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The Case Against Normal

Plots of E�ects

RUSSELL V. LENTH

The University of Iowa, 241 Schae�er Hall, Iowa City, IA 52242, USA

When analyzing e�ects in an unreplicated experiment, normal or half-normal plots of the e�ects (also
called Daniel plots) are a popular way to visualize them and to judge which are active. This article discusses
the ways in which these plots can be confusing and misleading. There are other methods available that are
less subjective, easier to explain, more powerful, and less likely to be misinterpreted. I recommend against
using Daniel plots, even as a supplement to one of these better analyses.
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1. Introduction

IN THE ANALYSIS of unreplicated 2k or 2k�p exper-

imental designs, normal or half-normal plots of

e⇤ects (Daniel, 1959), also called Daniel plots, are a

popular method for judging which e⇤ects may be ac-

tive. Many statistical packages, such as Minitab, De-

sign Expert, and JMP, provide these plots automat-

ically as part of the analysis of such designs. Daniel

plots are by far the most popular method for analyz-

ing unreplicated experiments. They are so popular

that it is not unusual to see them used even with a

replicated experiment, where there is a valid error es-

timate and traditional t tests and such are available.

Normal plots are obtained by plotting the esti-

mated e⇤ects versus the normal scores, these be-

ing equally spaced quantiles of the standard nor-

mal distribution. Specifically, let e1, e2, . . . , em de-

note the estimated e⇤ects (excluding the intercept);

let rj denote the rank of ej among all the ei; and

let ⇥�1 denote the inverse cdf of the standard nor-

mal distribution. Then the normal scores are nj =

⇥�1{(rj � 3/8)/(m + 1/4)}.

Similarly, letting sj denote the rank of |ej | among

all the |ei|, the half-normal scores are defined as

hj = ��1{(sj � 3/8)/(m + 1/4)}, where ��1(p) =

⇥�1{(1/2)(1+p)} is the inverse half-normal cdf. The
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plot of the |ej | versus the hj is the half-normal plot

of the e⇤ects. Henceforth, we use the term “Daniel

plot” to refer to either the normal or the half-normal

plot of e⇤ects.

The idea of the Daniel plot is that the ej are mu-

tually independent and have the same variance. If

the true e⇤ects are all zero, then a plot of the ej ver-

sus the nj (or likewise a plot of the |ej | versus the

hj) will fall approximately on a straight line. But

if just a few true e⇤ects are nonzero (this is called

the e�ect-sparsity model), then most ej (or |ej |) will

still display near a straight line, but the few active

(nonzero) ones will deviate from the line; so one may

be able to visualize them as outliers in the plot.

2. Two Examples

Table 1 displays two datasets and the estimates of

their e⇤ects. Response y1 (color of a chemical prod-

uct) is from an experiment reported in Snee (1985)

(also presented in Montgomery (2013), problem 8.9).

There are five factors and this design is a half fraction

of resolution V generated by E = ABCD. Response

y2 (yield of a process) comprises data from a 24�1

experiment presented in Montgomery (2013), prob-

lem 8.15. This experiment is generated by D = ABC;

hence, there are data only for the cases where this re-

lationship holds. The e⇤ect estimates (in numerical

order) for each experiment are also shown in Table 1.

Because each is a half fraction, each e⇤ect is a com-

bination of e⇤ects of two alias pairs, as shown in the

tables. We refer to these datasets as Example 1 and

Example 2, respectively.
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TABLE 1. Two Published Datasets and Their Estimated E�ects. The data for y1 are from Snee (1985), a 25�1 fractional
factorial in factors A–E. The data for y2 are from Montgomery (2013), problem 8.15. It is a 24�1 design in factors A–D

Factor levels Responses y1 Analysis y2 Analysis

A B C D E y1 y2 E⇤ect ej E⇤ect ej

�1 �1 �1 �1 1 �0.63 12 AD + BCE �0.678 AC + BD �2.125

1 �1 �1 �1 �1 2.51 B + ACDE �0.670 AB + CD �0.375

�1 1 �1 �1 �1 �2.68 E + ABCD �0.414 AB + CD �0.375

1 1 �1 �1 1 1.66 16 AC + BDE �0.394 B + ACD 0.125

�1 �1 1 �1 �1 2.06 CD + ABE �0.356 C + ABD 1.375

1 �1 1 �1 1 1.22 15 CE + ABD �0.120 A + BCD 1.875

�1 1 1 �1 1 �2.09 20 C + ABDE �0.074 BC + AD 2.125

1 1 1 �1 �1 1.93 DE + ABC 0.044

�1 �1 �1 1 �1 6.79 BC + ADE 0.084

1 �1 �1 1 1 5.47 25 BD + ACE 0.123

�1 1 �1 1 1 3.45 13 BE + ACD 0.144

1 1 �1 1 �1 5.68 AE + BCD 0.151

�1 �1 1 1 1 5.22 19 AB + CDE 0.638

1 �1 1 1 �1 4.38 A + BCDE 0.655

�1 1 1 1 �1 4.30 D + ABCE 2.210

1 1 1 1 1 4.05 23

For starters, let us look at half-normal plots of

the e⇤ects for the two examples. They are shown in

Figure 1. Other than descriptive axis labels (as all

plots should have), these plots are completely unan-

notated. Thus, we can judge the plots themselves and

not be biased or distracted by any other elements.

In teaching how to use Daniel plots, the typical

advice is to look for outliers in the plot. Following

this rule, there is one point that clearly sticks out

in Example 1. It happens to correspond to the D
e⇤ect, or possibly its alias ABCE. The remaining

e⇤ects seem to follow a fairly linear pattern, though

FIGURE 1. Half-Normal Plots for the Two Sets of Estimated E�ects.
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FIGURE 2. Half-Normal Plot for Example 2, Using Tied
Ranks.

perhaps if we enhance the plot with a line, it may

be possible to see other deviant points—we’ll look

at that later. For now, based on judgment of the

half-normal plot, we will say that there is one active

e⇤ect, D.

As for Example 2, there are two points that stick

out, suggesting two active e⇤ects. Looking at Table

1, we note that these points correspond to the two

largest e⇤ects, D + ABC and BC + AD. But wait!

Look at the top of the table and note that there is a

third e⇤ect, AC +BD, with the same absolute value

of 2.125. The fact is, there is a three-way tie for the

largest e⇤ects. So are there three active e⇤ects (be-

cause of the three-way tie) or are there none (because

one of the tied e⇤ects seems to be in a line with the

smaller ones)?

Perhaps we can answer this question by noting

that normal scores depend on ranks. What happened

in Figure 1 is that small di⇤erences in machine pre-

cision cause those three absolute e⇤ects to have dif-

ferent ranks, whereas we should have averaged those

three ranks together and given all three e⇤ects the

same half-normal score. A revised half-normal plot

based on the averaged ranks is shown in Figure 2.

The rightmost point (the triangular symbol, repre-

senting three tied e⇤ects) still seems to deviate from

the linear pattern. Based on the idea of calling out-

lying points active, we have that all three e⇤ects,

D + ABC, BC + AD, and AC + BD, are active.

However, you may also note that the outlying

points in the second example deviate horizontally
from the linear pattern, whereas the active e⇤ect in

Example 1 deviates vertically. Does this make a dif-

ference? Of course it does. What it means in this

example is that the three largest absolute e⇤ects are

outliers because they are smaller than what we’d ex-

pect relative to the other e⇤ects. Even a simple dot-

plot makes this clear:

Active e⇤ects would be noticeably distant from the

other e⇤ects. But here, the largest three absolute ef-

fects are noticeably nearby, and that’s why they look

like outliers in the Daniel plot.

3. Adding a Reference Line

Often a Daniel plot is constructed with additional

elements to aid in interpretation. The most common

is a reference line to help assess linearity. However,

all sorts of practices are out there for how to define

that line. For example, should it be a least-squares

line—perhaps after deleting some e⇤ects? If so, how

many e⇤ects to remove? Some of these questions can

be answered by appealing to the underlying e⇤ect-

sparsity principle—that inactive e⇤ects come from a

normal distribution with mean zero and some un-

known standard deviation � . Because of the mean of

zero, a reference line should pass through the origin.

Moreover, assuming that the e⇤ects or absolute ef-

fects are plotted on the vertical axis and the (half-)

normal scores are on the horizontal axis, the slope of

the line should be an estimate of � . There are several

ways to estimate � using some kind of robust scale

estimate; see Hamada and Balakrishnan (1998) for a

survey of the most popular ones. For purposes of our

illustrations, we’ll simply use the median of the ab-

solute e⇤ects, suitably scaled, so that the reference

line passes through the origin and the point where

the median absolute e⇤ect is plotted. We will refer

to this as the “median reference line”.

Figure 3 displays the half-normal and normal plots

for Example 1, with median reference lines added.

There is only one e⇤ect that deviates substantially

from the line in the half-normal plot. This supports

our earlier impression that there is only one active

e⇤ect. In the normal plot, we see a deviant point

at the left end. However, it is above the reference

line, indicating it is less deviant than expected, like

happens in Example 2.
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FIGURE 3. Half-Normal and Normal Plots for the First Example, with Median Reference Lines Added.

Figure 4 shows the same two plots for Example

2. The reference line for the half-normal plot seems

reasonable and again does not alter our conclusions.

However, the very same reference line goes nowhere

near most points in the normal plot. The main reason

is that most of the e⇤ects are positive. If we swapped

some of the signs of the e⇤ects, this would not a⇤ect

the median reference line, but the points would fit it
better. Also shown in the plot, as a dashed line, is the

least-squares line based on the middle five points. It

obviously fits much better but is not an appropriate

reference line for judging whether e⇤ects are active,

as it departs from the underlying premise that the

inactive e⇤ects should have mean zero. The chain-

dashed line uses regression through the origin, so in

that sense it is an appropriate reference line, but with

a smaller (more optimistic) estimate of � , because its

slope is lower than that of the solid reference line.

It is interesting that it goes nearest the two points

that were excluded from the model! All in all, the

interpretation of the normal plot is very confusing

indeed.

If you want to use such plots, it is worth trying

to find out what rules your software uses for adding

a reference line, because there is no set rule for this.

FIGURE 4. Half-Normal and Normal Plots for the Second Example, with Median Reference Lines (Solid Lines) Added.
The dashed line and chain-dashed lines are the least-squares lines for the middle five e�ects, with and without the intercept.
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It is especially important to know whether the line

passes through the origin. If it doesn’t, you are judg-

ing linearity of the plot—a separate issue from the

goal of judging which e⇤ects are active.

Besides reference lines, Daniel plots are often fur-

ther annotated with the names of one or all of the

e⇤ects. This can be done either automatically by the

software or manually by the user clicking on points.

Some software changes the reference line based on

which points are identified, assuming that those are

surmised as active e⇤ects. This seems like a reason-

able idea, but there is the hazard of exaggerating the

importance of e⇤ects that are wrongly identified as

active, as could happen in Example 2.

4. Objective Methods

I have already alluded to the fact that objective

methods exist for assessing e⇤ects. Many of them use

a robust estimate of scale to estimate the standard er-

ror � of the e⇤ects. The underlying model for most of

these is the e⇤ect-sparsity model—that the e⇤ects are

independent, have the same standard error, and the

majority of them have expectation zero. Another ap-

proach (Box and Meyer, 1986) uses a Bayesian spec-

ification of the e⇤ect-sparsity model and determines

the posterior probability that each e⇤ect is active.

When an estimate �̂ of � is obtained, then it

can be used to construct t-like ratios tj = ej/�̂
for testing the e⇤ects. Perhaps a critical value or

margin of error of the estimates is produced in ad-

dition. These results are most e⇤ectively displayed

in a bar graph or Pareto chart, preferably with

cuto⇤ lines for significance based on �̂ . Figure 5

shows such displays produced by JMP, using its An-

alyze/Modeling/Screening menu. They are Pareto

charts in the sense that the main e⇤ects are shown

in decreasing order of absolute e⇤ects. The plots

also include the e⇤ect estimates (here called “con-

trasts”), the t ratios obtained using the method in

Lenth (1989), and P values obtained by simulating

1000 cases from the null distribution. An individual

P value is the fraction of simulated t statistics that

exceed the stated value. The simultaneous one is in-

stead based on the distribution of the maximum of

the entire set of t statistics; this adjusts for the error

rate of the whole family of t tests.

