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The pharmaceutical industry is undergoing rapid change and facing numerous challenges, including the
demands of global competition, the need to speed up the drug-development process, and the Food and
Drug Administration's (FDA's) expectations for the incorporation of the principles of quality by design
(QbD) and process analytical technology (PAT) in process and analytical development. Statistical thinking
and methods play a significant role in addressing these issues. This article provides an overview of the use of
statistical thinking and methods in the R&D and manufacturing functions of the pharmaceutical industry.
The exposition includes the history of pharmaceutical quality and regulation, phases of pharmaceutical
development and manufacturing and the basic quality and statistical tools employed in each, emerging sta-
tistical methods, the impact of statistical software and information technology, and the role of statisticians
in pharmaceutical development and manufacturing. Four case studies are included to illustrate how these
issues play out in actuality. A summary provides a succinct synopsis of those issues and concludes that the
complex, technical nature of pharmaceutical development and manufacturing offers many opportunities for
the effective use of statistical thinking and methods and that those who use these methods can become
catalysts for both process-development understanding and product-quality improvement. Additional details
can be found in our technical report (Peterson et al. (2009)). ‘
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TATISTICAL concepts and tools have been suc-
cessfully applied for decades in such sectors as
chemicals, automobile manufacturing, and computer-
chip manufacturing, but their use in the far more
regulated pharmaceutical industry presents some
unique challenges. For example, many pharmaceu-
tical companies hesitate to invest heavily in large-
scale manufacturing-process quality before a drug is

approved for marketing because failure in the clinic .

means product failure. Because time from inception
to clinical approval may span 12-15 years, 60-75% of
product patent life may have expired by the time the
Phase I1I (confirmatory) trials have been completed.
Even after a successful set of Phase IIA (dose deter-
mination) and Phase IIB (proof of concept) clinical
trials are completed, 40~50% of product patent life
may have expired. In addition, one in three drugs is

expected to fail in Phase I (first time in man) trials’

for assessing safety, tolerability, and drug blood lev-
els. Pharmaceutical companies are therefore under
considerable economic pressure to file for approval
of the new drug application (NDA) with regulatory
authorities as soon as possible after completing suc-
cessful Phase III clinical trials, when a considerable
amount of money must be invested in product launch.
As a result, quality and process understanding ini-
tiatives must compete for time and money with po-
tential losses from considerable ‘at-risk’ development
activities.

Nevertheless, a number of factors are converg-
ing to increase the need for sophisticated, statistics-
driven approaches to quality and process understand-
ing in the pharmaceutical industry, including:

o Regulatory Trends. Recent regulatory guide-
lines from the Food and Drug Administra-
tion (FDA), the European Medicines Agency
(EMEA), and the International Conference
on Harmonisation (ICH) encourage scientifi-
cally based approaches to quality and compli-
ance. Implementing the concepts embodied in
those guidelines—process analytical technology
(PAT), quality by design (QbD), and design
space—will require new, more statistically rig-
orous and risk-based ways of doing things.

o Inherent Characteristics of Pharmaceutical
Manufacturing. Many of these inherent char-
acteristics—and the challenges they present—
clearly call for the increased use of sophisticated
statistics-driven approaches. For example, in
most other manufacturing industries, product
specifications are clearly tied to product perfor-

Journal of Quality Technology

mance. In pharmaceuticals, however, it is diffi-
cult to tightly connect, say, ‘tablet dissolution’
rates to drug efficacy and safety over a vast ar-
ray of potential product users, each with differ-
ent body size, age, lifestyle, genetics, and drug-
metabolism chemistries. Furthermore, pharma-
ceutical companies must maintain quality in a
many-step production process that creates a
complex molecule that must have the proper
molecular structure and be free of serious chem-
jcal impurities or biological contaminants. In
addition, up to now, there has been a lack of
incentive for continuous improvement in phar-
maceutical manufacturing after regulatory ap-
proval. This is due primarily to the fact that
substantial changes in the manufacturing pro-
cess or recipe required formal regulatory ap-
proval. But new regulatory guidance has been
recently introduced to provide more flexibil-
ity with regard to continuous improvement in
manufacturing. However, pharmaceutical man-
ufacturers will have to show clear process un-
derstanding and prediction ability in order to
be granted such flexibility. To meet all these
complex challenges, pharmaceutical companies
need more, not less, statistical thinking and
practice.

Economic Pressures. Many companies, faced
with thin product pipelines, major patent expi-
rations, and downward pressure on pricing, now
need to cut their manufacturing costs, improve
yield and productivity, and generate bottom-
line savings that can be used to drive growth
and innovation. Statistically driven improve-
ment methodologies found in QbD are critical
for success in these efforts.

