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Introduction

Previous Review Articles

]:gox and Wilson (1951) laid the foundations for
) response surface methodology (RSM) (a list of
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abbreviations is provided in the Appendix). That
paper is important not only because it described what
became an entire field of research for the next 50
vears but also because it changed dramatically tle
way that engineers, scientists, and statisticians
approached industrial experimentation. Their paper
outlined a sequential philosophy of experimentation
that encompasses experiments for screening, region
seeking (such as steepest ascent), process/product
characterization, and process/product optimization.
Clearly, RSM includes much more than second-order
model fitting and analysis. Indeed, RSM, broadly
understood, has become the core of industrial
experimentation. Box and Liu (1999) illustrated the
application of RSM to the common training example
of paper helicopters. Box (1999) provided a retro-
spective on the origins of RSM. That paper also
outlined a more general philosophy of sequential
learning, of which RSM is one tool.

WWW.asq.org




54 R. H. MYERS, D. C. MONTGOMERY, G. G. VINING, C. M. BORROR, AND S. M. KOWALSKI

Over the past fifty years, there have been three
extensive reviews of response surface methodology.
The Hill and Hunter (1966) review paper featured an
extensive bibliography and presented applications in
the chemical and process industries, where the
majority of RSM applications were found at that
time, which was natural given that the seminal work
of Box and Wilson occurred at a major chemical
company. The Mead and Pike (1975) review paper in
Biometrics focused more on the modeling of biologi-
cal data than on a discussion of RSM as we view it.

The most recent review paper was that of Myers,
Khuri, and Carter (1989). They emphasized the
changes that had occurred in RSM theory and practice
during the 1970s and 1980s. In addition to containing
a bibliography of approximately 200 references, the
paper discussed applications of RSM in physical
science and engineering, food science, social science,
and the biological and chemical sciences.

Myers, Khuri, and Carter (1989} emphasized that,
at the time, “users [were] sufficiently far behind in the
use of RSM tools that the need for proper commu-
nication [was] far more pressing.” In other words, the
authors felt that training and writing that empha-
sized RSM fundamentals for engineers and scientists
in all fields was extremely important. The authors
also lamented the need for better software to support
RSM. Computer software developers have responded
to that need, and today we find that many general-
purpose statistics packages have good capability to
support RSM and some stand-alone experimental
design packages are excellent. These developments
have expanded the use of designed experiments over
the last decade. Software advances have been
particularly encouraging in the area of analysis,
including some important development in multiple
response optimization.

In addition to the comprehensive review papers,
discussions of various aspects of RSM can be found in
papers by Draper and Lin (1996), Draper and
Pukelsheim (1996), and Draper and Pukelsheim
(1998). Mixture experiments are a useful class of
response surface problems that we do not fully
consider here. A comprehensive presentation of the
subject was done by Cornell (2002).

Why A Review Article Now?

It has been 13 years since the last review, and much
progress in the area of RSM has been made. Myers
(1999) gave a recent overview of some of the current
themes in the RSM literature as well as a personal
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perspective on future research directions. That paper,
however, made no thorough attempt to summarize or
synthesize the recent literature. It focused on recent
literature only to the extent necessary to lay the
foundations for some observations on near-future
research areas. Myers (1999) helped define some
research issues in RSM, but it only scratched the
surface in terms of summarizing the recent literature.
As a result, now seems to be an appropriate time to
provide a more thorough review of the developments
in RSM since Myers, Khuri, and Carter (1989).

We offer this review in order to present some
historical perspective on an important and vital field
of industrial statistics. However, our greatest hope is
that this paper will benefit both researchers and
practitioners by providing a single resource that
summarizes and synthesizes the literature since 1989
and points the reader to original source material for
more detail. The organization of the paper is as
follows. The next section summarizes the many
advances in robust parameter design that have taken
place within the RSM framework, including design
and modeling strategy. Subsequent sections discuss
new developments in response surface designs,
including methods for evaluating designs; multiple
responses, including both design and optimization
issues; RSM and generalized linear models; and other
issues concerning applications, including RSM with
randomization restrictions, computer experiments,
and nonparametric and semi-parametric response
surface methods. In the summary section, we present
our views on a few key research issues in RSM.

Robust Parameter Design

Background

Taguchi introduced the robust parameter design
(RPD) problem (see Taguchi (1987, 1991), Taguchi
and Wu (1985), and Kackar (1985)). He advocated
that experimenters should consider two sets of
factors: control factors, z, that are under the
complete control of the experimenter both in the
experiment and in the process; and noise factors, z,
that the experimenter can control in an experiment
but cannot control in the process. The noise factors
are significant sources of variation in the process. In
an RPD problem, the experimenter seeks settings of
the control factors that will be robust or insensitive to
variability transmitted into the response from the
noise factors. Taguchi’s solution to this problem
consisted of placing the control factors in one design
(called the inner array) and the noise factors in a
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second design (called the outer array), and then
running the set of experiments given by the Cartesian
product of these two designs, which produces a
crossed array design. The analysis involves summary
signal-to-noise ratios computed across the outer array
observations. Throughout the 1980s and 1990s many
people hotly debated some of the design and analysis
aspects of Taguchi’s approach; for details and
summary see the discussions of Kackar (1985), Box
(1985, 1988), Box, Bisgaard, and Fung (1988),
Pignatiello and Ramberg (1991), Nair et al. (1992),
Box and Jones (1992), Myers and Montgomery (2002),
Tsui (1996), and Montgomery (1992, 1999, 2001).

RSM Alternatives to RPD

RSM is well suited to the RPD problem and
process robustness studies in general. For examples,
see Vining and Myers (1990), Myers (1991), Myers,
Khuri, and Vining (1992), Lucas (1989, 1994),
Pledger (1996), Khattree (1996), Myers, Kim, and
Griffiths (1997), and Montgomery (1999). Two basic
approaches evolved during the 1990s.

Vining and Myers (1990) first presented RPD
problems as formal constrained optimization pro-
blems. Their approach assumed that the basic
experiment in the control factors was replicated.
The replication could, but not necessarily, be via an
outer array. They proposed fitting separate models to
the response and to the process variance observed by
the replication scheme. They then used the dual
response optimization technique of Myers and Carter
(1973) to solve this problem. For example, to
minimize the process variance while keeping the
mean on a target, T, they minimized Var(z) subject
to the constraint y(z) = T, where Var(z) comes from
the model for the process variance and y(z) comes
from the model for the response. Del Castillo and
Montgomery (1993), Copeland and Nelson (1996),
Lin and Tu (1995), Kim and Lin (1998), and Fan
{2000) presented various extensions for solving the
dual response approach.

The second approach places both the control and
noise factors in a single design, called a combined
array. These designs typically require fewer runs than
Taguchi’s crossed arrays and simultaneously allow
the experimenter to estimate potentially important
interactions. Useful references on the combined array
and its applications include Welch, Yu, Kang, and
Sachs (1990), Lucas (1994), Montgomery (1990-
1991), Shoemaker, Tsui, and Wu (1991), Borkowski
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and Lucas (1997), and Borror and Montgomery
(2000).

The combined array approach uses a single
response model. We suppose that there are ; control
factors x’ = [z1,%s,...,2,,] and 7y noise factors
z' = [z, 29, ..., 2r,]. The response model is usually of
the form

y(x,2) = o+ x'B+xBx+zy+x'Az +¢ (1)

where 8 is an r; x 1 vector containing the regressicn
coefficients of the control factors, B is an 7y X r;
matrix whose main diagonals are the regression
coefficients associated with the pure quadratic effecss
of the control factors and whose off-diagonals are
one-half of the mixed quadratic (interaction) effecss
of the control factors, ¥ is an ro X 1 vector of the
regression coefficients for the main effects of the noise
factors, and A is a 7y X ro matrix of the control-
factor-by-noise-factor interaction effects. Typically,
Equation (1) is a full quadratic in the control factors
and has all main effects of the noise factors along with
all control-factor-by-noise-factor interactions. Often,
with Equation (1) it is assumed that ¢ is NID(0, o)
and that the noise factors have been scaled so that
they have mean zero and covariance matrix
Var(z) = 02V, where V is an 7 x 75 symmetric
positive definite matrix. Most authors assume that
V =1 so that the noise factors are uncorrelated.
There are many scenarios where this assumption is
reasonable, such as when the noise factors are
difficult-to-control process variables or raw material
properties. If, however, the noise factors are environ-
mental variables such as temperature and relative
humidity, then they are likely to be correlated. It is
also customary to assume that o2 and the elements of
V are known, based on prior experience with the
noise factors.