According to the P values for Example 1, there is

one e⇤ect with P ⇥ .001 and four more with P ⇥
.10—a kind of middling level of significance. These

together comprise the rightmost five points in the

half-normal plot in Figure 1 or Figure 3. But four

of those points do not stand out in the plots and

are unlikely to be identified as active e⇤ects, or even

marginal ones, by examining the Daniel plots.

As for Example 2, the three largest e⇤ects have

P values of about .39, so do not even come close to

being identified as active.

Most important, the graphs in Figure 5 are com-

pletely su⇧cient for judging the contributions of

model e⇤ects. They present the e⇤ects directly as

the lengths of bars, and cuto⇤ lines and P values

add directly useful guides for judging them.

5. Explainability and Teachability

Statistical methods are used to explain phenom-

ena that we observe to someone who needs that in-

formation to do a better job, improve a process, or

advance science. Thus, a statistical analysis is only

as e⇤ective as our ability to explain it to a client.

A related matter is teaching these methods. A lot

of in-house short courses in industry, as well as uni-

versity service courses in statistics, are directed to

nonstatisticians who potentially will find use for sta-

tistical methods. We do not spend much time with

these audiences and they do not learn statistics in

great depth. So it is important that what we do teach

them will be understood and will likely be used ap-

propriately.

Daniel plots are not easy to explain or teach. In

Example 2, we learned that it makes a di⇤erence

whether points deviate horizontally or vertically. But

did you teach that little nuance in your short course

for the marketing department? Maybe not. A related

side issue is that, originally, normal or half-normal

plots were constructed using special graph paper, and

often the probablility scale on that paper was on the

horizontal axis. Because of this, depending on what

book you read or software you use, the axes in the

Daniel plot could be switched the other way—the

half-normal scores on the vertical axis and the abso-

lute e⇤ects on the horizontal axis. This means that

it is not enough to tell people to look for deviant

e⇤ects in a particular direction—you have to teach

them to read the axis labels carefully, then follow

one of two rules, depending. Add to that the di⇧-

culty of explaining how normal plots are constructed

(see the introduction: inverse cdfs, ranks, etc.) This

is not looking like a very easy-to-teach subject.

Sometimes, when it is the best thing available, a

di⇧cult or complex technique is worth spending the
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FIGURE 5. Pareto Charts from JMP’s Screening Analysis for Each of the Examples.

time to teach or explain carefully. However, Daniel

plots are not in that category because there definitely

are better analyses available that are easier to explain

(see the preceding section). Granted, the details of

calculating a standard-error estimate may be daunt-

ing to explain. But explainability has more to do with

whether what is shown makes sense to the viewer.

Graphs like those in Figure 5 have an inherent sen-

sibility to them, even without an explanation. And

the numerical details—t ratios, P values, etc.—are

similar to those in many other statistical analyses,

so there is good potential for understanding based

on transfer of knowledge.

De León et al. (2011) reports a study wherein

datasets were simulated, then subjects were asked

to judge e⇤ects using both normal plots and simple

dotplots. Their study includes 8- and 16-run designs

(just like the examples in this article). They used 8

simulations of each experiment size, and the e⇤ects

from each experiment were plotted on normal (not

half-normal) plots as well as dotplots, creating 32

graphs total. They then recorded the perceptions of

all 32 plots by 211 engineering students. Both types

of plots were devoid of annotations or reference lines.

The plots were intermixed, and subjects were not

told that the dotplots came from the same sets of ef-
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fects as the normal plots. Respondents were asked to

circle the points that they thought corresponded to

active e⇤ects. Because the data were simulated from

known parameter settings, it was possible to iden-

tify when type I and type II errors were made. They

found that, for the 16 datasets included, there was no

evidence to suggest that normal plots are any better

than dotplots in either their type I or type II error

rates. They also found that type II errors were much

more common with both types of plots.

I disagree with De León et al.’s choices for their

simulations. They included no complete null cases

(where no e⇤ects are active), and several of their sce-

narios include more active than nonactive e⇤ects—

violating the e⇤ect-sparsity model. However, I ar-

rived at the same conclusions as theirs when look-

ing only at the cases where 1/3 or less of the e⇤ects

are active. Those authors recommend displaying the

dotplot in addition to the normal plot. They do not

mention the objective methods in the preceding sec-

tion.

6. Conclusions

Compare the Pareto plots in Figure 5 with the

Daniel plots presented in Figures 1, 3, and 4. The

Pareto plots display the e⇤ects side by side, while

the Daniel plots display them along a crooked path.

Judgment of their significance is a direct product of

the Pareto plot, whereas a Daniel plot requires a sub-

jective judgment with no clear cuto⇤s or numerical

guidance. And as we have seen, those subjective judg-

ments are prone to error—both in failing to identify

potentially important e⇤ects, as in Example 1, and

in tricking the unwary observer into misidentifying

unimportant e⇤ects as active ones, as in Example

2. Additionally (also Example 2), near ties of e⇤ects

look drastically di⇤erent from exact ties (Figure 1(b)

versus Figure 2). De León et al. (2011) put it well: in-

terpretation of normal plots is “enveloped in a cloud

of mystery and might easily lead to gross errors”.

Even a simple dotplot of e⇤ects is no worse, while

being much easier to explain.

Users and software developers are well advised to

abandon Daniel plots as a recommended (or even

an available) method of analysis. Simpler, objective

methods exist for identifying active e⇤ects. These

methods are more reliable, direct, explainable, and

defensible than subjective judgments. It is not as if

the objective methods are new or even computation-

ally di⇧cult. Most, in fact, involve very simple cal-

culations that can even be done by hand. They are

easier to compute than normal scores.

I recommend against using a Daniel plot even as

a supplement to the Pareto plot. It adds no useful

information and can only add confusion and distrac-

tion. Just say “no” to Daniel plots. I recognize that

they are supremely popular and that change is di⇧-

cult. But when so much better methods are out there,

it is irresponsible to continue using them.
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BRADLEY JONES

SAS Institute, Cary, NC 27513

I AGREE with Professor Lenth that the use of normal
or half-normal plots of e�ects is now outmoded.

There are better analytical tools now available in
commercial software for model selection in screen-
ing designs. My favorite for the analysis of unrepli-
cated regular fractional factorial designs is Lenth’s
method as implemented in JMP using Monte Carlo
simulation from the null model to obtain p-values for
Lenth’s pseudo-t statistic.

Here are several reservations about the Daniel
plot.

1. If many of the e�ects are active, it can miss
more than one active e�ect.

2. If there is one huge e�ect, other e�ects seem
small by comparison—see Figure 1.

3. Plotting order statistics means that the plotted
points are correlated, producing patterns that
are easily misinterpreted.

4. If there is a severe outlier or a missing obser-
vation, then the loss of that point makes the
design nonorthogonal and then the Daniel plot
is not applicable.

5. The theory behind these plots depends on the
orthogonality of all the factorial e�ects. That is,
the design must be a full factorial or a regular
fractional factorial. Designs that are orthogonal
for the main e�ects but that have correlated
two-factor interactions can produce ambiguous
Daniel plots.

I sent an example of the normal plot shown in
Figure 1 from a 26 full factorial design to most of the
discussants.

There were widely varying answers about how
many e�ects were active. In my view, the fact that
a group of experts looking at Figure 1 do not come
close to each other concerning the set of active e�ects
is damning.

As a developer of software, my personal goal is the
democratization of DOE. That is, I would like prac-

FIGURE 1. Normal Plot of E�ects.

titioners to be able to design and analyze industrial
experiments without necessarily having a consulting
statistician at their elbow.

What are the main issues in the analysis of screen-
ing experiments?

1. Find the active e�ects—that is the whole point.
2. Check to see if there is any bad data.
3. Check to see if a di�erent response metric works

better.

Of course, items 2 and 3 impact item 1, so you
need to convince yourself that the data are rea-
sonable and that you don’t need to transform the
response perhaps iteratively within the process of
model selection.

To address item 2 above, it is easier to identify an
outlier with a residual plot generated after removing
the insignificant terms from the model than to try to
see if there are two separate lines in the Daniel plot.

To address item 3 above, providing rules of thumb
for power transformations is not too di⇤cult. I base
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my own decisions on the range of the observed re-
sponses and any knowledge about whether responses
must be positive.

It is desirable to provide a graphical display to
illustrate the results of the model-selection process.
Here a Pareto plot of the e�ects seems easiest to in-

terpret. Then, a line drawn between the big e�ects on
the left and the small e�ects on the right separates
the “vital few” from the “trivial many” e�ects.
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JOSEPH G. VOELKEL

Rochester Institute of Technology, Rochester, NY, 14623

IN his 1959 article, Daniel proposes half-normal
plots, shows their usefulness through many ex-

amples, and finishes by indicating some problems
with them. By contrast, Lenth provides a lively pro-
posal, complete with leading examples as well as
strong opinions and recommendations. Daniel’s ar-
ticle reads like an NPR story, Lenth’s like Fox News!
I will have to guess that Lenth’s writing style was in-
tended to provoke the reader, and he has succeeded
with this one.

I would like to make some general comments and
then a number of specific replies. My general com-
ments are:

1. The notion of “objective” tests is a myth and
one that should be dispelled early and fre-
quently. Such tests, like all statistical tests,
are algorithms that use certain tuning param-
eters and that are based on certain assump-
tions (some of which may be checkable, but
often only to a limited extent). If we change
the values of the tuning parameters, we can of-
ten arrive at di�erent solutions. Dispelling this
myth of objectivity is useful—it enforces the
idea that, while decisions need to be made, such
decisions are not totally objective.

2. Daniel’s paper itself contains an “objective”
test. That test, or Lenth’s, e.g., is distinct from
the argument of half-normal vs. Pareto plots—
in fact, just as for tests used in an ANOVA
table, no plots are needed at all.

3. Statistical analysis is often not simple. Trying
to make it appear simple, with a simple set of
rules, is not recommended.

For simplicity, let us crudely group those who
will analyze an experiment and play a lead role
to write a report into two extreme but not
unreasonable categories: amateur and profes-
sional. (Either or neither of these may be in-
volved in the design or the running of the actual
experiment.)

For the analysis, the amateur is looking for

results, has no interest in the theory behind
what is being done, and little or no interest
in assumptions or data checks. He just wants
clear directions on how to proceed; in fact, he
wants more: a simple set of rules to follow.
We often find this user in short courses and
“belt” courses. For this user, a set of rules that
works reasonably well a reasonable amount of
the time is what we can o�er, and about all
we can o�er. For this user, a Pareto chart of
e�ects with indications of which are active pro-
vides such a set of rules, and I agree with Lenth
that a Pareto chart appears easier to under-
stand than a half-normal plot. But nothing in
life is free—see examples below. (And even in
the subset of cases where the Pareto chart of ef-
fects leads to a good model, the amateur is still
far from performing a good analysis, creating
good graphs to communicate the results, and
presenting the results adequately in a report.)

By comparison, the professional is focused on
process, understands deeply the theory and the
advantages and shortcomings thereof, and, by
a mixture of informal and formal methods and
an understanding of reality based on readings
of past work and his own experience, will per-
form his analysis. For such professionals, I be-
lieve that the half-normal plots provide a nice
method for making decisions and for gaining
insight—see examples below.