Increased Need for Effective Technology Trans-
fer. Virtually every drug at some stage of its de-
velopment or manufacture must be transferred
from one site to another. Furthermore, mergers,
acquisitions, the rise of “global” generics, the
ongoing rationalization of manufacturing, and .
other factors have increased the frequency with
which pharmaceutical manufacturing organi-
zations must effectively and efficiently trans-
fer products and manufacturing processes from
one location to another. Cost pressures, mar-
ket needs, government regulations, tax benefits,
and logistic issues have also greatly magnified
the importance of efficient, compliant, and cost-
effective technology transfer—whether it’s to a
nearby plant or a site a world away. Success-
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ful transfer requires a degree of understanding
of products and processes that can be greatly
improved by statistical techniques.

As these trends continue and converge, the role
of statistics and statisticians will only grow larger in
the industry. To provide readers with a wider per-
spective on the status and use of statistical tools and
methods in the pharmaceutical industry—now and
in the future—the sections that follow treat these
key issues:

o The history of pharmaceutical quality and reg-
ulation

o The phases of pharmaceutical development and
manufacturing and the basic quality and statis-
tical tools employed in each '

¢ Emerging statistical methods )

e The impact of statistical software and informa-
tion technology

e The role of the statistician in pharmaceutical
development and manufacturing

The article concludes with four case studies that
illustrate how these issues play out in actuality, and
an article summary provides a succinct synopsis of
the issues and their implications for the future. This
article will not address statistical methods or quality
in the conduct of clinical trials. The interested reader
should see Cleophas et al. (2006) for statistical meth-
ods in clinical trials and Griffin and O’Grady (2006)
for a review of quality in the conduct of clinical tri-
als. T'wo books that review statistics in the pharma-
ceutical industry more broadly are by Millard and
Krause (2001) and Buncher and Tsay (2005). A list
of key abbreviations and acronyms are given in the
Appendix at the end of this article.

History -

To understand the forces that have shaped the use
of statistics in pharmaceutical development today, it
is essential to understand the history of the regula-
tion of the industry. Although bills to regulate food
and drugs were introduced in the U.S. Congress as
early as 1879, the modern history of pharmaceutical
regulation may be divided into two distinct eras: (1)
the period of largely reactive legislation that lasted
through most of the 20th century and (2) the pe-
riod of science-based regulatory initiatives that be-
gan with the dawn of the 21st century and contin-
ues today. Though the two periods overlap to some
extent, the new era, with its emphasis on increased
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process understanding, promises to be markedly dif-
ferent in terms of industrial statistical focus. Table 1
provides a summary of the key regulatory events.

The 20th Century: Regulation and Reaction

In the United States, the precedent for federal reg-
ulation of biological products was first established in
the Biologics Control Act of 1902, which came in
response to the deaths of 13 children caused by a
contaminated diphtheria vaccine and the deaths of 9
children caused by a contaminated smallpox vaccine.
The act created the Center for Biologics Evaluation
and Research (CBER, which became one of the cen-
ters of the FDA in 1972). .

In 1906, the United States enacted the Food and
Drugs Act, known as the “Wiley Act.” Although
the law focused largely on adulterated food, it also
sought to prevent false claims on product labels and
to force the acknowledgement of product ingredients
such as alcohol, opium, and morphine.

In 1927, the precursor to the current agency
dropped all research functions and the current name,
FDA, was applied in 1930. In résponse to 107 deaths
from a poisonous solvent used in the manufacture
of a sulfa drug, the 1938 Federal Food, Drug, and
Cosmetic Act (FDCA) required sellers to prove that
their products were safe. The Act also authorized
factory inspections and supplemented penalties to in-

* clude injunctions as well as seizures of product and

criminal prosecution. The early 1940s saw the death
of some 300 people from a contaminated sulfa drug,
leading to stricter manufacturing standards, which
would eventually come to be known as the Good
Manufacturing Practice (GMP) standards. Also dur-
ing this period, the FDA enacted batch certification -
for some products. This required producers to sub-
mit a sample of every batch of product to the FDA
for testing.

The 1960s witnessed the birth of some 10,000 de-
formed infants in BEurope from a compound called
thalidomide. The compound was not marketed in the
United States, but resulted in the Kefauver-Harris
Drug Amendments of 1962 passed to ensure drug effi-
cacy and greater drug safety. For the first time, drug
manufacturers were required to prove to the FDA
the effectiveness of their products before marketing
them. In addition, testing in animals was required
before any human dosing and the FDA’s power to
inspect manufacturing facilities was expanded.