Myers, Khuri, and Vining (1992) obtained the
model for the mean response by taking the condi-
tional expectation of y(x,z) in Equation (1) with
respect to the noise factors z and the random error, &,
which produces

Ely(x,2)] = fo +x'8 + x'Bx. ()

They used the variance operator to obtain the modazl
for the response variance, which is

Varly(x,2)] = o3(y + XA)V(Y +X4) + 0% (8)

We note that y+ A'x is the vector of partial
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derivatives of y(x,z) with respect to the noise factors
z. Thus, y + A'x is the slope of the response surface in
the direction of the noise factors. The importance of
the slope of the response surface in the general RSM
setting has been addressed by several authors,
including Murty and Studden (1972), Myers and
Lahoda (1975), Hader and Park (1978), Mukerjee
and Huda (1985), Park (1987), Draper and Ying
(1994), and Ying, Pukelsheim, and Draper (1995a,b).
The response variance can also be developed by using
the delta method, which is useful for models that are
more complex than that in Equation (1). For more
information on the delta method see Rice (1995).

In practice, the experimenter fits the response
model using data from a designed experiment. This
results in

7x,2) =B+ xXB+xBx+27+x2z. (4)

The parameter estimates in this model are used to
obtain fitted versions of Equations (2) and (3),

ZE;[y(x, z)] = B\(] + x'ﬁ 1+ x'Bx (5)
and

Varly(x,2)] = 3(¥ + XA)VF +x4) +8, (6)

where 52 is the residual mean square from the fitted
response model. Using Equations (5) and (6) the
standard RPD problems can be formulated. One can
then apply an appropriate constrained optimization
procedure to obtain recommended settings.

References on the interactions between the noise
and control factors include papers by Myers, Khuri,
and Vining (1992), Shoemaker, Tsui, and Wu (1991),
and Shoemaker and Tsui (1993). Bingham and Li
(2002) proposed a criterion to maximize a design’s
ability to estimate models with at least one control-
by-noise interaction. Focusing on the first-order case,
they constructed optimal designs and tabulated some
designs to facilitate practical use. Borror, Montgom-
ery, and Myers (2002) developed scaled prediction
error variance models for both the mean and the slope
of the response along with combined arrays. Vuchkov
and Boyadjieva (1992) presented mean and variance
models for the situation where the random error is
present in both product and noise factors. Brenne-
man and Myers (2003) consider robust design
problems where the noise variables are categorical,
an important consideration in designing robust
processes where the categorical noise variable might
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indicate the supplier, for example. Engel and Huele
(1996) considered second-order response surfaces in
the factors. Steiner and Hamada (1997) extended the
idea of robust design to mixture experiments. They
considered two cases. In the first case, there are both
mixture and process variables and some of the
process variables are noise variables. The second case
deals with error or noise in formulation of the mixture
components. Goldfarb, Borror, and Montgomery
(2003) also consider robust design for mixture-
process situations, using a more general model than
in Steiner and Hamada (1997).

Other Aspects of Mean and Variance
Modeling

Several recent articles addressed other variations of
the RPD problem and different approaches to
modeling the mean and variance. Vining and Bohn
(1998) presented a nonparametric approach to dual
response modeling. Kim and Lin (1998) illustrated
dual response surface optimization using fuzzy
modeling. Kuhn, Carter, and Myers (2000) modeled
the mean and variance for time-to-event data. Vining
and Schaub (1996) and Chipman (1998) discussed
Bayesian approaches. Some authors have considered
the RPD problem for situations where the response is
a relationship such as a curve or profile instead of a
single quantity. Taguchi referred to this as a
“dynamic” characteristic, although the terminology
“signal-response system’’ has become more standard.
Good discussions and examples of this problem can
be found in papers by Lunani, Nair, and Wasserman
(1997), Miller and Wu (1996), and Miller (2002).

There are some experimental situations where non-
homogenuous variance, not necessarily due to the
noise factors, is a problem. Nonconstant variance
may result from different sources, which leads to
location and dispersion effects. A particular variable
is considered a dispersion effect if as the level of that
variable is changed the variance in the response also
changes.

Several authors have addressed the issue of
estimating dispersion effects. Bergman and Hynen
(1997) discussed identifying dispersion effects in
unreplicated two-level fractional factorial experi-
ments. Blomkvist, Hynen, and Bergman (1997)
extended the method proposed by Bergman and
Hynen (1997) to multilevel experiments. Ferrer and
Romero (1993, 1995) used transformed residuals to
investigate the process variance, while Engel (1992),
Ghosh and Duh (1992), and Rosenbaum (1994, 1996)
analyzed summary measures over the levels of the
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noise variables. Steinberg and Bursztyn (1994, 1998)
discussed direct modeling of the location and disper-
sion effects. Steinberg and Bursztyn (1994, 1998) and
Berube and Nair (1998) concluded that if noise
factors are present, then one should explicitly model
their effects in order to effectively estimate dispersion
effects. Analysis of summary measures (such as
signal-to-noise ratios) in these situations tends not
to reveal dispersion effects as readily as direct
modeling of the noise factors. Wolfinger and Tobias
(1998) recommended simultaneous estimation of
location, dispersion, and random effects. Mays and
Myers (1996) presented a Bayesian approach for
design and analysis of factorial experiments when
dispersion effects are present. McGrath and Lin
(2001a) demonstrated the need for estimation meth-
ods that can efficiently separate location effects from
dispersion effects. They presented methods to deter-
mine the type of effect, location, or dispersion for
when active effects are discovered. The authors also
pointed out that if the mean model is incorrectly
specified, then using residuals to identify dispersion
effects can give misleading results. McGrath and Lin
(2001b) developed a method for testing for multiple
dispersion effects in unreplicated designs. Brenneman
and Nair (2001) reviewed and evaluated many of the
methods available for identifying dispersion effects
from unreplicated designs. They noted that all
methods suffer from large biases. They proposed
iterative methods for model selection and estimation
of dispersion effects.

Response Surface Designs

Since Box and Wilson (1951), substantial progress
has been made in the area of response surface designs
for both first- and second-order models. Many of the
areas of research through the late 1980s fall into the
following categories:

i) development of standard designs and selec-
tion of design parameters;

ii} development of design criteria and design
properties;

iii) the practical implementation of design
optimality or ‘‘computer generated de-
signs;”’

iv) and design robustness.

Consequently, there are today many design tools that
allow the practitioner to construct response surface
experiments for both screening and optimization.
Many software packages generate the standard
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designs, including regular factorial and fractional
factorial plans, Plackett-Burman, central compositz,
small composite, Box-Behnken, and hybrid designs.
The application of computer generated designs based
primarily on the D criterion has grown substantially.
Myers, Khuri, and Carter (1989) discussed much of
the interesting research that had appeared on design
robustness. However, the appeal made by Box and
Draper (1975) for the use of design robustness rather
than design optimality has been relatively ignored by
software designers. Using design optimality with a
single criterion (perhaps D-optimality) is the antith-
esis of design robustness, but, because the design
construction methods are straightforward to imple-
ment, the commercial products available continue to
emphasize this approach.