But does this mean the professional’s half-
normal plots, part of his internal analysis,
should be presented to his clients in the main
body of report? Usually not. But neither should
a Pareto plot of e�ects—it’s hard to see where
either would be useful to the typical client.
It is rather better to confine the body of the
report to present results (not the methods
used to reach them)—which factors mattered,
graphs that answer the objectives in a way that
these particular clients can understand, recom-
mendations, concerns, and so on. (A techni-
cal appendix should indicate the methodolog-
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ical approach used and its application to the
particular data set. This may include plots
such as half-normal plots, along with a brief
explanation—but that depends on the client.)
So, I naturally agree that “[s]tatistical methods
are used to explain phenomena that we observe
to someone who needs that information to do
a better job, improve a process, or advance sci-
ence. Thus, a statistical analysis is only as ef-
fective as our ability to explain it to a client.”
(Italics mine.) However, I don’t see how the use
of half-normal or Pareto plots help here.

So, for whom is the Pareto plot useful? I would
say the amateur—maybe. But if one is conduct-
ing a real experiment at a real company for
real stakes, I’d prefer the analysis and report
be done by a professional. To expect a market-
ing person (to use Lenth’s example) to be able
to design, execute, analyze, and report a real
experiment correctly after a short course is not
reasonable, nor do I believe it is reasonable to
pretend this to them—to expect them to under-
stand the value of designed experiments and the
idea that it can be analyzed is about as much as
we can hope for. (I will o�er up a subgroup of
engineers and scientists as a partial exception
to this rule.) Perhaps the amateur should make
the admission in Shakespeare’s Julius Caesar
that “The fault, dear Brutus, is not in our stars,
but in ourselves”. So, let us not bury the half-
normal plot, but praise it.

Next are some specific replies. These are often not
intended to contradict Lenth per se, but to illustrate
how half-normal plots can be useful—at least to the
professional. For brevity, I will refer only to references
to the experiments, not their descriptions, and will
only use one-letter factor abbreviations. I did not
go out of my way to find these examples for this
discussion—they are ones I have simply come across
in readings and practice.

1. Lenth suggests distaste for lack of standardiza-
tion for the half-normal plot. In addition to his
concern about horizontal vs. vertical is a con-
cern about the position of the line on a half-
normal plot: “However, all sorts of practices are
out there for how to define that line”. But lack
of standardization also exists for the dizzying
array of “objective” rules—the Hamada and
Balakrishnan reference provides a list of 24
methods, each of which has a least one tuning
parameter. Similarly, even something as simple

as a Pareto plot is not standardized—at least
one package uses a standard Pareto order, while
Lenth’s paper uses a Pareto order for the main
e�ects and a second order for two-factor inter-
actions. In fact, neither of these are actually
Pareto plots because the cumulative line is (cor-
rectly) not part of this plot.

2. “[Half-normal] plots are so popular that it is
not unusual to see them used even with a repli-
cated experiment, where there is a valid error
estimate and traditional t tests and such are
available”. A 26-2 experiment with five center
points (Box and Draper (2007)) was run to im-
prove the dry strength of plywood. Using the
natural t-test from the 4 d.f. available from the
center points, and using (IER) � = 0.05, a com-
mon tuning parameter value, we find from the
t-tests that that S, P, SW, and ST are active,
with P, T, and SN also active at � = 0.10. The
half-normal plot tells a di�erent, and I think,
better, story: only S and N are active. See (a) in
Figure 1, where I display the plots in Daniel’s
style.

What happened? Well, either (a) the estimate
s from the center points happened to be un-
usually low for this experiment, leading to an
unusual number of declared-significant terms—
recall that the points on the half-normal plot
are statistically independent, at least under the
usual assumptions on the errors, but that these
t-tests are not (and especially not so with a
small number of error d.f.); or (b) perhaps the
center points were run under routine condi-
tions, for which we may expect that the vari-
ability might be lower than under experimental
conditions. (And, if an amateur designed the
experiment, the center points are more likely
to simply be five samples from what is actu-
ally one longer run—but that is another prob-
lem!) In fact, a third explanation may be in-
ferred from the description of the problem in
Box and Draper (2007). In any event, the ama-
teur who simply follows the rules will likely cre-
ate an overly complex model. (By the way, in
this design, SW is aliased with MT and ST with
WM. Many software packages do not make such
aliasing clear enough to the user, especially the
amateur. In the above, I just displayed what
one package reported.)

3. Lenth’s Example 1. “In teaching how to use
Daniel plots, the typical advice is to look for
outliers in the plot. Following this rule, there
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FIGURE 1. Illustrations of Half-Normal Plots for Three Experiments.

is one point that clearly sticks out in example
1. . . . For now, based on judgment of the half-
normal plot, we will say that there is one active
e�ect, D”. And, then, in looking at the Pareto
plots, “According to the P values for example
1, there is one e�ect with P � .001 and four
more with P � .10—a kind of middling level of
significance. These together comprise the right-
most five points in the half-normal plot in Fig-
ure 1 or Figure 3. But four of those points do
not stand out in the plots and are unlikely to
be identified as active e�ects, or even marginal
ones, by examining the Daniel plots”.

In his first example (p. 315), Daniel notes that,
after removal of what are considered to be

the largest contrasts, one replots the remain-
ing ones to see what patterns, if any, still re-
main. (And even if Daniel did not note this, it
should be clear to a professional.) Replotting
leads to (b) in Figure 1, where the professional
can make some decisions. It seems pretty clear
that the set of four terms AD, B, A, and AB
should either all be included or all be excluded
from the model. Because D has already been
selected and the remaining terms tell a simple
story, a professional would almost certainly in-
clude these.

Also, note that these absolute values are sim-
ilar, but not equal. (But even if they were
equal, I would prefer to see them plotted
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based on di�erent ranks, for readability and
consistency—compare with Lenth’s Figure 2
in which tied ranks were used.) In addition,
the professional would realize that this near
equality corresponds to an often-witnessed phe-
nomenon: |A| � |AD| indicates that the ef-
fect of A at one level of D is essentially 0; and
|A| � |B| � |AB| indicates that the e�ect of A
and B jointly only exists for one of the four (A,
B) combinations. I find this information much
clearer to see on a half-normal plot than on the
plot provided by Lenth.

Next, for at least two reasons, it’s hard to get
excited about the triple E, AC, CD. However, if
this had been the double C, E the professional
would have probably added these to the model.
Useful subjectivity! I don’t believe these would
have been noticed in the Pareto plot. Based on
these ideas, I must disagree with the idea that
the Pareto graphs “are completely su⇤cient for
judging the contributions of model e�ects”. I
will also note that, if the user were following
a set of rules and the rule said to use IER �
= 0.10, then AB would not be on Lenth’s list
(P = 0.1101).

4. Example 2. The professional would first have
most likely strongly recommended against an
eight-run experiment if he were involved in the
design stage. But, in the analysis stage at the
first glance of the half-normal plot, he would
have seen that nothing was active. I will agree
that the amateur may have missed this—but
it’s pretty simple for software folks to lightly
gray out the “wrong” side of the plot, and much
software incorporates rules to highlight some
tentatively active terms. But if the amateur did
miss this, and decided to put D and AC (or
BD) in his model while respecting hierarchy,
he would have found only large P -values in the
regression output. But the amateur may have
missed this warning too? Do we really want
this person to be analyzing experiments for our
company?

5. When I teach a short course in DOE, I don’t
find it hard to explain a normal probability
plot. No formulas are presented, only a normal
curve; participants are asked to guess where the
max of each of n = 1, 2, 3, and 7 numbers from
a standard normal might lie. On their own—
or more often with a slight bit of prodding—
many see that splitting up the normal curve
with n lines into n + 1 equal areas is reason-

able, and they then look these up in a normal
table. A simulation in software illustrates this
idea and sampling variation, including the rel-
atively high amount of “o�-the-line” variability
for 8-run vs. 16-run designs. I do wave my arms
a bit for the transition to the half-normal, but
the participants see that the underlying idea is
the same. I also provide a rationale, with an
example, for preferring the half-normal. I much
prefer this, and the acceptance of some subjec-
tivity, to the myth of objectivety. A software
package we sometimes use may employ Lenth’s
method, but I emphasize that (a) this is only
a guide and that (b) it is much better to think
about the problem and look at the half-normal
plot. I do not try to explain Lenth’s algorithm
in a short course. Nor would I want to explain
IER vs. EER in a short course.

6. For another example of the myth of objectivity,
consider the results of an experiment to see how
acceleration times of a vehicle varied with five
factors A–E. The design was a 25. (Random-
ization was not done, but that does not a�ect
the point here. Data available on request, for
internal use only.) Using � = 0.10 with Lenth’s
method leads to six active e�ects: in decreas-
ing size these are D, E, ACD, ABE, BD, and
ABCDE. The last two e�ects are dropped if the
short-course instructor arbitrarily tells partic-
ipants to retune to � = 0.05, and one more
e�ect is dropped if � = 0.01. Which � is ob-
jective? None. But at this point, the amateur
seeking objectivity will wonder why it seemed
OK to use � = 0.10 and even a bit larger (per
the instructor) in the previous example, but
now some other rule is used. By comparison,
the half-normal plot in (c) of Figure 1 shows D
and E as standing out far from the line, while
ACD is a bit o� and the remaining three e�ects
noted above now seem totally uninteresting.
The nonobjective short-course instructor might
say, “Well, if that ACD were a main e�ect, say
A, I would have included it in the model. But,
as we discussed before, 3fi’s are rare, and it’s
especially hard to imagine this is active, when
almost all the terms ‘underneath’ it (instructor
asks class what these terms would be) are not
active. Do you think we should include these
extra terms in our model?”

Aside from sampling variability, what kind of
data would lead to so many e�ects declared sig-
nificant? Well, it appears that there was one
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outlier in the data and, in this sample, the four
higher order interactions declared active at � =
0.10 were a�ected by it to the extent they were
declared active. Even using the model based on
� = 0.05 tends to hide this outlier in a subse-
quent analysis. However, using only two main
e�ects in the model makes this outlier stand out
more clearly. A follow-up analysis with that one
point set aside, removing the nonestimable 5fi,
and recreating the (now approximately correct)
half-normal plot shows that only D is active,
with E possibly suggested—see (d) in Figure 1.

7. Some other examples of the usefulness of the
half-normal plot appear in Daniel’s section
“Use of Half-Normal Plots in Criticizing Data”.

8. Finally, it is worth repeating Daniel’s quote (p.

338, section on “Failures of Half-Normal Plot-
ting”): “It is unnecessary to warn experienced
statisticians that the use of half-normal plots
suggested here is still full of subjective biases,
that it is not o�ered as a general substitute for
the analysis of variance, and that its use in a
routine way may be catastrophic. More opti-
mistic and less experienced statisticians may
get the impression from the successful exam-
ples given that a panacea is being o�ered that
can hardly fail. This is not the case”.

Reference

Box, G. E. P. and Draper, N. R. (2007). Response Surfaces,
Mixtures, and Ridge Analyse, 2nd edition. New York, NY:
Wiley.
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MY thanks to Professor Lenth for a clear exposi-
tion of the problems associated with the use

of normal (and half-normal) probability plots of fac-
tor e�ects in interpreting the results from 2k factorial
and 2k�p fractional factorial designs. I am in agree-
ment with the points that he makes, although I’m
not quite ready to throw these plots under the bus.
I’ll explain why in what follow.

First, let’s look at the half-normal plots that Pro-
fessor Lenth presents in his Figure 1. These plots
have the absolute e�ect value on the vertical axis and
the probability (or half-normal quantile scale) on the
horizontal axis. This has always seemed to me to be
an unnatural way to orient the axes. I remember lit-
erally dozens of times in engineering school where we
had to construct graphs of some measured quantity
and a computed or derived value. We always drew the
graph with the measured variable on the horizontal
axis. This scale was usually linear, and the computed
variable scale often was not. For example, if temper-
ature was a controlled or measured variable and vis-
cosity was the computed or derived variable, then we
were instructed to plot viscosity versus temperature.
Often the viscosity was actually log viscosity to ob-
tain a more nearly linear relationship. Now I realize
that the axes definitions can be arbitrary, but I think
that the practice that I describe was drilled into me
in a freshmen course on engineering drawing. When I
first started using normal probability plots, I had to
construct them by hand (I went to engineering school
in the BC era, meaning Before Computers). To con-
struct the plots, we typically used preprinted normal
probability graph paper (I still remember the K&E
variety, white margins, and green grid lines). This
paper had the probability scale on the vertical axis.
So this just reinforces my natural inclination to want
to see the graph with that orientation.