The Prescription Drug Marketing Act (PDMA)

www.asq.org:
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TABLE 1. Key Regulatory Events

Year Event

Purpose

1906 Pure Food and Drug Act
1930 FDA takes its current name

Prevent false claims
Agency is purely regulatory—no research functions

1938 Federal Food, Drug, and Cosmetic Act Require proof of safety before marketing

1949 First publication of FDA “Guidance
to Industry”

1962 Kefauver-Harris Drug Amendments

1987 Prescription Drug Marketing Act

Address the appraisal of toxic chemicals in foods

Reqﬁire proof of efficacy and safety before marketing
Ensure that pharmaceutical products purchased by

consumers are safe and effective, and free from counterfeit,

2004 Pharmaceutical cGMPs for the 21st’
Century—A Risk-Based Approach

2004 PAT—A Framework for Innovative
Pharmaceutical Development,
Manufacturing, and Quality
Assurance

2005 ICH Harmonized Tripartite Guideline:
Pharmaceutical Development, Q8

adulterated, misbranded, subpotent, or expired drugs
Emphasize risk-based approaches to development and
manufacturing
Achieve greater understanding of drug development and
manufacturing processes. Data acquisition and multivariate
analysis cited as important tools

Foster quality by design and the understanding of design
space—emphasis on design of experiments to define

interactions and work in multidimensions

2005 ICH Harmonized Tripartite Guideline:
Quality Risk Management, Q9

2007 ICH Harmonized Tripartite Guideline:
Pharmaceutical Quality System, Q10

Encourage the use of quality risk-management tools in all
phases of a product’s lifecycle
Enhance science- and risk-based regulatory approaches

of 1987 was designed to halt the sale of counterfeit,
adulterated, and expired drugs. The FDA moved to
expedite the approval of drugs for life-threatening
diseases such as AIDS and eased access to drugs for
patients with limited possibilities for treatment.

~ This history of pharmaceutical regulation in the
20th century could be viewed as a succession of qual-
ity regulations, with heavy legislative involvement
deriving from the potential for pharmaceuticals to
cause harm to human life. In parallel, the quality of
products and processes in nonpharmaceutical indus-
tries has evolved largely as a result of market forces.

The 21st Century: The Rise of Science- and
Risk-Based Approaches

The focus of the FDA and regulatory agencies in
many other parts of the world is currently expand-
ing to include a greater emphasis on fundamental un-
derstanding of manufacturing processes as the basis
for a knowledge-driven, risk-based approach to qual-
ity. In the early 2000s, the FDA began a program to
focus on what it called manufacturing science. The
FDA defined manufacturing science as encompassing
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knowledge about products and processes, technology
used to manufacture and control these processes, and
the underlying foundation of a robust quality system
at the manufacturing site. This represented a clear
shift away from a long-standing position of rigid reg-
ulation and inspection to achieve quality standards.

The knowledge base to support these changes
begins in research and development and continues
though technology transfer and commercial manu-
facturing. Information related to the active pharma-
ceutical ingredient (API) and drug product formula-
tion, manufacturing processes and analytical meth-
ods, critical-to-quality parameters and attributes,

"and product specifications are all key elements of the

knowledge base. With this knowledge, the firm and
the FDA can determine the potential for events to
affect fitness for use (i.e., risk). A product’s risk po-
tential can be assessed through a mutually developed
risk classification system. By sharing risk-mitigation
strategies with the FDA, a manufacturer may have
a product reclassified to a lower risk class. This is
one of the key benefits of a science- and risk-based
approach to GMPs.
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These new approaches to regulation, compliance,
and quality were embodied in a series of guidelines
issued to the industry by the FDA and The Interna-
tional Conference on Harmonisation of Technical Re-
quirements for Registration of Pharmaceuticals for
Human Use (ICH). The ICH is a unique project that
brings together the regulatory authorities of Europe,
Japan, and the United States. The last five rows of
Table 1 summarize some of the key documents. They
are readily accessible on the FDA and ICH websites.

While regulatory submissions relating to drug
product manufacturing have traditionally focused on
prescriptive validation and product testing, and less
on process design, the increased process understand-
ing pointed to by these 21st century guidelines could
lead to increased regulatory flexibility for drug man-
ufacturing. In an effort to streamline costs and im-
prove product quality, the pharmaceutical industry
has become increasingly interested in working with
regulators to modernize drug development and qual-
ity programs. Science- and risk-based regulatory pro-
cesses will ensure that FDA resources are focused on

the highest risk areas and firms are encouraged to use

innovative technology to mitigate risk. However, it is
incumbent upon the firms to ensure that low- and
medium-risk areas remain in an appropriate state of
control because these risk classes will receive less reg-
ulatory attention.

Additional historical evidence of the growing im-
portance of statistics to the pharmaceutical indus-
try may be found in the eventual creation of a Bio-
pharmaceutical Section within the American Statis-
tical Association (ASA). Initially, a subsection of
the more general Biometrics Section, full section sta-
tus was driven by the need to have a professional
organization to bring together industry, academia,
and regulators to help meet the specialized needs
of the industry. The early leaders in the creation of
the subsection were Joe Dresner, Charlie Dunnett,
Mike Free, Joe Ciminera, Ron Gauch, Marti Hearron,
and Joe Meyer. Early in the life of the Biopharma-
ceutical Section, the primary preclinical topics were
those related to toxicology—especially carcinogenic-
ity studies. Process development and manufacturing
issues have only come to the forefront with recent
FDA initiatives. Professional organizational homes
for these topics are currently spread across ASA and
the American Society for Quality.(ASQ).

Below is a short summary of some of the early
contributors to the area of “industrial” statistics in
the pharmaceutical industry. (This is not meant to be
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a definitive list and we apologize for any inadvertent
omissions of names or contribution areas.)