Importance of Design Robustness,
Sequential Designs, and Bayesian Design

The practitioner’s easy access to an ‘“‘optimal”
response surface design often results in the use of
design optimality when standard designs may he
more robust. The importance of design robustness
cannot be overemphasized. Indeed, the expansion of
RSM into relatively new areas makes design robust-
ness even more important today. The areas in which
design robustness must play a role include (a) model
misspecification, (b) outliers, and (c) errors in
control. It is becoming clear that RSM is moving
into nonlinear modeling, specifically generalized
linear models. In this area, good designs, and
certainly optimal experimental designs, depend on
knowledge of the parameters of the model. So,
obviously, robustness to initial parameter guesses
becomes an important issue.

Bayesian design has and will continue to play a
vital theoretical role in response surface design. Its
use may be necessary when there are uncertainties in
model parameters and model selection. For the latter
case, DuMochel and Jones (1994) laid a foundation
on which other researchers can build. They assumed
that there are two types of model terms, certain
terms and potential terms, and placed a prior
distribution on the potential terms. They then
constructed a Bayesian D—optimal design that
maximizes the determinant of the posterior informa-
tion matrix. For the case of uncertainties in model
parameters, Chanoler and Verdinelli (1995) reviewed
the Bayesian approach to design. Andere-Rendon,
Montgomery, and Rollier (1997) used this approach
to construct Bayesian D—optimal designs for mixture
experiments. Lin, Myers, and Ye (2000) utilized a
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two-stage approach to Bayesian design where the
prior information is updated at the completion of the
first stage.

The origins of Bayesian design are in nonlinear
modeling in biological problems (almost exclusively
for the case of a single independent variable).
However, its use in response surface applications in
both chemical and biomedical applications has
become important. To a large extent, many aspects
of modern RSM call for the construction of designs
based on information that may not be known, thus
the emphasis on design robustness and Bayesian
design. For examples, see Jia and Myers (2001),
Sitter and Torsney (1995), and Atkinson and Haines
(1996). Vining and Schaub (1996) used Bayesian
based procedures to determine appropriate response
designs for dual response modeling situations, such as
those described in the second section of this paper.

Another very important and very effective ap-
proach uses sequential design. Such an approach
dates back to Box and Wilson (1951), who suggested
that the central composite design be deployed
sequentially, with the first stage being a 2-level
factorial or fractional factorial design and the axial
points forming a second stage. The axial points are
used if curvature is found in the system by a lack-of-
fit test. While there are few formal sequential or
multiple stage designs, this approach should be
considered by statistics researchers. Any experienced
professional in the field of design has certainly
experienced “in retrospect’ views that are critical of
a chosen design strategy. Box (1999) clearly espoused
such a view. The use of multiple stage designs often
results in more efficient experiments. Further ad-
vances in robust design are credited to Borkowski and
Valeroso (2001), who studied standard second order
designs with regard to their efficiency in accommo-
dating various posterior subset models.

Designs For Qualitative and Quantitative
Variables

Often, in practice, response surface studies involve
both qualitative and quantitative factors. Several
commercial software packages do distinguish between
qualitative and quantitative factors, and thus D-
optimal designs for these situations can be found.
Qualitative factors must be included in the model
and the design, and model interpretation, prediction,
and optimization must include consideration of the
role of qualitative factors.

Choice of an appropriate design requires one to
consider carefully how the qualitative factors interact
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with the model terms that involve the quantitative
factors. These decisions have a potentially dramatic
effect on the ability to adequately represent the
response surface in the quantitative factors at
different combinations of levels of the qualitative
factors. At times it is difficult to anticipate the nature
of these interactions, but including all possible
interactions may substantially increase the size of
the design. For example, in the case of two
quantitative variables z; and x2 and a qualitative
factor at two levels represented by a categorical
variable z, possible model terms are zi, z, 27, 2,
T1Ta, 271, 2T, 223, 273, and 2z1Te. If the number of
quantitative and qualitative variables is large, then
the number of model terms that must be estimated
can become quite large. Obviously, an appropriate
design is to cross two designs, one of which is
appropriate for the quantitative variables and one of
which is appropriate for the qualitative variables.
However, this design will often be too large in many
cases. Draper and John (1988) discussed this problem
and showed examples of more efficient designs. Myers
and Montgomery (2002) presented illustrations with
a numerical example of a complete RSM analysis.
Atkinson and Donev (1992) presented algorithms for
constructing near D-optimal designs for experiments
involving both qualitative and quantitative factors.
Aggarwal and Bansal (1998), Aggarwal, Gupta, and
Bansal (2000), and Wu and Ding (1998) illustrated
other approaches for the construction of response
surface designs for both qualitative and quantitative
factors.

Other New Designs

Recent progress in the development of small first-
order designs has been made with so-called super-
saturated designs, or designs that employ fewer data
points than number of factors. Here, of course, the
purpose of the experiment is purely one of variable
screening. In practice, the designs are used in
conjunction with exploratory information for asses-
sing first order effects. Generally, the designs were
developed much like Plackett-Burman designs but
with a view toward attractive projection properties.
Supersaturated designs have a long history beginning
with Satterthwaite (1959) and Booth and Cox
(1962). More recent work includes papers by Lin
(1993a, 1993b, 1995), Wu (1993), Draper and Lin
(1995), Deng, Lin, and Wang (1996a,b), Nguyen
(1996), Li and Wu (1997), Westfall, Young, and Lin
(1998), Balkin and Lin (1998), and Yamada and Lin
(1997). These authors discussed such issues as design
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construction, evaluation, and analysis methods. Lin
(2000) gave a concise overview of recent develop-
ments. Holcomb and Carlyle (2002) described the
construction of supersaturated designs in terms of
computational complexity and proposed some new
methods for evaluation and construction of designs.
Abraham, Chipman, and Vijayan (1999) discussed
the analysis of supersaturated designs and pointed
out that the practical interpretation of effect
estimates may be very difficult. Beattie, Fong, and
Lin (2002) proposed a two-stage Bayesian model
selection strategy, and Holcomb, Montgomery, and
Carlyle (2003) developed a contrast-based analysis
technique for supersaturated designs that provides
more reliable results that the usual stepwise-regres-
sion based techniques.

Some work explores the possibilities for following
up on a 2¥? experiment by adding runs to de-alias
effects of potential interest. For example, Mee and
Peralta (2000) described semifolding, a technique
using half of a standard fold-over design (see also
Barnett, Czitrom, John, and Leon (1997)). Meyer,
Steinberg, and Box (1996) used a Bayesian criterion
for design augmentation. Chipman and Hamada
(1996) advocated an effect-based approach and
illustrated how the follow-up design selected depends
on the family of models selected. Montgomery and
Runger (1996) gave rules for optimal foldovers of
Resolution IV designs and presented some new
foldovers for Resolution III designs. Li and Mee
(2002) provided some new results on fold-over of
resolution III designs. Nelson et al. (2000) compared
augmentation strategies for both 25?2 and Plackett-
Burman designs. The method of characterizing
projected designs after an initial analysis has
identified a subset of the original factors was
investigated by Draper and Lin (1995), Box and
Tyssedal (1996, 2001), Cheng (1995), and Wang and
Wu (1995).

Draper (1985), Draper and Lin (1990), and Lin and
Draper (1992) made a successful case for the use of
Plackett-Burman designs for the factorial portion of
Hartley’s small composite designs. In some cases, the
design results in a smaller run size than the standard
small composite design (SCD). For example, in the
case of k= 7 design variables, the use of a standard
SCD requires a 2772 fraction plus 14 axial points for a
total of 46 points plus centerpoints. On the other
hand, the use of a 24 run Plackett-Burman design for
the factorial portion requires 24 + 14 = 38 points,
which is two above saturation, plus center points. In
addition, the use of a Plackett-Burman design allows
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a compromise between a saturated SCD and a CCD.
For example, for k = 4 the standard SCD requires 16
factorial plus center and axial runs, while the use of a
Plackett-Burman 12 run design plus axial and center
runs allows 6 lack-of-fit degrees of freedom resulting
from a total of 21 design points. The complete centrel
composite design requires 24 runs plus the center
runs. Furthermore, it was observed by a referee that
because Plackett-Burman designs project down to 2
limited selection of type of designs in fewer dimen-
sions, this makes it possible to run, for example, a 12-
run Plackett-Burman design in 11 factors, project
down to one of only two possible types in any five
factors, and then add axial runs to estimate the
parameters of a second-order model in five factors
very efficiently (see Draper (1985)). Lin and Draper
(1993) discussed generating the alias relationships for
the two-level Plackett-Burman designs.