I also prefer the full normal probability plot to the
half-normal plot. Because this was the type of graph
paper available to me back in the BC era, it’s what
I learned to do, and I just find it easier to interpret.
Another nice thing about the full normal plot is that

FIGURE 1. Normal Probability Plot and Box Plot from
JMP, Lenth’s Example 2.

it facilitates adding a dot diagram at the bottom so
that you can see the actual relative size of the ef-
fects. Professor Lenth observes that simple dot plots
may be just as e�ective as normal probability plots
in identifying active e�ects. I agree. I also always
found that combining the two plots was very helpful
in interpretation. Sadly, that can’t be done directly
in modern software. Figure 1 is a normal probabil-
ity plot from JMP Pro V11 of the e�ect estimates
from Professor Lenth’s example 2. JMP’s default is
to display the normal plot in the vertical orientation
with the probability scale on the horizontal axis, but
it’s easy to change the display to the horizontal ori-
entation that I show here. You can also select either
a histogram or a box plot to be displayed along the
e�ect axis. I selected the box plot because the his-
togram doesn’t make sense for seven observations. A
dot diagram would be perfect, but that’s not an op-
tion at present in JMP. I would like to see software
display the normal probability plot of e�ects in the
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horizontal orientation accompanied by the dot dia-
gram as the default.

Professor Lenth gives an insightful discussion on
drawing the reference line on the plot. I draw the ref-
erence line on the half-normal plot emanating from
the origin and passing through the 50th percentile of
the graph. On the full normal plot, I draw the line by
eye between about the 25th percentile and the 75th
percentile. It is very helpful when computer software
allows you to move the line around by clicking and
dragging on the plot. Not all software packages allow
you to do that, but they should—it helps in interpre-
tation. Some packages adjust the line as e�ects are
entered and/or removed by clicking on their plotting
symbol. I don’t care for that, and I think some an-
alysts are potentially confused by this feature. Once
I have drawn the line, I tell my students to imagine
laying a “fat pencil” along the line—e�ects covered
by the pencil can be assumed to be error and e�ects
not covered are probably active. I know this is pretty
subjective, and some of my students laugh at the “fat
pencil test”, particularly when they remember that
I’ve told them that one of the reasons that we employ
statistical methods in experimentation is to achieve
scientific objectivity in our conclusions. A few years
ago some of my graduate students gave me a fat pen-
cil about 30 inches long and sometimes I take it to
class when the normal plots are introduced just to
make the point about the degree of subjectivity in
what I’m telling them. However, after they see some
examples, most students get the concept of using the
line to judge outliers and become reasonably adept
at using the normal plot.

I am a big fan of Lenth’s analytical method for as-
sessing the significance of e�ects. I always teach this
method and, before it was widely available in soft-
ware,I computed it manually and used it in conjunc-
tion with the normal plot. I particularly like the im-
plementation in JMP’s Analyze/Modeling/Screening
menu, where the t-like ratios are accompanied by in-
dividual and simultaneous pseudo-P -values obtained
by Monte Carlo simulation. The e�ects are plotted
on a Pareto chart as professor Lenth illustrates in
his Figure 5. I could learn to live with the Pareto
plot instead of the normal plot, I suppose, but I like
them both and don’t have any problem showing both
displays.

I agree that teaching the technical mechanics of
how the plots are constructed can be a challenging
task, particularly to nonstatisticians, who are un-
likely to be fascinated by the details. My engineering
and science students fall into that category and I ad-
mit to doing a bit of arm-waving about those details.
I focus as much time as I can on how to interpret the
plots and provide lots of examples. That’s a better
use of their time.

I have always found normal plots to be pretty reli-
able in identifying large and moderately large e�ects,
particularly in 16-run designs. I think they are less
reliable in eight-run designs. I always err on the side
of selecting an e�ect to be active in a doubtful case.
Type II errors are much more problematic in screen-
ing experiments than type I errors. However, I always
use Lenth’s method and look carefully at the Pareto
chart of e�ects that accompanies it. I feel that having
more information doesn’t hurt.

⇥

Journal of Quality Technology Vol. 47, No. 2, April 2015



mss # Mee-Discussion.tex; art. # 02; 47(2)

Discussion: Better, Not Fewer, Plots

ROBERT MEE

Haslam College of Business, University of Tennessee, Knoxville, TN 37996-0525

I N “The Case Against Normal Plots of E⇥ects,”

Russell Lenth has highlighted the danger of po-

tential misinterpretation. The unaided plots in his

Figure 1 are indeed not easily interpreted. But rather

than discarding normal plots of e⇥ects, I would argue

for their enhancement. While I agree that objective

test procedures such as Lenth (1987) should be the

primary tool, normal plots of e⇥ects sometimes help

uncover violations of the standard sparsity-of-e⇥ects

assumption and help convey the risk of making type I

errors when basing many tests on individual p-values.

Consider the following two examples, which will be

familiar to many readers.

Example 1: Engel’s (1992) Robust Design
Shrinkage Data

Steinberg and Bursztyn (SB) (1994) produced a

half-normal plot of the 31 estimates from Engel’s

(1992) 23-1 ⇥ 27-4 product array experiment, where

the 31 estimates correspond to the 10 main e⇥ects

and the 21 clear control-by-noise interactions. SB’s

Figure 1, re-created here, shows three large esti-

mates, with Lenth’s p-values (obtained by simula-

tion) of 0.040, 0.049, and 0.052 for C⇤N, A, and E⇤N,

respectively.

SB note the unexpected shortage of regression co-

e⇧cients very near zero; while only four estimates are

less than 0.05 in absolute value and four more are less

than 0.10, 13 are from 0.10 to less than 0.15! As noted

by Daniel (1959) and reiterated by SB, when the

highest concentration (in the absolute value) of esti-

mates is distanced from zero, the analyst should sus-

pect that one or more outliers are present. SB iden-

tify two suspected outliers with the same control fac-

tor combination and suggest that these two adjacent

values were likely swapped when being recorded. The

reversal of these two shrinkage values reduces Lenth’s

PSE from 0.206 in Figure 1 to 0.033 in Figure 2. In

the second analysis, 10 e⇥ects have Lenth p-values <
0.05, including three interactions involving the noise

factor M (% regrind). If the analyst examined resid-

uals from a reduced model with a few initial e⇥ects,

the identification of one or two outliers might have

FIGURE 1. Original Half-Normal E�ects Plot for Engel
(1992).

been noticed without Figure 1. However, it is also

possible that the dearth of significant estimates in the

initial (objective) analysis might have discouraged

all further investigation and the swap of values gone

undiscovered with the half-normal plot.

This author is not aware of an e⇥ective test for a

mode shifted away from zero in the half-normal plot.

A likelihood-ratio test here fails to identify the prob-

lem. Thus, while an objective test would be useful,
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FIGURE 3. Half-Normal E�ects Plot for Daniel’s (1976)
24.

in its absence, the half-normal plot of e⇥ects serves

as a useful diagnostic. [Note: While a single outlier

moves all the estimates by an amount ±c for a 2k-p

design, swapping two values moves exactly half of the

regression coe⇧cients by ±c. Thus, having a concen-

tration of values away from zero might be indicative

of either an outlier or of the swapping of two entries.]

Example 2: Daniel’s (1976) Drill Experiment

Daniel (1976, p. 72) used a 24 drill experiment to

motivate the search for simple models by transforma-

tion of the response. Using Daniel’s labels, the half-

normal plot (Figure 3) seems typical for a successful

16-run factorial. Lenth’s method highlights the pres-

ence of three main e⇥ects: B, C, and D. However, a

normal plot of e⇥ects (Figure 4) shows that some-

thing is amiss; the small estimates are not scattered

about zero but are rather all above 0. Once again,

while a residual plot for a suitable reduced model

would show unequal variance, the Figure 4 normal

plot of e⇥ects is a more direct diagnostic. Having all

or a preponderance of estimates of the same sign in-

dicates that something systematic is at work, which

would not happen under the sparsity-of-e⇥ects as-

sumption that underlies the estimation of the stan-

dard error of e⇥ects here. The Pareto plots of e⇥ects

shown in Lenth’s (2015) Figure 5 would also reveal

any preponderance of e⇥ects of the same sign, but

the line in our Figure 4 draws attention to this depar-

ture from expectations. This normal plot is a direct

diagnostic because it contrasts what we expect to see

under sparsity-of-e⇥ects (a mass of estimates about

the line) with all the estimates distanced from that

line. When this happens, the random error cannot be

as large as that reflected by the PSE. Instead, there

FIGURE 4. Normal E�ects Plot for Daniel’s (1976) 24.

must be many e⇥ects of di⇥erent sizes. Here, this

means the e⇥ects for advance rate are not additive;

numerous interaction e⇥ects are present.

Summary

The purpose of these two examples has been to

highlight the advantage of plotting the estimates. Vi-

olation of the assumed e⇥ect sparsity may show itself

in the normal or half-normal plot of e⇥ects. Some-

thing useful is lost if we do away with these plots.

So how can we guard against misinterpretation of

these plots by those less acquainted with the the-

ory behind them? I concur that the plots themselves

are not su⇧cient. Lenth’s method or some other ob-

jective test should be primary for the determination

of which e⇥ects to include in one’s model. And the

half-normal plots should reveal more explicitly the

results of that test. To that end, Figures 1–3 were

enhanced by plotting dashed lines corresponding to

individual Lenth p-values = 1%, 5%, and 10%. Even

better, the right-hand vertical axis could display the

p-value scale. The default might be for individual p-

values, but one might also display simultaneous p-

values. This simple enhancement would aid all users,

both those who are knowledgeable about the con-

struction of normal and half-normal quantile plots

and those who are uninformed.

Would such annotated normal plots have utility

when the assumption of e⇥ect sparsity does hold?

Yes, in that they visually communicate the logic be-

hind controlling the experiment-wise risk of type 1

errors. In Figure 1, the normal quantile for the largest

estimate is to the right of where the line crosses the

Journal of Quality Technology Vol. 47, No. 2, April 2015



mss # Mee-Discussion.tex; art. # 02; 47(2)

DISCUSSION 109

5% significance line. This reflects the notion that,

with 31 estimates, even if no e⇥ects are active, the

expected number of estimates with p-values less than

5% is near to 31(0.05) = 1.55. When the number

of estimates is large, using an individual error rate

of 5% means that some type I errors are a likely

occurrence.

While type II errors may in fact be more prevalent

for small experiments, that is a consequence of the

experiment size and/or the magnitude of these real

e⇥ects. If this concern makes one inclined to allow

declaring e⇥ects significant using a more lenient type

I error rate, then one must surely recognize the need

for confirmation experiments. But that is a di⇥erent

matter than the focus of this reply.

As a final technical note, using the normal quantile

scores from Mee (2009, p. 45),

hj = ��1{(sj � 0.055)/(m + 0.6)}

produces a closer fit (than Daniel’s choice or the

scores used by Lenth) for the observed estimates

when the true model has no e⇥ects.
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R USS Lenth advocates that we abandon normal
and half-normal plots of e�ects as a tool for

analyzing 2k and 2k�p experiments. Whether or not
we decide to bury these plots, let me begin by praising
them.

The half-normal plot for two-level factorial designs
was introduced by Daniel (1959) and henceforth, like
Lenth, I will use the term Daniel plots to refer to both
the normal and half-normal versions. Considering the
tools available for data analysis in the 1950s, Daniel’s
ingenuity produced a remarkably successful method
with a number of noteworthy properties:

• It is easy to produce.