Shein-Chung Chow
Joseph Ciminera

Product stability
Control charting, process

monitoring

Mike Free Product stability

John R. Murphy Screening designs, content
uniformity

Earl Nordbrock
Charles B. Pheatt
Steven Ruberg
David Salsburg
Charles B. Sampson

Product stability
Product dissolution
Product stability
Methods comparison
Quality control

Jun Shao Product stability
‘Wayne A. Taylor Sampling plans
Lynn Torbeck Process validation

Drug Development,
Manufacturing Processes,
and Analytical Methods

Following the discovery of an API, pharmaceuti-
cal development takes place along five parallel paths:
(1) clinical trials, (2) preclinical assessment, (3) API
development, (4) drug product development (final
dosage form), and (5) analytical method develop-
ment (Figure 1). The objective of this work is the
submission and approval of an NDA. Once clinical
development begins, it usually drives the time lines
for the other four development paths.

Except in the smallest companies, no individ-
ual statistician is responsible for supporting all five
paths. This section treats API development, drug
product formulation, and analytical development, in-
cluding the statistical methods and tools that are ap-
plied in pharmaceutical development and manufac-
ture. It also demonstrates how these activities fit into
a QbD paradigm. Although API development, drug
product formulation, and analytical development are
presented sequentially here for the sake of clarity,
they usually proceed in parallel and they also sup-
port the manufacture of clinical trial supplies. Fur-
thermore, all three development paths are periodi-
cally affected by how the drug product is faring in
the clinical trials. This section, and indeed the entire
article, focus primarily on the activities in the gray
arrows in the box in Figure 1.

Table 2 shows how API, drug product .develop-

" ment and manufacturing, and analytical-method de-
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FIGURE 1. Schematic of Pharmaceutical Development and Manufacturing Processes.

TABLE 2. Phases of Development for API, Drug Product, and Analytical Methods

1

API

Drug product

Analytical methods-

Definition

The active ingredient in the
medicine

The medicine as
administered to the
patient (e.g., a pill
or injection)

Procedures for quantifying the
amounts of active ingredient
or impurities in either the
API or drug product

Stages: ‘
Preclinical

Phase 1
Phase 1I

Phase 111

Phase IV

Molecule selection, synthetic
route development,
creation of supplies for
animal testing

Start GMP manufacturing
process for clinical trial
investigation of physical
properties

Scale-up of chemical
synthesis

Clinical-trial supply
manufacture, identification
of critical process
characteristics, process
validation

Technology transfer from
R&D to commercial
manufacturing facility

Animal studies

" Consider formulation,
investigate supplies,
stability requirements

Drug-product formulation
optimized, shelf-life
studies begin

Manufacture of clinical
trial supplies, scale-up
of drug product process,
shelf-life determination,
process validation

Technology transfer from
R&D to commercial
manufacturing facility

Determine measurement needs,
select analytical methods,
develop standards

Analytical-method optimization

Analytical-method validation

Product and process
specifications finalized,
process monitoring (e.g.,
control charts) established

Product and process monitoring
for statistical control
and quality improvement

Journal of Quality Technology
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velopment for small-molecule therapeutics interlink
with the phases of clinical studies. The relationships
are detailed and discussed in this section of the arti-
cle.

API Development: R&D, Tech Transfer, and
Manufacturing

The API in a medication or vaccine is the sub-
stance or organism that fights the symptom or ill-
ness that is being treated or induces immunity to the
pathogen. After the discovery of a molecule that has
- pharmaceutical activity, work is done on this candi-
date API to further refine the material, to create the
manufacturing process, and to scale it up to the de-
sired production levels for full-scale manufacturing.

In the case of small-molecule pharmaceuticals, the
first step is the chemical synthesis of the API and the
testing of candidate synthetic routes to determine
the most effective (chemistry) route from a manufac-
turing perspective. Next, work is done to verify what
was made and how to make it at larger scale—for ex-
ample, a move from 2-3-gm to 50-gm batches, which
are needed to supply preclinical studies in animals.
Work is then done to move to bigger batches (1-5
kg) using small-scale commercial equipment or scal-
able equipment (not beakers). With Phase TII clini-
cal studies, API manufacturing eventually grows to
its largest scale to date, at least one tenth of com-
mercial batch size. ' .

Much of the statistical thinking and many of the
methods and tools used in the development and man-
ufacture of an API are the same as those used for
chemical processes. Also, much of process and prod-
uct development involves experimentation—the key
tool, of course, being design of experiments (DoE).

Experimentation includes screening experiments, -

product/process understanding studies, regression
modeling, process optimization, and robustness stud-

ies. In manufacturing, statistical process control

(SPC) is used extensively to monitor and improve
processes. On'the improvement side, approaches us-

ing statistical techniques such as Six Sigma, Lean .

Manufacturing, PAT, Design for Six Sigma, and QbD
are increasingly being used.