Morris (2000) proposed a new class of three-level
designs for fitting the second-order response surface
model. . He referred to these as augmented pairs
designs, because they are constructed by forming the
third level of a factor as a linear combination of the
levels of every pair of points in a two-level first-order
design. The maximum and minimax distance criteria
introduced by Johnson, Moore, and Ylvisaker (1990)
and used in spatial modeling motivate this construc-
tion scheme. The number of runs in these designs for
3< k<10 factors is larger than in the small
composite design (except for k = 3, where they are
identical), and less than in the Box-Behnken desiga
(except for k =4) and the central composite design
(except for k =4 and 5). Morris (2000) showed that
the precision of model parameter estimates and the
precision of expected response estimation for aug-
mented pairs designs compares favorably to central
composite and Box-Behnken designs.

Cheng and Wu (2001) suggested combining the
factor screening optimization stages of an RSM study
by using 3F7 designs for both screening and
optimization. The projection properties of the 3%~
are utilized to provide second-order designs in ths
important factors. The authors defined projection
efficiency criteria for these designs and studied their
performance. They noted that the D-efficiencies cf
the projected designs is generally good, but that ths
G-efficiencies are worse. They noted that some
nonregular designs may enjoy better projection
properties. Several discussants of this paper com-
mented on the desirability and potential risks cf
combining screening and optimization in a singls
stage, including the choice of an appropriate experi-
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mental region, adequacy of the quadratic model if the
region is too large, and the possible necessity of
adding variables to the experiment between the
screening and optimization stages. In their discussion
of Cheng and Wu (2001), Montgomery and Borror
(2001) noted that with the addition of a small
number of runs the G-efficiency of the projected
designs can be significantly improved. Lawson (2003)
provided two illustrations of one-step screening and
optimization experiments.

There have been a number of useful extensions
involving well-known response surface designs. Mee
(2001) discussed noncentral composite designs
formed by adding a second two-level design to an
initial 2¥ or 2P experiment. He also considered
asymmetric composite designs consisting of a factor-
ial portion and k axial runs that originate from a new
base point not at the design center. He identified
several scenarios in which these designs may prove
useful. Mee (2002) discussed the use of three-level

simplex designs in sequential experimentation, and
noted that a number of new second-order designs can
be formed in this manner. Ankenman, Liu, Karr, and
Picka, (2002) proposed a class of split factorial designs
that are useful for estimating both a response surface
and variance components arising from nested random
effects.

The rotatability criterion continues to attract the
attention of researchers. Draper, Gaffke, and Pukel-
sheim (1991) and Draper and Pukelsheim (1994)
studied the topic in a very general way, investigating
rotatability of designs, information variance surfaces,
and moment matrices. Related work includes that by
Draper, Gaffke, and Pukelsheim (1993) and Draper,
Heiligers, and Pukelsheim (1996). Measures of rotat-
ability were proposed by Khuri (1988, 1992) and
Draper and Pukelsheim (1990). These measures are
single-number indices that describe the departure of a
given design from rotatability.

Uniform designs (Fang et al. (2000)) are another
new class of experimental designs that are potentially
useful in RSM. These are space-filling designs in
which runs are scattered in a deterministic manner
over the design space. Because these designs typically
have a large number of levels they can be used to fit
models considerably more complex than the usual
second-order models typically employed in the
optimization phase of an RSM study. One of the
responses in the example in Fang et al. (2000)
involved an 8 order polynomial. Freeny and Land-
wehr (1995) discussed graphical approaches to the
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analysis of large designs, and Lewis and Dean (2001)
proposed methods for the detection of interactions in
large designs.

Draper et al. (1994) showed how the degrees of
freedom in a Box-Behnken design beyond those
required to fit the model can be used to check model
adequacy by forming contrasts in the higher-order
terms. When they are orthogonal, these contrasts can
be plotted on a normal probability plot to detect
model bias.

There have been advances in methods for con-
structing optimal response surface designs. Haines
(1987) and Zhou (2001) applied simulated annealing
and Welch (1982) developed a branch and bound
algorithm for the construction of alphabetically
optimal designs. Both of these techniques are general
methods for the solution of complex optimization
problems. Recently, genetic algorithms (GAs) have
been applied to design construction. An important
feature of GAs is that they do not require a candidate
set of points from which to select the design, so they
can often find designs that are superior to those
produced by other methods that require a candidate
set. They can also be very efficient for large problems
when compared to exchange methods employing a
very fine grid of candidate points. Montepiedra,
Myers, and Yeh (1998) used an abbreviated version
of the GA, omitting the mutation step, and employ-
ing the traditional binary gene encoding. These
decisions tend to limit the performance of the
algorithm, and the designs that result are not
generally the best that could have been obtained.
Hamada et al. (2001) used the GA to find designs
that are optimal in a Bayesian sense. These authors
used a full GA procedure and real encoding. They
were able to provide designs that would be extremely
difficult to generate with traditional exchange algo-
rithms. Heredia-Langner et al. (2003) applied the GA
to a number of different response surface design
problems, including constrained experimental re-
gions. Their designs are often superior in terms of
alphabetic optimality criteria than designs found by
exchange algorithms. Borkowski (2003a) used a GA
to generate near-optimal D, A, G, and IV exact N-
point second-order response surface designs on
hypercubes, and provided a catalog of designs for 1,
2, and 3 factors.

In many applications of RSM, the final model fit to
the experimental data is different than the model for
which the experiment was designed. It is well-known
that design optimality properties may suffer quite
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substantially when the experimenter fits a model
different than the one originally thought to be
appropriate. The work by Borkowski and Valeroso
(2001) showed that many RSM designs are not
robust across reduced models to the D, G, A, and IV
criteria. Myers and Montgomery (2002) gave an
example involving a reduced second-order model in
four factors in which the design for the initial model is
singular if the experimenter decides subsequently to
fit a slightly different reduced second-order model.
Situations such as these identify the need for designs
that are model robust-(that is, those which maintain
good efficiency with respect to design optimality
criteria across a range of potential models of interest
to the experimenter). Some work has been done in
this area; indeed, the Bayesian design work by
DuMouchel and Jones (1994) and Andere-Rendon,
Montgomery, and Rollier (1997) produced designs
that are model-robust, in the sense that they allow
one to fit a primary model while protecting against a
potential model of higher order. Li and Nachtsheim
(2000) proposed a class of model-robust factorial
designs that are optimal over a group of models
consisting of all main effects and a certain number of
two-factor interactions. They modified an exchange
algorithm to generate their designs. Heredia-Langner
et al. (2004) showed how to use a genetic algorithm to
create response surface designs that are model-robust
for a wide variety of problem types, including designs
for constrained regions, mixture experiments, and
mixture-process experiments. They showed that their
approach is generally superior to the relatively
common practice of designing the experiment to fit
the most elaborate model in the family of models of
potential interest.

Methods for Evaluating Response
Surface Designs

The use of optimal design theory for RSM design
selection forces the use of a single criterion and,
hence, a single philosophy. Certainly, no simple
prescription can be satisfactory in all applications.
This fact represents a continuing downside to the use
of computer-generated designs, most of which depend
on a single number criterion, such as D-optimality.
Successful RSM designs need to be based on many
considerations (for example, see the 14 criteria listed
by Box and Draper (1975, 1987)). The importance of
design robustness underscores this concept.