• It gives a quick visual summary of which e�ects
are the most important.

• E�ects can be compared to a reference—the
contrasts on a line through the origin—to assess
whether or not they stand out from background
noise.

• Outliers leave a distinguishing fingerprint and
can often be detected.

• The plot may suggest the need for a transfor-
mation of the response data.

• The analysis adapts to split-plot experiments
and can be used as a diagnostic tool to detect
inadvertent split-plotting.

• All the orthogonal contrasts from the design
are plotted, so the analysis is not dependent on
specifying a particular model.

All the points above (with the exception of the
last) were noted and explored by Daniel in his origi-
nal paper and further elaborated in his book (Daniel
(1976)).

More than 50 years have passed since Daniel’s
paper was published. Modern software o�ers many
analysis and visualization alternatives for factorial
experiments. Has the Daniel plot outlived its useful-
ness? On this basic question, I disagree with Lenth
and will explain in what follows why I think that
Daniel plots remain useful.

The greatest single advantage of the Daniel plot is
its ability to stimulate discussion of the results of an
experiment by encapsulating, in a single display, such
a variety of information. In a Daniel plot, the experi-
menter can see how large are the factor e�ects, if they
stand out from noise (including an automatic adjust-
ment for multiple testing) and indicators of problems
like outliers or need for transformation.

Lenth recommends the screening summary from
JMP c�, which includes an e�ect plot, estimates and
p-values using Lenth’s method (1989) (see his Figure
5). I agree that this is also a useful tool. Does it pro-
vide all the information that is present in the Daniel
plot? I find it much more di⌅cult in these regres-
sion summaries to make a quick visual comparison
of the strength of the e�ects, to quickly pick out the
strongest terms, and to see the relative strength of
the e�ects. Arranging the contrasts in order of mag-
nitude (and not just the main e�ects) is a helpful
option. Even so, the comparisons with noise are con-
veyed in a separate manner (say by adding p-values);
I think the Daniel plot, by placing this information
in the same graphic, is more e�ective.

Much of Lenth’s discussion and criticism centers
on the ability to judge whether observed e�ects stand
out against noise. The assessment from a Daniel plot,
which relates to whether an e�ect falls “o� the line”
determined by the small contrasts, is rough and sub-
jective. Although significance tests are important, I
think that Lenth gives them excessive weight in his
recommendation to drop the Daniel plot. My own ex-
perience is that other criteria (such as the importance
associated with a given predicted change in mean)
are often more crucial than achieving a p-value be-
low a common cut-o�, like 0.05. Moreover, the Daniel
plot is not meant to be a “stand alone” analysis
tool; it can, and should, be complemented by other
summaries. My own analyses of choice are Lenth’s
(1989) test for unreplicated experiments, which is a
simple and robust method to produce significance
tests and error estimates for factorial designs, or
regression analysis for replicated experiments. (Al-
though designed for experiments without replication,
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the Daniel plot is still useful when there is replica-
tion and can be augmented to include contrasts that
reflect pure error.)

Used wisely, Daniel plots should provoke discus-
sion about e�ects that are at, or just o�, the line
formed by the nonactive contrasts. I find the Daniel
plot especially helpful for identifying such “border-
line” e�ects. When the Daniel plot is the basis for
analysis, Lenth argues that these e�ects may be ig-
nored, but I think this is more likely to happen when
there is overemphasis on p-values as summaries. For
most experiments, these e�ects should stimulate dis-
cussion, which can be of great value in understanding
and exploiting the results of a factorial experiment.
This may lead to follow-up experiments to improve
precision or, at least, to confirm that predicted gains
based on these e�ects are realized. As noted earlier,
the Daniel plot may also point to the presence of out-
liers, to inadvertent split-plotting, or to the need for a
transformation. All of these are valuable by-products
of the visual summary provided by the plot.

One of the questions that must be considered in
testing for e�ect significance in factorial designs is
whether to adjust for multiple testing. The Daniel
plot, by construction, automatically adjusts (though
it may need to be redrawn, dropping clearly active ef-
fects, to better assess less clear-cut e�ects). Whether
this feature of the Daniel plot is a strength or a weak-
ness is closely related to the analyst’s opinion about
the importance of making a multiplicity adjustment.
Significance tests, like that of Lenth, usually have two
versions—one adjusted and the other without adjust-
ment. Lenth presents both test results for the two
examples in his article. Multiplicity adjustment is
crucial in deciding whether the “edge of the plot” ef-
fects are statistically significant in the 16-run exper-
iment. The Daniel plot, with its built-in adjustment,
shows these e�ects as typical of the noise contrasts,
as Lenth notes. The multiplicity adjusted p-values
for these terms are all greater than 0.6, reaching the
same conclusion but more emphatically. This exam-
ple suggests that the multiplicity adjustment in the
Lenth test is much more extreme than the adjust-
ment made by the Daniel plot. For large two-level
factorials, Tripolski Kimel et al. (2008) argued that
family-wise adjustments (like that in Lenth’s test)
are overly conservative and showed the benefits of us-
ing the false discovery rate (Benjamini and Hochberg
(1995)) for this purpose.

Relative e�ects can be very important in facto-
rial experiments. In the 25-1 experiment shown by

Lenth, factor D has a slope of 2.21 and is more than
three times the size of the next largest e�ects, one of
them an interaction involving D. The practical impli-
cation is that D continues to have a strong positive
e�ect throughout the experimental region. By con-
trast, the e�ects of factors A and B may disappear
or even reverse direction if the interactions that have
borderline statistical significance are real e�ects.

The advantages of the Daniel plot for these sorts
of comparisons are already evident for the 16-run ex-
periment in Lenth’s article (compare the visual ease
of Figure 1 or 3 there with Figure 5, even with the
Pareto principle used to order the main e�ects). For
larger experiments (with 32 or more runs), the ad-
vantages are more pronounced.

The second example presented by Lenth is a 24-1

experiment. Experiments with eight runs can be very
informative (see Box (1992)), but any formal analy-
sis is a risky endeavour. Note that Daniel (1959) an-
alyzed only experiments with 16 or more runs and
Daniel plots appear in many standard texts only for
these larger experiments. (See, for example, Box et
al. (2005) or Wu and Hamada (2009).)

Perhaps the main reason that Lenth includes the
eight-run example is to point out that deviations on
a Daniel plot may be in the “wrong” direction, with
the observed e�ect smaller than would be predicted
based on the plot. This can happen and, yes, prac-
titioners using the plot should be cautioned about
what it means. However, the plots are best used in
larger experiments where it becomes less likely to see
this feature.

How will the data from a two-level factorial be an-
alyzed if the Daniel plot is not used? For practition-
ers with dedicated software like the JMP c� platform,
many good alternatives are readily available. I am a
strong proponent of buying and using the right soft-
ware. But many companies don’t (yet) have it and
analysis may rely on what can be done easily with
a standard, all-purpose statistical package or even
with EXCEL c�. Most likely, the main statistical tool
will then be regression analysis and the experimenter
will need to declare a regression model. If there is no
replication, the analysis will depend heavily on the
choice of terms in the model. An important e�ect
that is left out may never be detected and will in-
flate the error estimates. Including too many e�ects
may leave insu⌅cient degrees of freedom for evaluat-
ing error. The Daniel plot includes by default all the
estimable contrasts in the data and so has the major
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benefit of robustness to model choice. (By the way,
it is easy to produce Daniel plots with EXCEL c�,
making it available even to those who lack statistical
software.)

Lenth’s final argument against the Daniel plot is
that it is di⌅cult to teach and the time needed to
explain it could be devoted to other topics. Lenth
is correct that some e�ort is needed to explain the
plots and still more to achieve confidence in inter-
preting them. A simple e�ect plot (like Figure 5 in
the paper) is easier to grasp. For practitioners who
will not analyze many factorial experiments, the ef-
fect plot might be a better alternative. However, as
noted above, the choice of techniques we should teach
to practitioners must also take into account the soft-
ware that is available to them for analysis.

For all that it o�ers, the Daniel plot does not an-
swer every question that we would like to answer
from a two-level factorial design and the answers are
not always clear cut. Daniel was well aware of the
limitations and it is worth recalling his words of cau-
tion from the original paper (page 338): “It is un-
necessary to warn experienced statisticians that the
use of half-normal plots suggested here is still full of
subjective biases, that it is not o�ered as a general
substitute for the analysis of variance, and that its
use in a routine way may be catastrophic. More opti-
mistic and less experienced statisticians may get the
impression from the successful examples given that
a panacea is being o�ered that can hardly fail. This
is not the case.” More recent analysis techniques are
a welcome complement.

I will close with an example. Figure 1 presents a
Daniel plot from a 26-1 experiment. The data are con-
fidential and the e�ects have been scaled so that the
largest equals one. Most of the 31 contrasts fall on a
well-defined line rooted at the origin. The two largest
contrasts, corresponding to factors D and E, are o�
the line. The Lenth test confirms that they are sta-
tistically significant, with p-values (not adjusted for
multiplicity) of < 0.001 and 0.003, respectively. The
third largest contrast is slightly o� the line and has
a Lenth p-value of 0.03. Moreover, it corresponds to
the DE interaction. Given this connection to the two
dominant main e�ects, I believe that most experi-
mental teams would agree that it is important, even if
the p-value had been slightly above 0.05. What about
the next group of five points, which are slightly re-
moved from the line through the origin? The Daniel
plot should encourage experimenters to ask precisely
that question. Which e�ects are involved? Are they

FIGURE 1. Daniel Plot for a 26-1 Experiment.

“real” e�ects or noise? Could they be important in
reaching conclusions or decisions from the experi-
ment? Should they be highlighted in follow-up ex-
periments? Lenth’s test is also helpful; the five e�ects
have p-values ranging from 0.08 to 0.15. Qualitative
analysis sheds further light; the two largest contrasts
both correspond to a pair of three-factor interactions
and, in both pairs, factor D is in one of the interac-
tions but factor E is in the other interaction. Thus,
neither contrast is an interaction of a third factor
with D and E. Discussion with the experimenters
led to the conclusion that these terms, and the sub-
sequent contrasts, should be treated as error.

In conclusion, what I like about the Daniel plot is
that it presents so much information, related to dif-
ferent aspects of the data analysis. No other single
summary touches on such a variety of important fea-
tures. The conversation surrounding the plot above
was a valuable part of the analysis. I think the Daniel
plot remains a very useful summary of the experi-
mental data and a great stimulus for discussing the
results.
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1. Introduction

LENTH pleads against the use of normal or half-
normal plots of e�ects from two-level experi-

ments to judge which e�ects may be active. Instead,
he recommends utilizing Pareto charts of the e�ects
supplemented with cut-o� lines based on a robust
estimator of the standard error.

Our discussion of Lenth’s paper consists of two
parts. In the first part, we consider judging e�ects
from full factorial or regular fractional factorial de-
signs by normal or half-normal probability plots or
robust estimators of the standard error. We recognize
that the plots shown in Lenth’s paper are appealing,
but we do not think that half-normal plotting should
be entirely abandoned. In the second part of our dis-
cussion, we consider the case of nonregular designs
or optimal designs, where robust standard errors and
half-normal plotting of e�ects are of limited use and
other methods of analysis need to be utilized.

2. Regular Designs

2.1. Some History

Half-normal plots were introduced by Daniel
(1959), who observed that absolute-valued null ef-
fects ordered from small to large tend to be on a
straight line through the origin when plotted on what
he called ‘half-normal probability paper’. At that
time, blocks of specially prepared sheets of normal
probability paper could be purchased, where the ver-
tical axis was used for the quantiles. By analogy,
Daniel’s half-normal plots had the quantiles on the
vertical axis and the e�ect sizes on the horizontal
axis. As an example, Figure 1(a) shows the Daniel
plot of e�ects based on the data of the regular 25�1

fractional factorial design from Snee (1985), as re-
produced in Lenth’s paper.

