38). The ratio of the lack of fit mean square divided by the pure error
mean square is 26.8, and since this value is greater than F2.2(0.95) " 19.0, there is evidence of lack
of fit of the first-order model.

Second-Order Strategy

Construct Design and Collect Data. Since lack of fit is detected, the design is augmented by adding
runs 19 to 25 to form the second-order (central composite) design shown in Table 47.37. In general,
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TABLE 47.36 ANOVA Table: First-Order Model, First Design*

Source Sum of squares Degrees of freedom Mean square

Mean b0 15,107.86 1
b1 7.29 1 7.29
b2 29.16 1 29.16

Lack of fit 4.71 2 2.36
Pure error 1.14 2 0.57

Total 15,150.16 7

*In the literature of response surface methodology, it is customary that the ANOVA table
include a term for the sum of squares for the mean. In other uses of ANOVA, some authors
and computer software programs exclude the sum of squares for the mean.



if a model does not fit, it may be advantageous, instead of immediately considering a higher-order
model, to consider transformations of the factors and/or the responses. See Box and Cox (1964), Box
and Tidwell (1962), and Draper and Hunter (1967).

Fit Second-Order Model and Check for Lack of Fit. The fitted second-order equation obtained by
least squares is

Ŷ ! 78.50 " 3.40X
1
# 1.85X

2
# 3.75X

1
X

2
# 1.21X

1
2 # 3.03X

2
2

The contours of this equation are shown in Figure 47.19 with the second-order design results. No
lack of fit is evident from either visual inspection or statistical calculation (see Table 47.39). The
form of the above equation can be simplified so the shape of the response surface can be better appre-
ciated. It is difficult to visualize the surface from the equation because it contains six constants. A
canonical analysis, which involves a translation and rotation of the coordinates from the original
(X

1
, X

2
) axes to the new (Z

1
, Z

2
) axes, gives an equation containing only three constants:
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TABLE 47.37 Results of Second-Order Design

TABLE 47.38 ANOVA Table: First-Order Model, Second Design



Y ! 173.83 " !0.0332Z
1
2 ! 8.4075Z

2
2

This equation indicates that because of the negative coefficients for Z
1
2 and Z

2
2, the fitted response

surface has a maximum point. A direction in which to proceed at the next stage to search for the
maximum is indicated by the arrow in Figure 47.19. The arrow points toward the “top of the moun-
tain.” The investigation might terminate after experimenting in this direction, perhaps with a few
added points in the vicinity of the maximum. In some situations it may be useful to perform a full
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FIGURE 47.19 Results of second-order design with fitted second-order (nonpla-
nar) response surface.

TABLE 47.39 ANOVA Table: Second-Order Model



second-order design near the final optimum. [For further details on canonical analysis and RSM in
general, see Box and Draper (1987) and Myers and Montgomery (1995).]

Many response surface experimental designs are available, in particular the three-level factorials,
the central composite, the rotatable designs, and Box-Behnken designs. For response surface designs
using a minimum number of runs while preserving many of the qualities of the larger designs see
Draper (1985) and Draper and Lin (1990). Some computer software programs can provide unique
response surface designs (commonly D-optimal) constructed to match special constraints provided
by the experimenter.

MIXTURE DESIGNS

In some experiments with mixtures, the property of interest depends on the proportions of the mix-
ture components and not on the amounts (volume or weight) of the individual components. For
example, stainless steel is a mixture of different metals, and its tensile strength depends on the pro-
portions of the metallic elements present; gasoline is ordinarily a blend of various stocks, and the
octane rating of the final blend depends on the proportions going into the blend. The proportions of
the components of a mixture must add up to unity, and in the most general case the proportion of any
component may range from zero to unity. An important reference text is Cornell (1990).

In the design of mixtures, the factor space available for experimentation is constrained, since the
proportions used must sum to unity. It has been shown that if the number of components in the mix-
ture is q, the available factor space becomes a regular (q ! 1)-dimensional simplex (e.g., a triangle
for q " 3), a tetrahedron for q " 4).

A natural approach would be to take a uniformly spaced distribution of experimental points over
the available factor space. This results in the simplex lattice designs proposed by Scheffé (1958). A
(q, m) lattice, for example, is a lattice for q components, where the proportions for each component
have m#1 equally spaced values from 0 to 1, i.e., the values 0, 1/m, 2/m, etc. For three components,
the proportions of each component would be 0, 1$2, 1 when m"2; and 0, 1$2, 2$3, 1 when m " 3. The
lattice resulting when m " 2 is called the quadratic lattice, the lattice resulting when m " 3 is called
the cubic lattice, etc. (see Figure 47.20).