The development of graphical methods for compar-
ing and evaluating designs reflects the need to take a
multidimensional aspect of a RSM design into

Vol. 36, No. 1, January 2004

account. Many of these graphical methods evolved
from the use of prediction variance; that is, the
variance of the predicted response

9(x) = f'(x)8, (7)
where f'(x) reflects the polynomial model terms in
the design variables z;, w9, ..., zx, and

B=(XX)"'Xy ®)

is the standard least squares estimator of regression
coefficients when the response surface model is
written in the general linear model form

y=XB+87 (9)

where ¢ is a vector of random errors assumed to be
i.i.d. with mean 0 and variance o2. It is a standard
practice to use the scaled prediction variance in
comparing designs. The prediction variance is

Var[(x)] = f()(X'X) " f(x)o*,  (10)
and the scaled prediction variance is

NVarlyl " Iney—1
___%@:Nf(x)(XX) f), A

where N is the design size. The scaled prediction
variance depends on the design, the model, and the
location at which the prediction is to be made. A
“good” design can be defined as one in which the
scaled prediction variance is reasonably stable in the
design region. This approach certainly underscores
the preference of a plot of Var[g(x)]/¢? or
NVar[g(x)]/0? to a single number criterion such as
the D-efficiency. A design that is produced by the
computer as a D-optimal design may well have a very
unstable distribution of NVar[g(x)]/o? in important
portions of the region of interest.

Several software packages, such as Design-Expert,
now provide contour plots of the scaled prediction
variance as well as the estimated prediction variance
computed from Equation (10), with o replaced by an
estimate 5%. Obviously, plots of Equation (11) prior
to taking data are preferable so that various
competing designs can be evaluated. Many software
packages also provide an average prediction variance
measure over the design region in the output.
Borkowski . (2003b) pointed out that one must be
careful in interpreting this measure relative to the
integrated variance or IV design optimality criterion.
When a fixed set of points are used to calculate the
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average prediction variance, the quantity will be less
than the true integrated variance and could lead to
the selection of an inferior design relative to the IV
criterion.

The Variance Dispersion Graph

Even for as few as three factors, contour plots
become difficult to use and to interpret. In such cases,
Giovannitti-Jensen and Myers (1989) and Myers et
al. (1992) proposed the variance dispersion graph
(VD@G), which plots the prediction variance informa-
tion for the entire design region on a two-dimensional
graph. These plots display the maximum, minimum,
and “spherical,” or average, prediction variances
over spheres of radius r extending from the design
origin to the design perimeter. The average predic-
tion variance over a sphere of radius r is given by

N [ Var[y(x)]dx

= 12
K Jdx (12)

where v, is the set of points in the region of interest
that satisfy >F | 22 = 7%, and J,, dx is the volume of
the region. The plot of V; is then augmented by plots
of

and min

vy

ma.
o2

A o2

< {NVar[@(X)}} {N"Var[’y\(x)]}‘

The use of the scaled prediction variance
NVar[g(x)]/o? allows the use of G-efficiency as a
frame of reference for the design. In addition, the plot
of the maximum scaled prediction variance allows a
direct assessment of the stability of prediction
variance. Software for generating VDGs for spherical
regions can be found in papers by Vining (1993) and
Borror (1998). Myers et al. (1992), Borkowski (1995),
and Myers and Montgomery (2002) illustrated how
one can use VDGs to compare and evaluate response
surface designs.

The VDG has been extended to other design
scenarios. Software for constructing VDGs for
cuboidal designs was presented by Borror (1998).
Trinca and Gilmour (1998) meodified the original
VDG to incorporate the effects of running a response
surface design in blocks. Borror, Montgomery, and
Myers (2002) developed a VDG methodology for
designs for RPD and process robustness studies that
incorporate both control and noise variables. They
produced VDGs for both the mean and slope of the
response surface model. Vining, Cornell, and Myers
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(1993) proposed and illustrated a VDG methodology
that allows plots of prediction variance that are of
particular interest in an RSM problem involving
mixture designs and mixture models. Their VDGs are
constructed along the Cox direction (see Cornell
(2002)). Piepel and Anderson (1992) and Piepel,
Anderson, and Redgate (1993a,b) considered a
different approach involving plotting prediction
variance contours on successively smaller polytopes
that lie inside the original design region. This
alternative can be a useful companion plot to that
of Vining, Cornell, and Myers (1993).

Khuri, Kim, and Um (1996) built on the founda-
tion of variance dispersion graphics by constructing
quantile plots that are designed to provide more
information than presented in the original VDG.
They plotted quantiles of the distribution of
Var[j(x)]/o? instead of only the average, maximum,
and minimum values. They presented an example
where the standard VDGs for two designs do not
differ remarkably, but the quantile plots reveal very
different prediction variance properties. Khuri, Har-
rison, and Cornell (1999) applied these quantile plots
to the design of a mixture experiment. Another
important recent development is the introduction of
fraction of design space (FDS) graphs by Zahram,
Anderson-Cook, and Myers (2003). The FDS graph
plots the range of scaled prediction variance against
the volume of the design region, expressed as a
fraction. This provides information about the dis-
tribution of scaled prediction variance in the design
space and gives additional insight into the predictive
capability of a design that is not easily determined
from the VDG.

Multiple Responses

Design and Modeling

Many designed experiments involve more than one
response. In some industrial settings, such as
semiconductor manufacturing, 12 to 15 response
variables are not unusual. The robust parameter
design problem discussed above is a special case of
this problem where there are two responses, the mean
and variance of a fundamental response observed
during the experiment. Khuri and Cornell (1996)
proposed the seemingly unrelated regressions method
to estimate the model parameters, because the
responses might be correlated. When the same design
is used for all responses and the same model degree
and form is used for all responses, this is the same as
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separate modeling of each individual response. The
review paper by Khuri (1990) contained a. good
summary of techniques for the analysis of multi-
response experiments. Langsrud (2001) presented
some methods for identifying significant effects on
multiresponse fractional factorial experiments.

Kim and Draper (1994) discussed selecting designs
for fitting a first-order model in one variable when
there are two correlated responses. They observed
that when the responses are positively correlated one
should not change the design much from the
uncorrelated case, but one should make the design
smaller in the case of negative correlation. They also
reported similar results for two responses and two
predictors and for three response and either one or
two predictors. More general D-optimal designs for
multiple-response regression models were considered
by Kraft and Schaefer (1992). They showed that
under some conditions the optimal designs do not
depend on the response covariance matrix.

Multiple Response Optimization

A common approach first models each response
individually and then graphically superimposes the
contour plots. The analyst examines the overlay to
find the appropriate set of operating conditions for
the process. Rarely does a single set of operating
conditions produce the optimum for all responses
simultaneously. As a result, one usually searches for a
set of conditions (sometimes called the “sweet spot”)
that comes as close as possible to satisfying all
response requirements. Lind, Goldin, and Hickman
(1960) illustrated this approach.

In practice, the graphical approach is limited to
two or perhaps three dimensions. Therefore, there is
considerable interest in more general approaches.
One of these is to formulate the multiple response
problem as a constrained optimization problem. In
general, we suppose that there are m responses, and
that for each we have a response surface model
¥ = fi(x). We select one response as the primary
response (or the objective function) and solve

max(min)z,

subject to (13)
li < i < w,
x € RF,

i=2,3,..,m

where the first response is the objective function, and
[; and wu; are lower and upper bounds on the
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remaining responses, ¢ = 2,3,...,m. The last con-
straint in Equation (13) is a ‘“region” constrain:
ensuring that the solution vector x; is inside the
experimental region R. For cuboidal designs, this
constraint usually takes the form —1 <z; <1, 1=
L,2,...,k (the number of design variables). For
spherical designs, the constraint is x'x < r?, where +
is the design radius. There are commercially-available
experimental design software packages that allow the
user to formulate the multiple response optimization
problem in this manner. It should be noted that in
the special case where the f; are convex functions,
and there are no lower bounds on the constrain;
functions, the result is a convex optimization, which
is a well-solved problem (see, for example, Nesterov
and Nemirovskii (1994) and their many references).
The majority of instances do not satisfy these
conditions for convexity. Even so, in some cases the
models can be altered slightly to bring about a
convex optimization problem, with little impact on
the quality of the optimal solution. The double linea:
regression method for identifying zero eigenvalues in
the canonical form of the second-order model
proposed by Ankenman and Bisgaard (1996) is useful
in this regard.