It should be noted that the preceding discussion of
API applies to drugs developed from synthetic chem-
icals, the so-called “small molecules”. Biologics and
vaccines that are produced in biological systems are
referred to as “large-molecule” drugs (e.g., proteins),
as they are typically much larger molecules. Large-
and small-molecule drug production methods have a
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lot in common, with the principal differences being
that large molecules are associated with many raw
materials, numerous upstream and downstream pro-
cess steps, a variety of operating conditions, and nu-
merous types of equipment. Because large-molecule
drugs are produced from living organisms, variability
is also higher and viral contamination can be an is-
sue. Nevertheless, the associated statistical methods .
and approaches used are similar to those used for
small-molecule drug production. Additional discus-
sion of drug products from small and large molecules
is included in this section.

Drug Product Development and Commercial
Manufacture (Small Molecules)

Table 3 describes the important formulation and
process development activities that must be per-
formed and the milestones that must be achieved in
preclinical assessment and in clinical trials to demon-
strate acceptable drug product safety and efficacy to
regulatory authorities.

The last column of Table 3 lists standard statisti-
cal techniques and methodologies that are routinely
applied in support of the corresponding stage of drug
product development.

Figure 2 illustrates a typical tablet manufacturing
process. The API is blended with excipients to form
the tablet (i.e., the drug product). The excipients
are ingredients that help to keep the tablet intact in
storage and then to dissolve at a particular rate after
ingestion by the patient.

Drug Product Development and Commercial
Manufacture (Large Molecules and Vaccines)

The primary differences in drug product develop-

“ment between small molecules and large molecules

(biologics and vaccines) relate to the route of admin-

. istration of the product and to drug product stabil-

ity. Most biologics and vaccines are injectables and
must be formulated to cause a minimum amount of
discomfort to the patient. Some formulation com-
ponents, such as salts, produce stinging. These are
necessary, however, to help stabilize the molecule
throughout product shelf-life. Some: vaccines, such
as live attenuated-virus vaccines, must be stored re-
frigerated or frozen, and many undergo a formula-
tion process called lyophilization, which is freeze dry-
ing under carefully controlled time, temperature, and
pressure conditions. Similar to the development of
a small-molecule formulation, a large molecule or a -
vaccine formulation is expedited through the use of
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3

TABLE 3. Drug Product Development and Statistical Support

Milestones

Activities

Statistical support

Nominate an API for
clinical development

Discover the API and perform
various preclinical studies

Multiple comparison techniques for
combinatorial chemists; analysis of genomic
data; design and analysis of animal safety
studies, etc.

Perform Phase I
clinical studies

Determine Phase I dosage type
(e.g., liquid, capsule, tablet
[or new technology])

Excipient compatibility studies
Accelerated stability studies

Analysis of historical data; statistical thinking
(design and analyze experiments)

Design and analyze experiments

Regression analysis

Perform Phase ITA
(dose ranging) and
1IB (proof of concept)
clinical studies

Determine Phase II dosage type
(new technology)

Evaluate excipient compatibility
(if not performed previously)

Develop Phase II dosage
formulation

Develop Phase II manufacturing
process

Stability studies

Analysis of historical data; statistical thinking
(design and analyze experiments)

Design and analyze experiments

Design and analyze factorial and/or mixture
experiments

Design and analyze factorial and/or response
surface experiments

Regression analysis

Perform Phase III
clinical studies

(If necessary, determine Phase
II1 dosage type)

Develop and/or scale Phase III
dosage formulation

Develop and/or scale Phase III
manufacturing process

Develop PAT applications .

Transfer technology to
commercial manufacturing
division

(Design and analyze experiments to
investigate scalability and/or economic
concerns with Phase II dosage type)

Design and analyze factorial and/or
mixture experiments

Design and analyze factorial, mechanistic,

and/or response surface experiments
Multivariate analysis

‘Write reports and consult

Submit new-drug
application

Develop and/or scale commercial
formulation and process

Define design and knowledge
spaces for DP formulation
and process

Conduct ICH campaign

Design and analyze factorial, mechanistic,
mixture, and/or response surface
experiments

Design and analyze product- and process-
understanding experiments '

Analyze ICH stability studies (set expiry)

Journal of Quality Technology-
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TABLE 3. Continued

Milestones Activities

Statistical support

Produce commercial  Establish QA procedures

product

Monitor DP stability
Improve the process

Assess process ca}iability and establish quality systems

to control the process (SPC, PAT, establish sampling
plans, etc.)

~ Analyze data from annual stability lots

Data mining, DoE, Six Sigma techniques, Lean

techniques, JIT manufacturing, etc.

multifactor design of experiments. Another key area
of statistical support is stability study design and
manufacturing modeling. For some of the less stable
vaccines, release specifications and manufacturing
targets must be supported by strategic, and some-
times innovative, stability and manufacturing stud-
ies, in order to obtain reliable data to establish a re-
lease potency that guarantees safe and effective prod-
uct through expiry and to establish a robust manu-
facturing process.