Daniel (1959) also observed that half-normal plots

o�er a way to detect one or two defective values,
inadvertent plot-splitting, or an anti-lognormal dis-
tribution of error. In this discussion, we restrict at-
tention to the detection of a single defective value.
For this purpose, we changed the 13th response value
of Snee’s data from 5.22 to 2.22. Figure 1(b) shows
the half-normal plot of e�ects based on the modi-
fied data. Because one response value is three units
too small, the e�ects now are biased by either �3/16
or 3/16, depending on the sign of the contrast cor-
responding to the defective value. Therefore, in ab-
solute value, the null e�ects now no longer lie on a
straight line through the origin, but on a straight
line through the point (3/16, 0). This illustrates that
half-normal plots can draw our attention to possi-
ble outliers in the data. In any case, Daniel (1959)
showed that there may be more than one reason to
study half-normal plots. Lenth’s present article only
deals with the best-known one, which is the detection
of active e�ects.

Daniel (1976, Section 7.6) observed that some pe-
culiarities of the data were not reflected in the half-
normal plots. For this reason, he proposed to study
signed e�ects without even using half-normal or nor-
mal plots. He also studies normal plots in the book,
but only for signed residuals. In the book, no normal
or half-normal plots of factor e�ects were made. In-
deed, normal plotting only became fashionable due
to the influential book by Box et al. (1978). Thus,
the appropriate reference for normal instead of half-
normal plotting of e�ects may well be Box et al.
(1978), rather than the work of Daniel.

2.2. Some Technical Issues

Loh (1992) showed that the appearance of the
points in normal plots can be entirely changed if
the arbitrary � and + labels of the factor levels are
swapped. For the example from Snee (1985), which
involves five factors, 25 di�erent normal e�ect plots
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FIGURE 1. Half-Normal Plotting As a Way of Detecting an Outlier.

can be created by swapping the labels of the levels of
one or more factors. Some of the possible plots are
much easier to judge by eye than others. This prob-
lem is absent in half-normal plots. Wu and Hamada
(2009) use the same kind of reasoning to prefer half-
normal plots. Mee (2009) points out that one reason
to prefer these plots might be the fact that the sta-
tistical significance of an e�ect is generally based on
the size of its absolute value. Thus, we prefer half-
normal plots over normal plots to judge e�ects from
unreplicated experiments.

Of course, when using half-normal plots, there is
the problem of subjectivity in drawing the line that
marks the inactive e�ects. Lenth (1989) has written
an immensely popular and useful paper on making
a more objective evaluation of e�ects from unrepli-
cated two-level experiments. The e�ects are evalu-
ated using a pseudo-standard error based on the set
of absolute values of the e�ects. The pseudo-standard
error is calculated in three stages. First, the median
of the full set of absolute-valued e�ects is multiplied
with a consistency constant, so that an initial stan-
dard error estimate becomes available. E�ects that
are large with respect to this estimate are considered
too big to provide information about the error vari-
ance. Therefore, in the second stage, these e�ects are
removed from the set. Finally, the median of the re-
maining e�ects’ absolute values is multiplied by an-
other consistency constant to result in the pseudo-
standard error, which we denote by PSE50. The sub-
script 50 refers to the 50th percentile, which is the
same as the median.

In a follow-up article, Haaland and O’Connell

(1995) provide an overview of various alternatives
to Lenth’s approach. One alternative to the PSE50

is the ASE (Dong (1993)), where the third stage for
the pseudo-standard error calculation is based on the
root-mean square of the remaining e�ects. Another
alternative is to use the PSE45, meaning that the
first stage is based on the 45th percentile of the ab-
solute values of the e�ects. Haaland and O’Connell
(1995) ended up recommending the ASE, PSE50, and
PSE45 for practical use, where the choice depends on
a priori expectations concerning the number of active
e�ects. Schoen and Kaul (2009) provided extensive
tables for consistency constants and critical values
based on these pseudo-standard error approaches. In
recent years, many other authors have published al-
ternative approaches to analyze data from regular
fractional factorial designs. We would welcome a re-
view article discussing the pros and cons of the ex-
isting methods, possibly including a simulation study
comparing the most attractive approaches.

The evaluation of e�ects both with a half-normal
plot and with a robust standard error require that
e�ect sparsity holds. For a half-normal plot, e�ect
sparsity is required to identify a set of null e�ects
pointing to the origin of the plot. For an evaluation
with a robust standard error estimate, the e�ect spar-
sity is even more important, because the initial stage
of constructing this estimate involves the median or
the 45th percentile of the absolute values of the ef-
fects. If too many e�ects are active, the initial er-
ror estimate is inflated. This inflation, in turn, might
lead to an inflated final estimate. If the significance
of e�ects is evaluated using an inflated standard er-
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ror estimate, the e�ects may erroneously be classified
as inactive.

The Pareto plots that Lenth advocates instead of
the probability plots do not provide checks on ef-
fect sparsity. Much as we like these Pareto plots, we
think that the half-normal plots should be provided
as well, both to check the sparsity assumption and to
identify possible outliers in the data and inadvertent
split-plotting. We believe that half-normal plots may
still work well when less than 50% of the e�ects are
inactive, provided there is a su⌅ciently large total
number of e�ects in the plots. The Pareto plot ap-
proach involving PSEs, however, should be adapted
to continue to work if the e�ect-sparsity condition is
violated. In that case, the PSE should be based on a
smaller quantile than the one used by default.

Additional conditions that need to be fulfilled for
a valid evaluation with a half-normal plot as well as
with a robust standard error estimate are that the
estimates of the factor e�ects should be independent
and normally distributed and that they should pos-
sess the same standard errors. Many scenarios exist
in which at least one of these conditions does not
hold. One such scenario is when a split-plot design,
a strip-plot design, or another design with restricted
randomization is used, either inadvertently or inten-
tionally.

2.3. Restricted Randomization

Many industrial experiments are not completely
randomized. This may be due to the presence of hard-
to-change factors or due to the fact that the experi-
ments span multiple steps of a process; see Goos and
Jones (2011, Section 10.3.4) for a discussion of the
di�erent disguises of a split-plot design. Depending
on the exact two-level design utilized, half-normal
plotting or evaluation with a robust standard error
may or may not work well.

For a regular split-plot design, half-normal plot-
ting or evaluation with a PSE may work if all e�ects
are either estimated in the whole-plot stratum or in
the subplot stratum. In that case, there are two sets
of e�ect estimates: one with a larger standard error
and one with a smaller standard error. For each set of
e�ects, a di�erent half-normal plot (Bisgaard (2000))
or a di�erent PSE is required. The main problem is
that, oftentimes, one of these sets contains only a
limited number of e�ects. For that set of e�ects, a
PSE-based test will not be powerful and half-normal
plots will not permit separation of active and inac-
tive e�ects. Schoen (1999) states that at least seven

e�ect estimates should appear in a half-normal plot
for it to be useful.

For a regular strip-plot design, half-normal plot-
ting or evaluation with a PSE may work if all e�ects
are either estimated in the row stratum, the column
stratum, or the run stratum. In that case, there are
three sets of e�ect estimates, one for each of these
strata. Again, for each set of e�ects, a di�erent half-
normal plot or PSE is required. Here too, the main
problem is that, generally, at least one of these sets
contains only a limited number of e�ects, which ren-
ders half-normal plotting or PSE-based evaluation of
the corresponding e�ects problematic.

By revisiting a regular strip-plot example of Vi-
vacqua and Bisgaard (2004), Arnouts et al. (2010)
demonstrate that a generalized least-squares analy-
sis may result in the detection of a larger number
of active e�ects than an analysis relying on normal
plots. This example is one where there are very few
e�ects in the column stratum.

In case the split-plot, strip-plot, or related design
is based on a nonregular fractional factorial design or
an optimal design, half-normal plots or PSE-based
evaluations become virtually useless. To a large ex-
tent, this is also true for completely randomized non-
regular fractional factorial designs.

3. Nonregular and Optimal
Designs

The best-known examples of nonregular fractional
factorial designs are Plackett–Burman (PB) designs.
Plackett–Burman designs, as well as other nonregu-
lar designs, are increasingly utilized for experimen-
tation. There are two main reasons for this. First,
nonregular designs o�er more flexibility in terms of
run size, as they exist whenever the number of runs
is a multiple of four, whereas regular fractional fac-
torial designs only exist when the number of runs
is a power of two. Second, it is now recognized that
nonregular designs allow a more diverse set of regres-
sion models to be estimated than regular fractional
factorial designs. A disadvantage is the fact that the
analysis of these designs is more complicated (i.e., a
careful linear regression analysis is required), so that,
in our consulting experience, certain experimenters
feel more comfortable using regular fractional facto-
rial designs. Also, the estimable e�ects in a regular
design have the minimum possible standard error.
We therefore think that both regular and nonregu-
lar designs have merit, but we would like to point
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out that the advantages of using nonregular designs,
in our view, outweigh the disadvantage of a more
complicated analysis. We would rather be able to es-
timate more interaction e�ects (with a nonregular
design) than fewer interaction e�ects (with a regular
design). The complete aliasing of interactions in reg-
ular fractional factorial designs will often necessitate
follow-up experiments to disentangle aliased e�ects,
while this will often not be the case for nonregular
designs.

3.1. Complete Randomization

When using nonregular fractional factorial de-
signs, the estimates of the main e�ects and the es-
timable two-factor interactions often do not have the
same standard errors, even when the design is com-
pletely randomized. Also, the estimates are gener-
ally not all independent. This is due to the fact that
the two-factor interaction e�ects are often partially
aliased with the main e�ects and/or with other two-
factor interaction e�ects. Consequently, the signifi-
cance of the main e�ect estimates and the two-factor
interaction e�ect estimates cannot be evaluated in
a half-normal probability plot. For the same reason,
the PSE approach of Lenth cannot be used.

One special case where half-normal plots and
PSE-based evaluation may remain useful is in the
analysis of data from resolution-IV nonregular de-
signs where the main e�ects are independent of the
two-factor interactions. The main e�ects can then
be evaluated with half-normal plots or using PSEs,
while interactions can be explored using regression
techniques (Miller and Sitter (2001)).

Increasingly so, optimal experimental designs are
considered as alternatives to traditional regular frac-
tional factorial designs, due to the presence of con-
straints on the factor levels (i.e., due to the fact that
certain combinations of factor levels are disallowed)
or due to budget constraints. Both types of con-
straints often cause the experimental design to be
nonorthogonal, as a result of which the estimates of
the main e�ects and the two-factor interactions are
dependent and do not have the same standard er-
rors. In those cases, a half-normal plot and Lenth’s
approach are again not appropriate.

3.2. Restricted Randomization

The combination of nonregular or optimal experi-
mental designs, on the one hand, and restricted ran-
domization, on the other hand, does not have a posi-
tive impact on the usefulness of half-normal plots and

Lenth’s PSE. Frequently, factor e�ects are estimated
using information from more than one stratum in a
split-plot design, a strip-plot design, or a related de-
sign. This causes the factor e�ects to have di�erent
variances and results in a violation of an important
condition for half-normal plots and pseudo-standard
errors to be applicable.

4. Conclusion

Half-normal plots have proven to be very useful in
an era where no fast computers were available to set
up experiments and to analyze the resulting data.
The lack of computing power has for a long time
stimulated researchers to pay attention to ease of
computation when proposing design-of-experiments
methodology and methods of analysis. Unavoidably,
this has led experimenters to simplify their problem
so that it matched the available experimental designs
and the available methods of analysis. This approach
led to many successful applications of full factorial
and regular fractional factorial two-level designs. The
approach was successful in the sense that it led to
good solutions for a simplified problem.