There are two broad classes of methods that can be
used to solve this problem, direct search methods and
mathematical optimization algorithms. Most experi-
mental design software packages that handle multi-
ple response optimization use either the pattern
search method of Hooke and Jeeves (1961) or the
sequential simplex (see Copeland and Nelson (1996)
for a modern presentation in the context of multiple
response optimization).

Direct search methods are hill-climbing methods.
They start from an initial solution and move in the
local gradient direction, or an appropriate approx-
imation of it. Frequently, there are several disjoins
feasible operating regions for the process, which
causes multiple local optima. Thus, there is no
guarantee that one will find the absolute or global
optimum solution. In fact, we are usually interested
in finding all of the optimum solutions because some
solutions may be more desirable than others based on
practical considerations. For example, some of the
feasible operating regions will typically be larger,
which implies more robust operating conditions for
the process. Most software packages use multiple
starting locations, which somewhat alleviates this
problem.

The generalized reduced gradient (GRG) method
(see Lasdon, Fox, and Ratner (1974) and Del Castillo
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and Montgomery (1993)) is a very popular mathe-
matical optimization algorithm. This method is
broadly applicable to many types of mathematical
programming problems, and it is widely available in
commercial software. The spreadsheet package EX-
CEL employs a version of the GRG, which is very
convenient. Since the GRG makes explicit use of
derivatives, it is considerably more efficient than
search methods, and may be less likely to be confused
by numerous local optima. For more discussion of
this method, see Carlyle, Montgomery, and Runger
(2000).

There are many possible variations of the optimi-
zation problem formulated in Equation (13). Del
Castillo (1996) presented a formulation of the multi-
ple response optimization problem that allows one to
obtain solutions that simultaneously satisfy confi-
dence region constraints for all responses. His
methodology is applicable to both linear and quad-
ratic models; however, he assumes the use of a
rotatable design. Del Castillo, Fan, and Semple
(1999) and Fan (2000) devised algorithms for global
or near-global optimization of the dual response
system.

The third general approach to multiple response
optimization is to simultaneously optimize all m
responses. An obvious possibility is to form some
function combining the responses, such as
=Y. ag;, where the a; are weights, and then
optimize the composite response 7. In practice,
choosing the weights appropriately is usually diffi-
cult, and so this approach is not widely used unless
there is some unequivocal way to select the weights.

The most popular approach using computer soft-
ware is the desirability function approach proposed
by Derringer and Suich (1980). In this approach, each
response is converted into an individual desirability
function, say d; = h(7;), where the desirability is d; =
0 if the response is in an unacceptable range, d; = 1 if
the response is at the optimum value, and 0 < d; < 1
otherwise. It is possible to determine the shape of the
desirability function, thereby controlling how impor-
tant it is that the response achieve the target in the
final optimal solution. Then, the solution x; is found
that maximizes the geometric mean of the individual
response desirabilities,

m 1/m
D= (H di> .
i=1
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Direct search methods are used to find the optimum
solution, because the individual desirability functions
are not differentiable. This approach also suffers from
the multiple-optima phenomena noted above.

Del Castillo, Montgomery, and McCarville (1996)
demonstrated how to replace the non-differentiable
desirability functions of Derringer and Suich (1980)
with differentiable equivalents that are fourth-order
polynomials. One can then use standard mathema-
tical programming optimization algorithms such as
the GRG to optimize the overall desirability function.
Kim and Lin (2000) used an experimental form of the
desirability function and illustrated its application to
the simultaneous optimization of the mechanical
properties of steel.

Problems with highly nonlinear, or multimodal,
objective functions can be extremely difficult to solve,
and are further complicated by the presence of
multiple objectives. A standard approach in this
situation is to use a heuristic search procedure. There
are several families of methods that have been
proposed for finding global optima for such problems,
two of which are simulated annealing and genetic
algorithms. Neither is guaranteed to find the global
optimum, but they have been designed to use
different means of avoiding getting stuck at local
optima. Carlyle, Montgomery, and Runger (2000)
discussed these approaches in more detail.

All of the multiple response optimization techni-
ques we have discussed assume that the responses are
independent or uncorrelated. This assumption is
often inappropriate, and a method that takes the
dependence among responses into account is desir-
able. Khuri and Conlon (1981) presented an ap-
proach in which a generalized distance measure is
employed to indicate the weighted distance of each
response from its individual optimum value. The
variances and covariances of the responses are used in
determining the weights. Then, the solution is found
that minimizes the generalized distance. Vining
(1998) established that the Khuri and Conlon
approach is a special case of a weighted squared
error loss function, and showed several other plau-
sible weighting schemes. Pignatiello (1993) and Ames
et al. (1997) proposed approaches based on squared
error loss functions. Chiao and Hamada (2001)
proposed a multiple response optimization procedure
that takes correlation among the responses into
account. They considered the covariance matrix of
the responses as dependent on the experimental
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factors and modeled the parameters of the response
distribution in terms of these factors. They then
found the setting of the factors that maximizes the
probability that all responses simultaneously meet
their respective specifications.

RSM and Generalized Linear Models

The generalized linear model (GLM), developed by
Nelder and Wedderburn (1972) and discussed in
detail by McCullagh and Nelder (1989) and Myers,
Montgomery, and Vining (2002), is a unified model-
ing strategy that allows for maximum likelihood
estimates of model parameters in situations where the
responses are members of the exponential family.
This includes the normal, gamma, exponential,
Poisson, and binomial distributions. Myers (1999)
provided a thorough discussion of the growing
importance that GLMs play in response surface
design, modeling, and analysis (see that paper for
many useful details and some basic references). We
concentrate here on work published since Myers
(1999) and on some additional references that were
not included in that paper.

Papers illustrating the application of GLMs to
industrial problems include those by Brinkley, Meyer,
and Lu (1996), Lewis, Myers, and Montgomery
(1999-2000, 2001a), Heredia-Langner et al. (2000),
O’Neill et al. (2000), Borror, Heredia-Langner, and
Montgomery (2002}, and Lee and Nelder (2003).
Myers (1999) noted the connection between GLM
and the RPD problem. In fact, the nonhomogeneous
variance routinely found in RPD leads naturally to
consideration of the GLM for modeling and analysis.
Grego (1993), Nelder and Lee (1991), and Lee and
Nelder (1998, 2003) discussed and illustrated the
connections between robust parameter design and
generalized linear models and provided numerous
examples.

Lewis, Montgomery, and Myers (2001b) compared
the GLM to traditional least squares analysis and
showed that the length of the confidence interval on
the mean response is a useful measure to evaluate the
competing models. Often, the GLM results in shorter
confidence intervals, implying more precise response
estimation, which can be an important issue in RSM.

The literature that presents examples of the use of
GLM in RSM typically makes use of standard designs
(that is, factorials or central composite designs).
Myers, Montgomery, and Vining (2002) used the
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notion of design efficiencies to argue that many of
these standard designs will work very well with the
GLM. However, most of the work has been confined
to the first-order model and two-level designs.
Consequently, we believe that more work needs to
be done in the development of practical design
strategy in the use of generalized linear models.

As we have noted, optimal (or even good) designs
cannot be found for nonlinear models (including
GLMs) without “guesses” of model parameters. As a
result, most of the basic research into designs fer
GLM has been in local design optimality, or the
construction of optimal designs under the assumption
that the parameters are known. Clearly, this work
must be a springboard to the development of creative
Bayesian designs, robust designs, or multiple stage
designs. Ford, Torsney, and Wu (1992), Sitter and
Wu (1993), Kalish (1990), and Rosenberger and
Kalish (1978) dealt with locally optimal designs fcr
logistic regression in a single design variable. For the
most part, these works involve D—optimality, G-
optimality, and F-optimality. In this context, -
optimality deals specifically with designs that allow
optimal estimation of the effective dose (ED), that is,
the value of z that elicits a particular probability.
The F(or Fieller)-optimality criterion selects the
design that minimizes the squared width of the
Fieller interval for estimation of a certain ED. Myers,
Myers, and Carter (1994) gave a review of design
optimality for logistic regression and introduced the
notion of Q-optimality with the logistic regression
model. While all of these represent single variable
designs with local optimality, the stage was set fer
further research involving more pragmatic ap-
proaches. Atkinson, Chanoler, Herzberg, and Juritz
(1993) developed Bayesian designs that are D- and
D,- (optimal for a subset) optimal for a type of
compartmental model used in biological applications.
Heise and Myers (1996) studied both optimal and
robust designs for bivariate logistic regression. The
natural setting for this case involves two responses,
efficacy and toxicity. Clearly, applications exist fcr
industrial as well as biological processes.