In addition, modified lattices can be made by adding center points to the two-dimensional face or
faces of the quadratic lattice. This provides a useful design called the “special cubic lattice.”

The number of points k required for any lattice except the special cubic is found by using the
formula

k " 

The number of points required for the special cubic is

k " # 

The number of points required for several values of m and q is given in Table 47.40.
The property of interest is measured at each of the design points (corresponding to mixtures of

different proportions). Simplified polynomials are used to relate the response variable y to the vari-
ous mixture proportions used.

Another useful design called the “special cubic” by Scheffé (1958) requires seven points for three-
component mixtures—the six points of a (q " 3, m " 2) lattice plus a seventh point at X

1
" 1$3,

X
2
" 1$3, X

3
" 1$3.

The seven mixtures are the three pure components, the three binary mixtures, and the ternary
mixture, as shown in Table 47.41.

q(q ! 1)(q ! 2)
%%

6
q(q # 1)
%

2

(m # q!1)!
%%
m!(q ! 1)!
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FIGURE 47.20 Lattice designs for three- and four-component mixtures.
(Reprinted with permission from Gorman and Hinman 1962.)

TABLE 47.40 Number of Points Required for Lattice Designs

TABLE 47.41 Design Points for Special Cubic (Three-
Component Mixture)



The “special cubic” corresponds to the equation:

y ! B
1
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The computed coefficients are
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The subject of mixture designs now has a vast body of literature, and many computer software
programs devote attention to both their design and analysis. Computer printouts of contour repre-
sentations are particularly valuable. Factors composing mixture designs are often constrained to fall
within narrow ranges, thus forming isolated mixture regions and requiring novel experimental
designs difficult to obtain without a computer. Constrained factors are sometimes combined with fac-
tors not constrained, once again leading to unique designs and analyses. The designs may also be
blocked and run sequentially. The textbook by Cornell (1990a) is devoted entirely to the topic of
mixture experiments. See also Myers and Montgomery (1995). Important papers are Gorman and
Hinman (1962), Thompson and Myers (1968), Snee (1973, 1979), Crosier (1984), Piepel and Cornell
(1994), and Draper et al. (1993).

GROUP SCREENING DESIGNS

Novel experimental designs for finding the few effective factors out of a very large number of pos-
sible factors have been called “group screening designs.” These designs have the following structure:
groups are formed, each containing several factors; the groups are tested; and individual factors of
the groups that prove to contain significant factors are then separately tested. Such designs, proposed
by Connor (1961) and further studied by Watson (1961), are intended to minimize the amount of
experimentation required.

The experimental variables are divided into groups, and each group is treated as a single variable
until an effect on the response variable is shown.

The following assumptions are made:

1. All factors initially have the same probability of being effective.
2. The factors do not interact.
3. The directions of effects, if they exist, are known.

The number of factors is f ! gk, where g ! number of groups and k ! number of factors per group.
For example, consider an experiment with nine factors, which are divided into three groups of three
factors each (i.e., g ! 3, k ! 3). The upper and lower levels of the groups are defined as follows:

1. Group factor X consists of factors A, B, C.

Level 1: All three factors at lower level (0, 0, 0)
Level x: All three factors at upper level (1, 1, 1)

2. Group factor Y consists of factors D, E, F.

Level 1: All three factors at lower level (0, 0, 0)
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Level y: All three factors at upper level (1, 1, 1)

3. Group factor Z consists of factors G, H, I.

Level 1: All factors at lower level (0, 0, 0)
Level z: All factors at upper level (1, 1, 1)

The first-stage design studies the group factors, for example by using a half-replicate of a 23 factor-
ial. This requires the four group treatment combinations x, y, z, and xyz corresponding to treatment
combinations for the nine factors as follows:

x(1,1,1 0,0,0,0,0,0)

y(0,0,0 1,1,1 0,0,0)

z(0,0,0 0,0,0 1,1,1)

xyz(1,1,1 1,1,1 1,1,1)

The results of the first-stage experiment will indicate which group factors contain at least one
effective factor. A second-stage experiment, which may consist of a half-replicate of a 23, will then
be run on each effective group factor to determine which of the individual factors are effective. For
further details, see Watson (1961). Patel (1962) gives detailed procedures for two-, three-, and four-
stage screening tests.

The application of group screening designs that has been discussed here is to the identifica-
tion of effective experimental factors, but there is extensive literature relating to the screening of
effective responses, e.g., to compounds and drugs, and to the group testing of individuals. Papers
of interest are by Ehrenfeld (1972), Pocock (1983), Mundel (1984), Hwang (1984), and Hayre
(1985). An excellent review of the entire problem of group screening is provided by Tang and
Tang (1994).
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