Another feature unique to large-molecule phar-
maceuticals and vaccines is related to the complex-
ity of their structure. These products can not usu-
ally be comprehensively characterized and, there-
fore, process or facility changes require carefully de-
signed comparability studies. The industrial statisti-
cian may work with engineers to design an efficient
and effective study. “

Analytical Methods

Analytical methods are used by pharmaceutical
manufacturers and regulatory authorities to help
guide development and to characterize and. control
production and distribution of drugs, biologics, and
vaccines to the public. Most methods are used to help
demonstrate the quality of a product, its potency,
and purity. Methods evolve over the course of de-
velopment in correspondence to need and regulatory
requirements. Statisticians are involved throughout
the method lifecycle. This includes development of
processing strategies for complex methods, such as
bioassay and near infrared spectroscopy, employment
of multifactor DoE to optimize the method, valida-
tion design and analysis to demonstrate the method
is fit-for-use, and control strategies for maintain-
ing satisfactory method performance. Methods range
from measurement of physical characteristics of a

Process Variables

« Blending Time and Temperature
« Compression Speed and Force
« Coating Air Temperature and Moisture

Water Addition

L

APl—bir

Excipients —;

%Blend — Compress ——% Coat —=» Package

~p-Dissolution

~»Content
Uniformity

+>-Yield

»AAS

17

P>Waste

Environmental Variables

. Ambient Temperature and Humidity
» Blending and Compression Rooms

Raw Material Lot

Operators
» Equipment

FIGURE 2. Tablet Manufacturing Process and Its Variables.
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drug, to chemical composition, to biological activity
in vivo.

Methods used to control pharmaceutical prod-
ucts are required to undergo validation in order
to demonstrate that they are reliable measures of
product quality. Validation standards are outlined in
the United States Pharmacopeia (USP (2005)) and
the ICH guidelines. These guidelines specify the pa-
rameters requiring validation, as well as validation
methodology. Design considerations and other meth-
ods of analysis of validation studies are described in
Schofield (2003) and Boulanger et al. (2007).

Pharmaceutical substances and pharmaceutical
products are controlled and monitored through spec-
ifications and process capability or control limits.
Specifications are defined in ICH (1999) as “a list of
tests, references to analytical procedures, and appro-
priate acceptance criteria, which are numerical lim-
its, ranges, or other criteria for the tests described.”
The limits may be specified in regional compendia
such as the United States Pharmacopeia and the
British Pharmacopeia, or developed by the manu-
facturer. Once defined, these are used to assure the
quality of products or their intermediates.

The ideal pharmaceutical quality system is com-
posed of specification limits, release limits, and
process-capability limits. We denote by LSL, LRL,
and LCL the lower specification limit, the lower re-
lease limit, and the lower capability limit, respec-
tively. USL, URL, and UCL denote the repective up-
per limits. The specification limits (LSL, USL) reflect
restrictions within which product is fit for use, and
must conform throughout shelf-life. The release lim-
its (LRL, URL) assure these limits are met at release
and throughout product shelf-life and may be calcu-
lated per Apostol et al. (2008), while the control or
process capability limits (LCL, UCL) describe both
process and assay variability. See Figure 3 for an ex-
ample.

Methods that have been developed and validated
in the research laboratories must be transferred for
implementation in the manufacturing quality-control

Target
LSL LRL LCL UCL URL USL
Protect for . N P . .
assay variabilty ! Y Capabiity i Protectfor
plus degradation § te—Llimits =i § assay variability

FIGURE 3. Assay Quality-Control Limits.
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(QC) laboratory. Various approaches are utilized to
help assure that the method is performing properly.
An equivalence approach correctly addresses the hy-
potheses of interest. The change in the average re-
sponse between laboratories and the increase in vari-
ability are held to restrictions that must be met using
methods similar to those used to establish bioequiva-
lence (Schuirmann (1987)). Another approach using
an f-expectation tolerance interval, similar to its use
in method validation, has been advocated to demon-
strate that measurements made in the QC laboratory
conform to an acceptable shift from the distribution
in the development lab (Dewé et al. (2007)).

A key element of the quality assessment of prod-
uct during development is the determination of prod-
uct shelf-life. ICH Q1E provides a formulation for
the design and analysis of development stability
data (ICH (2003)). Studies are usually performed for
each product image, which includes different dosages
and container/closure profiles. A fixed-effects anal-
ysis is performed on stability measurements, which
are designed over time to capture changes in im-
portant properties of the drug, such as potency and
degradants. Rules for pooling the slopes and inter-
cepts of the batches use hypothesis testing at an
increased significance level, such as a = 0.25, in
order to improve the power of the test to detect
meaningful differences among lots. After pooling has
been assessed, shelf-life is estimated as the inter-
section of the one-sided 95% confidence interval on
the mean and the product specification. Other ap-
proaches based on prediction interval (Carstensen
and Nelson (1976)) and tolerance-interval concepts
(Kiermeier et al. (2004)) have been proposed but do
not appear to be much used in practice as yet.