Other Issues and Applications

Response Surface Experiments with
Randomization Restrictions

Many industrial experiments involve two types of
factors: those with levels that are easy-to-change and
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those with levels that are difficult or costly to change.
Consider a sintering process for battery anodes
involving different densities of nickel powder and
different furnace temperatures. The temperature
profiles in a furnace require a great deal of time to
reach equilibrium. Experimenters prefer to obtain as
much information as they can for a single setting of
the temperature conditions; consequently, furnace
temperature is a hard-to-change factor. On the other
hand, operators can change nickel powder densities
relatively easily. In this situation, a reasonable
experiment fixes the level of furnace temperature
and then runs all levels of density for the nickel
powder. The experimenter then changes the setting
of temperature and repeats the process. This experi-
ment generates more information about nickel
powder density, because it is replicated more often,
than about furnace temperature. As a result, analysis
involves two different error terms. Proper analysis of
data must take this consequence of the restricted
randomization scheme into account.

Nelson (1985) used a split-plot example involving
furnaces to show how important it is to correctly
specify the model as a split-plot model instead of a
completely randomized design (CRD) model. Lucas
and Hazel (1997) ran the helicopter experiment as a
CRD and as a split-plot to illustrate the differences in
analysis. Ganju and Lucas (1997, 1999) discussed
inadvertent split-plotting, which occurs when factors
are not independently reset for consecutive runs
requiring the same level of the factor. Ganju and
Lucas (1997) demonstrated the underestimation of
the variance for the main effects of factors that are
not reset. Ganju and Lucas (1999) showed the
difficulty in detecting the effect of the randomization
restrictions.

Letsinger, Myers, and Lentner (1996) introduced
bi-randomization designs (BRDs). These BRDs are
designs with two randomizations, similar to split-plot
designs. Letsinger, Myers, and Lentner break BRDs
into two classes, crossed and non-crossed. In crossed
BRDs, every level of the whole plot factors is
“crossed” with every level of the subplot factors,
which produces the usual split-plot designs. For the
non-crossed BRD, the whole plot factors have
different levels of the sub-plots and need not have
the same number of levels. The distinction between
these two can be thought of in terms of the sub-plot
factors. The crossed BRD might be represented by a
2% factorial in the sub-plot factors, while the non-
crossed BRD might use a 2¥? fractional-factorial in
the sub-plot factors. The authors compared three
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methods for analyzing the second order case: OLS,
iterative reweighted least squares (IRLS), and
restricted maximum likelihood (REML). Though
IRLS and REML appear to be better methods, the
“best” method depends on the design, model, and
any prior information.

Minimum-aberration (MA) designs for split-plot
experiments where both the whole plot and subplot
factors have two-levels are discussed by Huang,
Chen, and Voelkel (1998) and Bingham and Sitter
(1999a). They provided methods for determining the
MA designs and then gave tables for various
combinations of whole plot and subplot factors.
Some design issues with two-level fractional-factorial
split-plot experiments, including where to split and
where to fractionate, are presented by Bingham and
Sitter (2001). Theoretical justification of these types
of split-plot designs is given by Bingham and Sitter
(1999b).

Lucas and Ju (1992) used a simulation study to
investigate the use of split-plot designs in industrial
experiments where one factor was difficult to change
and served as the whole plot. Their results confirm
that split-plot designs will produce increased preci-
sion on the subplot factors while sacrificing precision
on the whole plot factors. Kowalski (1999) also
studied split-plot designs and confounding issues
using simulation. Box (1996) explained that comple-
tely randomized experiments are often impractical in
industry, and indicated that split-plot experiments
are often very efficient and easier to run.

Miller (1997) considered various fractional-factor-
ial structures in strip-plot experiments. Strip-plot
configurations can be applied when the process being
investigated can be separated into two distinct stages
and it is possible to apply the second stage
simultaneously to groups of the first-stage product.
Miller (1997) proposed a method for constructing
strip-plot configurations for fractional-factorial de-
signs. The method is applied for two-level designs and
then extended to m-level and mixed-level designs.
Mee and Bates (1998) considered split-lot experi-
ments involving silicon wafers. These experiments are
performed in steps where a different factor is applied
at each step. Mee and Bates (1998) proposed a model
and provided a general approach for constructing
split-lot designs.

Draper and John (1998) considered modifications
to the central composite and Box-Behnken designs
based on rotatability when some of the factors are
harder to change than others. Trinca and Gilmour

Vol. 36, No. 1, January 2004




RESPONSE SURFACE METHODOLOGY: A RETROSPECTIVE AND LITERATURE SURVEY 67

(2001) presented a method for designing response
surface experiments that have multiple strata.
Beginning with the highest stratum, designs are built
stratum by stratum. Then, the trials are arranged so
that they are nearly orthogonal to the units in the
higher strata. This strategy produces optimal designs
that minimize the maximum of a function of the
variances of the parameter estimates.

Schoen and Wolff (1997) discussed the design and
analysis of a mixed fraction split-plot experiment.
They use confounding and a half-normal plot to
determine active between-runs effects and within-
runs effects. Schoen (1999) proposed a method for
manipulating the division of contrasts over the
different error strata of two-level experiments with
nested errors. Goos and Vandebroek (2001) proposed
an exchange algorithm for obtaining D-optimal split-
plot designs. They showed that the design matrices
for the D-optimal split-plot designs and D-optimal
CRDs are typically different, and that split-plot
experiments are often more efficient than CRDs.
Others doing interesting work with split-plot experi-
ments include Federer and Meredith (1992), Mathew
and Sinha (1992), and Remmenga and Johnson
(1995).

The analysis of data from mixture experiments
containing process variables is presented by Cornell
(1938). The factor-level combinations of the process
variables are considered whole plot treatments and
the mixture component blends the subplot treat-
ments. Kowalski, Cornell, and Vining (2002) pro-
posed new designs for split-plot experiments that
have mixture components and process variables,
which are much smaller than those discussed by
Cornell (1988). They also used simulation to compare
several estimation methods in terms of the size of the
confidence ellipsoid around the parameters.

Industrial experimentation often involves the use
of both hard-to-change and easy-to-change factors.
Engineers routinely run split-plot experiments with-
out fully realizing the implications for analysis. As a
result, they often reach inappropriate conclusions
from their experiments. More work needs to be done
in extending basic split-plot analysis techniques to
different types of industrial experiments.

Split-Plots in Robust Parameter Designs

Box and Jones (1992) considered three experimen-
tal arrangements for robust parameter design with
the use of split-plot designs:
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(a) the whole plots contain the environmental
factors and the subplots contain the design
factors;

(b) the whole plots contain the design factors and
the subplots contain the environmental fac-
tors;

(¢) and the subplot factors are assigned in ’strips’
across the whole plot factors (this is commonly
called a strip-block experiment).

They point out that, if at all possible, experimenters
should pursue arrangement (a) because it gives more
information about the design factors. When there is
no replication, they suggest using two separate
normal probability plots, one for the whole plot
effects and another for the subplot and subplot by
whole plot interactions, to detect significant effects.

Box and Jones (2001) pointed out that split-plot
experiments are ideal for robustness studies because
the interactions between design factors and environ-
mental factors are estimated with the smaller subplot
error. Bisgaard and Kulachi (2001) showed that more
information is gained in RPD experiments from
switching fractions (split-plot confounding) than
from using the same fraction (inner-outer array
designs). Based on this, they recommended using
split-plot confounding in RPD to reduce the size of
the experiment.