In the past two decades, things have changed dra-
matically because it has become possible to analyze
more complicated data sets properly by means of
powerful statistical software and computers. It has
also become possible to create tailor-made experi-
mental designs for virtually any practical problem.
In other words, there is no need any more to simplify
the problem at hand to fit a given design and analy-
sis method. We view half-normal probability plot and
PSE-based significance testing as useful for a specific
type of experimental designs, i.e., full factorial and
regular fractional factorial designs. In many practical
scenarios, however, these designs cannot be used or
can be improved upon.

In this contribution, we mentioned that the data
analysis for nonregular designs is more complicated
than that for regular designs. In doing so, we do not
intend to say that one needs a degree in statistics to
analyze the data from nonregular designs. All that
is required to get most of the salient insights out
of a data set is a sound knowledge of linear regres-
sion analysis, including concepts such as stepwise re-
gression, some goodness-of-fit diagnostics, and mul-
ticollinearity. Nowadays, plenty of user-friendly soft-
ware is available to perform linear regression analyses
for any experimental design available.

Of course, it will always remain di⌅cult to iden-
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tify the best model from small experiments with nu-
merous potential e�ects, independent of the design
used. Therefore, we welcome more research on the
analysis of data from nonregular two-level designs, in
the spirit of Wolters and Bingham (2011) and Mee
(2013), and on the implementations of these meth-
ods in user-friendly software. This will enable exper-
imenters to combine the best designs available with
the best methods of analysis available, so that their
original problems rather than simplified ones can be
solved in an optimal way.
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LENTH (2014) has it right: It’s time to retire Daniel
plots in the analysis of unreplicated 2k or 2k�p

designs. Interpreting these plots is fraught with dif-
ficulty for both the statistician and nonstatistician,
and there are better alternatives.

Among Lenth’s many compelling points were the
following:

1. Normal plots can be completely misleading. Ex-
ample 2, in which three e�ects are identically
2.125, demonstrates this convincingly.

2. The placement of the reference lines is arbitrary
and potentially misleading.

3. It matters whether potentially active e�ects de-
viate horizontally or vertically, a point that is
easily missed.

4. Correct interpretation of half-normal plots de-
pends on the choice of axes.

5. De Leòn et al. (2011) demonstrate that normal
plots are no more e�ective than dot plots.

6. Magnitudes of e�ects are di⇤cult to judge be-
cause they are displayed along a “crooked”
path. Pareto plots, in contrast, display magni-
tudes appropriately in a side-by-side fashion.

To these points we would add the following. A
plethora of applicable model-selection techniques has
been developed since Daniel first introduced the nor-
mal and half-normal plots of e�ects in the 1950s.
Some popular alternatives include stepwise regres-
sion, lars-lasso, and the Dantzig selector. See, for ex-
ample, Draguljíc et al. (2014) for a recent assessment
of these techniques for the analysis of interactions.
Can these methods contribute e�ectively to the anal-
ysis of saturated experiments? Providing a general
purpose (OK, cookbook) approach to model selec-
tion would make the analysis a bit less daunting for
the nonstatistician.

Given that we’ve chosen to abandon the Daniel
plot, what alternatives are suggested? Simple dot
plots and/or Pareto plots of estimated e�ects o�er
advantages, but judgment as to statistical signifi-
cance is still subjective. Lenth’s (1989) method, with
e�ects displayed in a Pareto plot with a superim-
posed reference line and simulated P -values (as in the
JMP implementation) is a plausible alternative. But
Lenth’s method has limitations as well. The break-
down point occurs whenever more than half of the
e�ects are active and the method relies on normal-
ity, e�ect-sparsity, and standard errors. Randomiza-
tion analysis is an alternative that seems to get little
attention, and which o�ers the potential for robust-
ness to the level of sparsity and normality. Loughlin
and Noble (1997) provided methodology for imple-
menting a randomization analysis for unreplicated
two-level factorial and fractional factorial designs.

For illustration, we implemented five alternatives
to the Daniel plot using five previously published
data sets and two simulated data sets. The five meth-
ods are (i) Lenth’s (1989) method, (ii) randomization
analysis as described by Loughlin and Noble (1987),
(iii) forward stepwise selection based on the AICc cri-
terion (Hurvich and Tsai (1989)) as implemented in
JMP, (iv) the Dantzig selector with selection based
on AICc, and (v) the Lars/Lasso method using AICc
for selection. Data sets analyzed were:

1. Example 1 from Lenth (2014), taken from
Montgomery (2013). n = 16.

2. Example 2 from Lenth (2014), taken from
Montgomery (2013). n = 8.

3. Example II from Lenth (1989), taken from Box
and Meyer (1985). n = 16.

4. Example IV from Lenth (1989), taken from Box
and Meyer (1985). n = 16.

5. Example of Table 4 from Loughlin and Noble
(1997). This was adapted from problem 9.11 of
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TABLE 1. Results of Five Methods for Five Previously Published Data Sets. The table displays the number of
active e�ects identified by each method at the � = 0.05 level of significance

Stepwise Dantzig LarsLasso
Method Lenth Randomization AICc AICc AICc

Lenth example 1 1 1 5 5 5
Lenth example 2 0 0 0 0 0
Lenth example II 2 2 2 2 2
Lenth example IV 2 0 5 5 5
Loughlin and Noble example 1 9 3 3 3
Null log-normal example 2 0 2 2 2
Null exponential example 2 0 5 5 5

Montgomery (1991), which gave two replicates
of a 24 factorial design. The response used is
the sum of the two responses for each design
point after removing a replicate (block) e�ect.
n=16.

6. Null log-normal case: A 24 factorial, where
the response vector consists of 16 random
draws from the log-normal distribution of X =
exp(Z) where Z is normal with mean µ = 1
and standard deviation ⇤ = 1. Responses (in
standard order) are: 0.762, 0.13, 0.805, 2.059,
2.233, 0.2, 1.812, 3.726, 0.882, 1.631, 0.61,
4.601, 3.074, 0.387, 2.347, 6.439.

7. Null exponential case: A 24 factorial, where the
response vector consists of 16 random draws
from an exponential distribution with mean
µ = 1. Responses (in standard order) are: 0.543,
2.51, 5.447, 0.874, 6.043, 0.206, 4.171, 1.17,
3.41, 0.667, 3.032, 3.182, 0.456, 4.425, 0.096,
2.211.

Results are summarized in Table 1. Di�erences of
note arise among the methods for example 1, Lenth
example IV, the Loughlin and Noble example, and
the two null examples. Any of the methods using
AICc are liberal in these cases and it is interesting to
compare the more similar results for Lenth’s method
and the randomization analysis. For the Loughlin
and Noble example, the randomization tests identify
nine active e�ects, whereas the Lenth method identi-
fies two. As noted by Loughlin and Noble, when the
data are analyzed as two separate replicates, these
nine e�ects are identified as active. This is a case
where the Lenth method is at a clear disadvantage
because the number of active e�ects is greater than
n/2. For both null cases examined, the Lenth method

identifies two active e�ects, while the randomization
analysis correctly concludes that no e�ects are active.

These results are illustrative of the kinds of dif-
ferences that can arise among objective methods and
are not meant to demonstrate the superiority or infe-
riority of any particular method. But they do demon-
strate that applying a battery of methods may not
lead to clarity, establish a prima facie case for ran-
domization tests, and urge additional study. In par-
ticular, we think that the randomization approach
deserves further consideration. The results also raise
a number of questions.

Is e�ect sparsity a proper foundation for a gen-
eral purpose method? While there are contexts where
sparsity is a driving concept, some seem to view
sparsity as akin to a natural law: if you are faced
with many factors, then naturally the e�ects must
be sparse. Others have seen sparsity as the only re-
course. In the logic of Friedman et al. (2004), the
bet-on-sparsity principle arose because, to continue
the metaphor, there is otherwise little chance of a
reasonable pay-o�. Is it important to allow for an
abundance of e�ects?

How important is robustness? A single outlier can
have a dramatic impact on the analysis of a saturated
or nearly saturated experiment, and it is generally
recognized that analyses based on penalization are
sensitive to anomalies in the data. Similar remarks
apply to regressions with heavy tails.

How important is fidelity to error rates in a
general-purpose method for saturated or nearly satu-
rated experiments? If saturated designs are used pri-
marily for screening, followed by confirmatory exper-
imentation, then perhaps control of the false-negative
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rate is paramount. Methods are not equally amenable
to error-rate control. If careful control is important,
then some method will necessarily be favored on this
basis alone.

To sum up, we agree with Lenth’s call for the re-
tirement of the Daniel plot, and we see his paper as
a welcome and perhaps overdue contribution to the
literature.
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IT IS a real gift to receive the comments from so
many distinguished researchers and practition-

ers. So first, a sincere thank you to all discussants. I
will respond to the main points, as I see them, on a
per-topic basis, and follow-up with a couple of closing
recommendations for di�erent audiences.

Responses

I value all of these discussants’ opinions, and in-
deed I have learned a lot from them. I even find some
measure of agreement with many of their comments,
including those with opposing views. I do not at-
tempt to respond to all the points made, or even to
acknowledge all of the thought-provoking ideas that
are raised. Here are some of the main areas of dis-
cussion.

Normal Paper, Axis Orientation

The historical use of graph paper with a normal
scale is the reason to plot the e�ects on the horizon-
tal scale. But normal plots are also commonly used in
residual diagnostics, where we plot residuals (verti-
cally) against predicted values, time order, adjusted
or unadjusted predictor values, and normal scores.
So there are good reasons behind both orientations.

Daniel’s Own Warning

That is something I realize I should have quoted
myself. I particularly emphasize his point that the
routine use of Daniel plots may be catastrophic. Yet
the most routinely used tool in analyzing screening
experiments is surely the Daniel plot. (Speaking of
quotes, thanks to the same discussants for adapting
(in the same way) the same passage from Julius Cae-
sar.)

Eight-Run Experiments Are Problematic

This is a good point, but I have seen a lot of arti-
cles and texts with Daniel plots of seven e�ects. The
fact that my example 2 is only eight runs does not
alter the important points related to tied e�ects and
misidentified-as-active e�ects.

Experts, Amateurs

I could have been clearer that my main gripe
with Daniel plots is with teaching them to nonex-
pert audiences, usually as the primary tool in assess-
ing whether e�ects are active. It’s interesting that
Schoen and Goos say that this is primarily due to the
influence of Box et al. (2005) (since its first edition)—
I’m not sure of that. Voelkel mentions that pseudo
standard errors (PSEs) and Pareto plots are suited
for amateurs while Daniel plots are suited for ex-
perts; and I agree: obviously, expert data analysts
should do whatever they want, and if it includes
Daniel plots, that’s fine. Easy for nonexperts to do a
Daniel plot in Excel? Maybe with a macro or add-in.

Nonregular Designs

These are important; and a key issue is that nei-
ther Daniel plots nor PSEs work in such cases, as
originally conceived. (However, both procedures may
be adapted by orthonormalizing the predictors so as
to obtain independent contrasts having equal vari-
ance. The results depend on the order in which pre-
dictors are entered, but if those with the largest ab-
solute e�ects are entered first, that helps.)

Split Plots

Daniel plots have limited use for a split-plot de-
sign, especially for the whole-plot e�ects. The abso-
lutely best diagnostic for inadvertent split plotting
is asking a lot of questions about how the experi-
ment was conducted. Same with Voelkel’s example
of center-point replicates not representing the true
variability due to improper randomization. A dataset
consists of numbers and a story. If you get the story
wrong, no methodology can do much to save you.

Versatility of Daniel Plots, Unique Diagnostic
Capabilities

To me, this is highly related to the di�erent-
audience issue. In general, where discussants express
favor for Daniel plots, there is a lot of emphasis on
their diagnostic features—and, I’d say, some of the
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examples are pretty artful and nuanced. These points
are not likely to capture the interest or understand-
ing of a short-course student, so this is all in experts’
territory. I do not see as many pro–Daniel-plot argu-
ments that emphasize their ability to identify active
e�ects.