Statisticians have contributed to development-
stability studies by offering design strategies, such
as bracketing and matrixing of stability time points,
which greatly improve efficiency with little impact
on the effectiveness of the study (Nordbrock (1992)).
Bracketing is a strategy wherein extremes of a prod- -
uct image are tested rather than all images. Thus, if
product is to be sold as 20-, 50-, and 100-mg doses, a
bracketing study might study only the 20- and 100-
mg doses. Matrixing involves testing only a subset
of the batches at selected time points (a type of in-
complete block design). The combination of bracket~
ing and matrixing leads to a parsimonious evaluation
of product stability. Mixed-effects modeling of “ran-
dom batches” has been proposed by others (Chow
and Shao (1991)). Efficient strategies for monitoring
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stability of commercial product have been described
in Fairweather et al. (2003).

Quality-control testing of manufactured product
is carried out to help assure safe and effective product
and to monitor the process for shifts or trends. Statis-

ticians work with the QC labs to establish test strate-

gies designed to obtain reliable estimates of product-
quality attributes related to dose, potency, and pu-
rity. Replication may be utilized to increase the pre-
cision of the reportable value, and thereby reduce
the risks to the customer of an out-of-specification
(OO0S) result. Some laboratories employ sequential-
test plans in which product is tested using a vari-
able number of assay measurements. The statistician
works with the quality laboratory to establish ac-
ceptable quality criteria with minimum risk to the
manufacturer and customer alike.

Regulatory guidelines prescribe a rigorous inves-
tigation of the QC laboratory and the manufactur-
ing process when an OOS result is obtained (FDA
(2006)). Statisticians may contribute to the process
by providing the laboratory with retest and resam-
pling strategies.

Over time, methods may change or a new method
may be developed to measure a particular quality

attribute of a product. When this is done, the labo-

ratory performs a concordance analysis. Samples are
tested across a range of responses, and a concordance
correlation coefficient is determined as a measure of
the agreement of the two methods (Lin (1989)). A
related measure is the concordance slope (Schofield
(2003)). This can be obtained from an eigenanalysis
of the two assays, and it measures the slope of the
relationship between the two methods.

Emerging Statistical Methods

Satisfying the FDA’s encouragement of the phar-
maceutical industry to achieve better understand-
ing of their manufacturing processes and to quantify
the risks associated with an OOS product requires
a wider set of statistical tools than that commonly
used in pharmaceutical manufacturing. This need is
in large part driven by new technologies supported
by the PAT initiative and by the need for better tech-
nology transfer from development to manufacturing
plant.

Conventional pharmaceutical manufacturing is
generally accomplished using batch processing with
laboratory testing conducted on collected samples to
evaluate quality. A key component of PAT is the de-
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sire to implement continuous, real-time quality assur-
ance. As previously noted, the FDA considers PAT
to be a system for designing, analyzing, and con-
trolling manufacturing through timely measurements
(i.e., during processing) of critical quality and per-
formance attributes of raw and in-process materials
and processes, with the goal of ensuring final product
quality (FDA (2004a, b)). PAT is expected to pro-
duce gains in quality, safety, and efficiency by (1) re-
ducing product-cycle times by using on-, in~, and/or
at-line measurements and controls, (2) enabling real-
time release, (3) increasing automation, and (4) fa-
cilitating continuous processing.

Many PAT tools tend to be multivariate in nature
(in both the independent- and dependent-variable
sense). Pharmaceutical products and processes in-
volve complex, multifactorial systems. The under-
standing of these systems is achieved through the
use of multivariate mathematical approaches, such
as statistical design of experiments, response sur-
face methodologies, process simulation, and pattern
recognition tools, in conjunction with knowledge-
management systems.

Such data is often collected by way of process an-
alyzers. Such analyzers include those that take uni-
variate process measurements (e.g., pH, temperature,
pressure) and those that nondestructively measure
biological, chemical, and physical attributes. These
measurements may be taken at line, in line, or on line.
Process analyzers typically generate large volumes
of data. Multivariate statistical methods are often
needed to extract critical process knowledge for real-
time control and quality assurance (e.g., principal-
components analysis, projection to latent structures,
time series, batch modeling). Sensor-based measure-
ments may provide a useful process signature.

One of the chief technologies associated with the
PAT initiative is near-infrared (NIR) spectroscopy
(Skibsted (2006)). This technology is a spectroscopic
method utilizing the near-infrared region of the elec-
tromagnetic spectrum (from about 800 nm to 2500
nm). NIR spectroscopy produces a spectral trace that
may characterize subtle physical and chemical prop-
erties of a substance (e.g., chemical intermediate or
tablet excipient) (see Figure 4).

Such a trace is a high-dimensional vector response.
As the number of experimental units (n) will bé much
smaller than the dimension of the vector (p), we have
a “large p/small n” statistical inference situation.
Such situations are typically dealt with by latent-
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FIGURE 4. An NIR Trace.