Bisgaard and Steinberg (1997) considered the
design and analysis of prototype experiments. They
presented examples that use split-plot designs and
showed clearly how to carry out a two-stage analysis
of the data. Bisgaard (2000) used inner and outer
arrays, with factors at two-levels, and illustrated
several ways to confound in order to reduce the
number of experimental runs needed. By looking at
these different alias structures, he showed that the
goals of the experiment can dictate the appropriate
defining contrasts. Bisgaard (2000) also provided the
standard errors for various contrasts among the
whole plot and subplot factors.

Kowalski (2002) also considered split-plot experi-
ments in robust parameter design. He constructed 24-
run designs in two ways: using the properties of a
balanced incomplete block design, and semifolding a
16 run design. When there are only a few noise factors
and a few design factors, the designs can estimate all
main effects and almost all two-factor interactions.
The designs are intended to be a compromise between
16 and 32 run screening designs.

There are times in RPD experiments where ‘a
measure of a product’s quality is its worst perfor-
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mance over the environmental conditions. Pan and
Santner (1998) proposed two procedures for these
situations. First, they determined the number of
replicates of the split-plot design that are needed to
assure, with a specified confidence level, the selection
of the product design whose worst performance is
within & of the performance of the optimal product
design. Second, if a particular split-plot experiment
has already been conducted, they provided a proce-
dure which will screen the product designs and
provide a subset that contains the optimal product
design with a specified confidence level.

Phadke (1989) presented an example, analyzed
using Taguchi’s SNRs, involving a polysilicon deposi-
tion process. The actual structure of this experiment
is a split-split-plot design, because there are three
sizes of experimental units with different sources of
variation. Therefore, using Taguchi’s SNRs to
analyze this experiment results in a complete loss of
information in the design by noise factor interactions.
Cantell and Ramirez (1994) reanalyzed the data
using a split-split-plot design.

Computer Experiments

Computer experiments are experiments performed
on a computer model. Sometimes these computer
models are stochastic simulations, and sometimes
they are deterministic models of system behavior.
Experimentation with a stochastic simulation model
is much like experimentation with a physical system,
although specific variance reduction techniques can
often be employed to simplify analysis of the output.
Some examples of RSM applications for such systems
were given by Myers, Khuri, and Carter (1989). In a
deterministic computer model, every detail of the
system is fixed, explicitly or implicitly; consequently,
there is no random error component associated with
the output. Examples of such models include circuit
design tools used in the semiconductor industry and
finite element analysis models used in the design of
discrete parts.

Many analysts feel that the model for a determi-
nistic response should match the observed response at
every design point as closely as possible. Further-
more, analysts often want to do a more global
representation of the system rather than the local
fitting standard in the RSM approach. As a result,
the ranges of the design variables are generally larger
than in standard RSM, and RSM designs may not be
appropriate. Standard RSM designs are often char-
acterized by spherical, cuboidal, or tetrahedral
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geometry in the case of mixture designs. In addition,
the number of levels employed in the design is a
function of the order of the model. However, in
experiments with deterministic computer models,
space filling designs are often used. This assumes
that data points close to the point of interest enhance
the prediction at that point. The Latin hypercube
designs developed by McKay, Beckman, and Conover
(1979) are widely used in such situations. See Welch,
Yu, Kang, and Sacks (1990), Barton (1992), Donohue
(1994), and Fang et al. (2000) for some approaches to
design and response modeling. Many of the modeling
techniques for deterministic computer experiments
have their basis in nonparametric and semipara-
metric methods, which we discuss in the next section.

Nonparametric and Semiparametric
Response Surface Methods

Nonparametric methods are applicable when a
simple polynomial model in the region of interest
cannot describe the response. The term ‘‘nonpara-
metric RSM” implies that there is no specific model
and that the primary focus of the analysis is
prediction, which leads to the use of such techniques
as kernel regression. Semiparametric RSM signifies
that a model is used, but that it is not a standard
polynomial model. As in deterministic computer
experiments, these methods are potentially of interest
when one wishes to fit a model that covers a larger
portion of the factor space than is typical in standard
RSM applications.

Applications of semiparametric or nonparametric
response surface methods (NPRSM) have been
couched in a way similar to traditional methods.
The methods often employ 2-level factorial and
fractional factorial experiments as well as central
composite designs. In addition, analysis often uses
steepest ascent, despite the fact that NPRSM seeks to
achieve a global model of the process. Thus, the
experiment covers the entire operability region rather
than a local region of interest. For this reason, the
space-filling designs mentioned in the previous
section are used extensively.

The methods used for response modeling include (i)
Gaussian stochastic process models, (ii) thin plate
splines, and (iii) neural networks. The Gaussian
stochastic process procedure was popularized by
Sacks, Schiller, and Welch (1989) and Sacks, Welch,
Mitchell, and Wynn (1989) in computer experiments.
Welch, Buck, Sacks, Wynn, Mitchell, and Morris
(1992) illustrated its use in the RSM scenarios
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involving screening experiments and prediction. Once
again, computer experiments provide the basis for
their work. The methodology employs the model

yi = [ (x)B+ Z(x;) + & (14)

for the i experimental run y;, where f/(x;)B is a
standard RSM model and Z(-) is a univariate
Gaussian stochastic process on the design space. A
correlation function of the type

R(x;,%;) = Corr(Z(x:), Z(x;))
= [T exo{—Oulei — 2/}
%

is assumed for Z(x), where 6, >0 and 0 < p < 2.

The thin plate spline approach is similar to the
Gaussian stochastic process model. It is a general-
ization of the classic polynomial model in which a
smoothing parameter varies from a polynomial model
at one limit to an interpolating spline at the other
limit. There is a need for work that determines what
designs are appropriate for different methods and
conditions. Interesting distance-based designs are
discussed by Johnson, Moore, and Ylvisaker (1990).
See also Haaland, McMillan, Nycha, and Welch
(1994).

Applications of NPRSM are abundant. As we
indicated earlier in this section, the application roots
are in computer experiments. Other applications
include the optimization of reaction buffers to use
in DNA for detection of infectious bacteria (see
Spargo, Haaland, Jurgensen, Shank, and Walker
(1993)). Space filling designs and neural networks
are used to detect an injection molding process
window by O’Connell, Haaland, Hardy, and Nychka
(1995). These papers are a small sample of applica~
tions in a field that will doubtless grow to be a major
area of RSM.

Concluding Remarks

The last fifteen years have seen extensive growth in
both the underlying theory and practical applications
of RSM. Advances have occurred on a broad front,
including new designs and improved techniques for
design construction, evaluation, and analysis. The
solution of the robust parameter design problem in an
RS8M framework and the growing use of the general-
ized linear model as an analysis tool have been key
developments. We expect that these two areas will
continue to fuel much of the research in RSM. As the
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research of the last decade has shown, there is still
much to do in the area of response surface designs,
including the integration of randomization restric-
tions into RSM designs, efficient designs for larger
problems, designs that are robust to the form of the
final model chosen by the experimenter, designs for
the GLM, and designs for computer experiments.
Design, analysis, and optimization techniques for
multiple responses will also continue to be an
important area for research.

We also anticipate continued growth in RSM
applications. Biological, biomedical, engineering ce-
sign and development, computer-aided design, and
transactional business processes are likely to be
important areas of application. Because the applica-
tion research problems are challenging and stimulat-
ing, RSM will remain one of the most active areas in
applied statistics.

Appendix: List of Abbreviations

BRD Bi-randomization design
CRD Completely randomized design
GLM Generalized linear model
GRG Generalized Reduced Gradient

IRLS Iteratively reweighted least squares

MA Minimum aberration

NID Normally and Independently Distributed
NPRSM Nonparametric response surface methods

REML
RPD Robust parameter design

Restricted maximum likelihood

RSM Response surface methodology
VDG Variance dispersion graph
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