For most statisticians, the main use for normal
plots is for residual diagnostics. In contrast, a Daniel
plot is primarily for identifying active e�ects, and
diagnostic use of them is not of the same character
as in residual normal plots. Experts can understand
all this, but even students with a few courses under
their belts will struggle understanding these two very
di�erent uses of the same plot.

Normal vs. Half-Normal

For identifying active e�ects, I think the consensus
is mostly for half-normal plots; but, like Montgomery
and Mee, I also think something is lost, and half-
normal plots are less likely to be available in software.

Enhancements, Annotations

In some ways, I like Mee’s idea of adding cut-o�
lines to a Daniel plot. On the other hand, it creates
some clutter as well. Is not a half-normal plot with
cut-o� lines in essence a Pareto chart with unequally
spaced bars? A well-constructed graph does make a
huge di�erence. Also, in Montgomery’s example, I
strongly concur that a dot plot would be a more de-
sirable “rug” than the box plot.

Objectivity, Tuning

All procedures are indeed tunable. This is primar-
ily for experts to do. Maybe objectivity is a myth,
but there is a distinction between giving a cut-o� for
making a decision and leaving it entirely to judgment
of what is an outlier. Montgomery’s “fat pencil” idea
provides some guidance, I suppose. One could argue
that it is a good idea to give nonexperts only a vague

method rather than a cut-and-dried one. It may dis-
courage them from making overly bold statements.
Well, actually, I doubt that.

How My Story Changes

The discussions have gotten me to think about
some of the issues di�erently. And these thoughts
are organized around the user/consumer. On the one
hand, we often teach two-level experiments in short
courses directed to nonexperts; what do we say to
those people? On the other, what is most useful to
advanced data analysts?

The Short-Course Crowd

We are (I hope) primarily teaching very funda-
mental principles of design and analysis, so that
these people will be able to communicate better with
statisticians and understand what’s important to us.
They won’t be dealing with artful analyses, diagnos-
tic plots, or nonregular designs. We show them nicely
balanced, clean designs so that they get an idea of
how these work.

I still don’t think Daniel plots are very well suited
for this audience. And I still think a Pareto plot of
e�ects with a cut-o� is useful and interpretable. But
we also have to remember that an element of “magic”
is present when we introduce powerful software tools,
and sometimes it’s better to slow down and show
more about the underlying principles.

For communicating with nonexperts, I continue
to like dot plots a lot, and I am not alone. As men-
tioned before, de Léon shows that a dot plot is as ef-
fective as a Daniel plot for identifying active e�ects.
Moreover, Box et al. (2005) is full of dot plots, of-
ten with accompanying reference distributions. With
that in mind, I o�er the reference plot shown in Fig-
ure 1, for Voelkel’s vehicle example with all data
included. The normal curve is an enhancement to
the dot plot to serve to guide in identifying active

FIGURE 1. Reference Plot for the Vehicle Example.
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e�ects. It has mean 0 and standard deviation equal
to 1.5med|ej |—very easy to compute, and it is the
first step in calculating the PSE. Superimposing this
reference distribution is equivalent to adding a guide
line on a Daniel plot determined by the origin and
the median absolute e�ect.

Active e�ects are those that are obviously out be-
yond the tails. In this illustration, those would be
D, E, and ACD. After identifying these, you may
then, if you wish, follow the replotting idea—which
would entail tossing out the obviously active e�ects
and recomputing the reference SD with those e�ects
excluded. Oh, by the way, that calculation will yield
the PSE, or something similar. In this way, the idea of
the PSE arises naturally and meaningfully. (In fact,
this PSE-like calculation adapts itself to the num-
ber of really large e�ects, which may be appealing
in light of Schoen and Goos’s comments about tun-
ing.) The underlying e�ect-sparsity principle is quite
apparent in this reference plot—that we are judging
active e�ects relative to the variations in the smaller
ones. And the familiar bell-shaped curve makes this
idea a lot clearer than do deviations from a line.

For those who like the informal nature of Daniel
plots, I think that Figure 1 is just as e�ective in visu-
alizing active e�ects, and it is much less prone to mis-
interpretation. It also has a self-contained multiplic-
ity adjustment, as mentioned by Steinberg. By the
way, this is a borrowed idea—very similar to Figure
5.10 in Box et al. (2005). Admittedly, the reference
plot does not have the same diagnostic e�ectiveness
that several discussants ascribe to Daniel plots. But
we’re not teaching diagnostics to this audience.

A display like this is very easy to do with pencil
and paper—a big advantage for short courses where
available technology is likely limited, and hands-on
work is advantageous. A N(µ,⇤2) curve is easy to
draw accurately by hand: start with an isosceles tri-
angle with vertices at µ ± 2⇤ and above µ (this is
shown faintly in the figure). The inflection points are
at the midpoints of the sides of this triangle. Fill-
in four J-shaped curves originating at the inflection
points, tangent to the sides of the triangle—two end-
ing at a point somewhat below the peak (about 82%),
and two leveling o� at the baseline at µ ± 3⇤. It is
easier and more fun to teach this than how to get
normal scores.

The Experts

For this group, I think I need to take seriously
the point that nonregular designs are becoming quite

common, and neither a Daniel plot nor a Pareto chart
will work without some adaptations. If you are an
expert, you, of course, should choose the methods
that you find most valuable. Cook and Nachtsheim
mention a few good ones, and show how much they
di�er (mixed results for the same data are not unique
to Daniel plots). Accordingly, the expert group will
use more varied and more sophisticated methods, will
have more and better technology available, and will
value having good diagnostic tools.

In this context, I’d like to highlight, as an addi-
tional useful tool, the Bayesian method in Box and
Meyer (1986), mentioned in passing in my main arti-
cle. While it is a relatively early contribution, it sur-
vives into the present [thanks to Markov chain Monte
Carlo (MCMC) methods] and gracefully handles
nonregular designs and even supersaturated ones. It
is based on an e�ect-sparsity model whereby e�ects
are thought of as draws from a mixture of two nor-
mals. One of them has a variance of, say, k = 10
times the other, and e�ects drawn from this one are
the active ones. The mixing parameter � is set based
on one’s prior belief about how many e�ects are ac-
tive; typically, we choose � = .2, or 20% active. We
then obtain the posterior probabilities for each e�ect
being active. In the case of nonregular designs, the
computations may be done using Gibbs sampling, as
detailed in Chipman et al. (1997). The Gibbs results
also provide information on which combinations of
predictors are visited the most often.

Figure 2 summarizes the e�ects having the high-
est posterior probabilities in six Bayesian analyses of
the vehicle data. The top three analyses use the same
� = .2 for all e�ects as do Box and Meyer, based on
(1) the complete dataset, (2) excluding the outlier
(observation 26), and (3) accommodating the possi-
ble removal of observation 26 by including an indica-
tor for that observation among the candidate predic-
tors. The bottom three analyses are respectively the
same, only a hierarchical “weak inheritance” prior
Chipman et al. (1997) is used whereby, for exam-
ple, the conditional prior probability for ACD be-
ing active depends increasingly on how many of its
contained e�ects AC, AD, and CD are also in the
model. The results displayed are the observed rela-
tive frequencies for the last 10, 000 of 10, 500 rounds
of Gibbs sampling (which still only took a fraction of
a second on a desktop PC).

Looking first at the bottom row of plots—those
for the weak inheritance prior—we find that all three
have high posterior probabilities only for D and E,
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FIGURE 2. Bayesian Model-Selection Results for E�ects Having Posterior Probabilities Exceeding 0.1 Somewhere Among
Six Analyses of the Vehicle Data. The top three use equal prior probabilities of � = 0.20 for all e�ects. The bottom three
use decreasing prior probabilities for higher order e�ects. The analyses are performed using the complete data, one outlier
removed, and with an indicator for the outlier.

with all the interactions pretty much suppressed. The
prominence of the obs26 indicator in the last analy-
sis makes a fairly strong case for deleting observation
26. If we have a prior belief in e�ect hierarchy, these
results give us permission, in a way, to ignore the
higher order e�ects and to delete the 26th observa-
tion.

But these hierarchical results are the wrong ones
to compare with Voelkel’s analysis using Daniel plots,
which treat all e�ects equally regardless of order. The
fair comparison is with the top three analyses in Fig-
ure 2, which all give a high posterior to ACD. Note
that dropping observation 26 does not make this go
away, but instead boosts the importance of the two-
way interaction BC. The third analysis shows that
there is a slightly stronger case for including ACD
in the model than for excluding observation 26.

How do these results compare with other anal-
yses? With the outlier excluded, Voelkel dropped
ABCDE—one of the larger e�ects with the full
data—from the model in order to obtain estimates
for his approximate Daniel plot, and obtains only
D as an active e�ect with E “possibly suggested”
(though it looks like it’s on the line). A JMP analy-
sis of these data (see Figure 3, with an indicator for

observation 26, which shows e�ects D, E, and the
obs26 indicator unequivocally active; and ACD and
BC also have individual P values less than .03. Like
Voelkel, JMP also discards ABCDE in order to fit
the model, but it orthogonalizes the e�ects used in
obtaining the PSE. The JMP analysis with observa-
tion 26 excluded has very similar results. So both
the JMP and Box–Meyer analyses disagree pretty
strongly with Voelkel’s final plot. This illustrates how
flaky a Daniel plot can become when e�ects are de-
pendent, unless care is taken to orthogonalize.

I like the Box–Meyer strategy because there is no
need to exclude any predictors and we also obtain
results on which models were selected most often. It
could be that there is more than one combination of
predictors that can explain the response; and if so,
we as experts need to know about it.

This vehicle example is not very straightforward.
Maybe the fact that the run order was not random-
ized is more important than Voelkel states. Other-
wise, I am not willing to strongly favor a hierarchical
model until I have some belief that I won’t lose some-
thing: sometimes, high-order e�ects are important.
Years ago, a student of mine did an internship with
a local manufacturer, and helped them with an ex-
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FIGURE 3. Strongest E�ects in the JMP Analysis of the Vehicle Data, with an Indicator for Observation 26. E�ects marked
with a “*” are ones that are forced to be orthogonal.

periment on a problem related to product damage in-
curred during shipping. Among a whole pile of anal-
yses, the student found one three-way interaction. I
thought it was probably just a spurious finding, but
the company ran with it anyway, and it turned out
to save them millions of dollars in scrap costs.

By the way, I applied the Box–Meyer method (� =
.2, k = 10) to the same examples in Cook and Nacht-
sheim’s discussion, and obtained the following num-
bers of e�ects having posterior probability greater
than .5: (1, 0, 2, 0, 7, 1, 0). These results come out a
lot like those for the randomization test. I am not
sure I have the same data as in their example 5.

Another aspect of nonregular designs is that, be-
cause we can’t use Daniel plots, we lose their highly
touted diagnostic capabilities. What can we do in-
stead, supposing we have used Box–Meyer or some
other model-selection strategy? I suggest just using
traditional residual diagnostics for the most-often-
visited models. Some models may produce radically
di�erent diagnostics than others, but if so, that’s
worth knowing about, and may suggest a follow-up
experiment to understand why there are di�ering ex-
planations for the same results. Even with an or-
thogonal design, I agree with Jones that the diag-
nostic advantages of Daniel plots are for the most
part overshadowed by more straightforward residual
diagnostics based on e�ective but parsimonious mod-
els suggested by the analysis.

Conclusion

In rereading my article, I admit to being a lit-
tle surprised by my strident tone when I recommend
that we abandon Daniel plots and sentence them to
a fiery demise in the nearest incinerator, or at least
the recycling bin. But I stand by my observations
that these are the wrong things to push at nonexpert
users. Moreover, nonorthogonal cases seem likely to
become more and more common, and for that rea-
son, Daniel plots may eventually go the way of the
slide rule and Yates’s algorithm.

I know that change is tough, and it’s hard to imag-
ine a Daniel-plot-free world. But I can o�er some in-
sight based on my experience in vacating my o⌅ce
when I retired, and giving away most of my books
and journals: You won’t miss them as much as you
think.
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