- variable methods. Such methods are popular in the

field of chemometrics, which typically uses partial
least squares (PLS) to analyze and reduce the di-
mensionality of such data.

Spectroscopy, or other technologies that produce
traces of output across space or time, produce what
is known as functional data, that is, an observation
viewed from the perspective of a ‘profile’ rather than
a point in a one- or low-dimensional space. (See Ram-
sey and Silverman (2002) for examples of functional
data and associated statistical-analysis techniques.)
Because of the increase in functional data due to new
technologies, the field of quality and industrial statis-
tics is adjusting by starting to create new methods for
statistical process control based on such data (Jeong
et al. (2006)) and for process optimization (Nair et
al. (2002)) involving functional data.

The use of data-mining statistical methods may
help provide a better fundamental understanding of
processes measured by functional response traces.
However, practitioners need to understand that data
mining is not magic and that the acquisition of new
knowledge (or law-like relationships) among factors
affectipg a process requires the purposeful variation
of factors according to well-designed experiments.
However, the careful use of data-mining techniques
to detect high-dimensional special causes may. help
here (Pamias (2005)).
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Another technology being considered by some
pharmaceutical companies is quasi- (or semi-) contin-
uous manufacturing (Leuenberger (2001)). The idea
here is to produce many small batches, similar in size
to those produced for clinical-trial supplies. This ob-
viates the need for scale-up and also produces rich
batch-to-batch variation information, which invites
the use of Bayes and empirical Bayes techniques. A
recent overview of Bayesian approaches to process
monitoring, control, and optimization can be found
in Colosimo and del Castillo (2007).

Despite a predominance of batch manufactur-
ing, a case can be made for utilization of contin-
uous manufacturing, at least for some situations
(Kossik. (2002)). As such technology becomes in-
tegrated where needed in the pharmaceutical in-
dustry, it will generate a corresponding need for
statistical feedback-control procedures (Box and
Luceiio (1997)) and for more sophisticated statistical
process-monitoring methodologies (e.g., Alt (2007)).

It should be kept in mind that data-intensive
methods may benefit from better data-gathering
techniques (Steinberg et al. (2008)). Data mining as
a practice is oriented toward analyzing a given col-
lection of data. This alone may be acceptable for
those industries for which it may be difficult fo con-
duct designed experiments (e.g., credit-card compa-
nies). However, for an industry such as pharmaceuti-
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cals, where most data is obtained from experiments,
concepts of experimental design should be used for
improving data gathering in the presence of data-
intensive technologies.

In the various QbD regulatory documents, the
word ‘risk’ turns up often, usually in reference to
the fact that regulatory authorities see new quality
initiatives for pharmaceutical manufacturing from a
‘risk-based’ perspective, with an eye to low risk to
the patient. From a quality and industrial statisti-
. cal viewpoint, this brings up two primary statistical
methodologies, more directly those related to risk as-
sessment and quantification (see ICH Q9 (2005)) and
more indirectly those related to variation determina-
tion.

ICH Q9 stresses identification and assessment of
associated risk likelihoods and consequences of risk
events. Classical quality risk-analysis identification
procedures, such as failure modes and effects analysis
(FMEA) and fault tree analysis (FTA), are recom-
mended. Probabilistic risk assessment is only men-
tioned briefly as associated with “supporting statisti-
cal tools.” However, it does appear that some regula-
tors recognize the important role of probability mod-
els for risk assessment. See, for example, Claycamp
(2008). While sophisticated risk-assessment method-
ologies may be new to the pharmaceutical industry,
the changing regulatory atmosphere appears to wel-
come any sound procedure for improving risk assess-
ment. Probabilistic risk assessment and systems reli-
. ability are areas where quality professionals can make
important contributions to pharmaceutical manufac-
turing.

Clearly, the determination of risk depends on vari-
ation. For example, a probabilistic reliability compu-
tation involving a normally distributed endpoint re-
quires knowledge of variation as well as knowledge
of the mean. Therefore, a proper reliability quan-
tification may require a careful variance-components
quantification. However, a more insidious issue is
that both quality engineers and statisticians may
simply follow statistical methods designed primar-
ily for statistical inference on the means as a way to
address assurance of quality. One example is the use
of “overlapping mean response surfaces” as a way to
find the “sweet spot” (Lind et al. (1960), Anderson
and Whitcombe (1998)) of a multiple-response pro-
cess with regard to meeting process-response specifi-
cations. Peterson (2004) shows that the probability
of meeting specifications when operating well within
such a sweet spot can be associated with a disap-
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pointingly small value. What is needed is a process-
optimization approach tied directly to the probabil-
ity' of meeting specifications.

Design space, a key concept associated with risk

in ICH Q8 (2005), actually is not directly related

to experimental design. Rather, it is related to a re-
gion of process capability. The ICH Q8 guidance de-
fines design space as the “multidimensional combi-
nation and interaction of input variables (e.g., ma-
terial attributes) and process parameters that have
been demonstrated to provide assurance of quality.”
The issue of risk is embodied in the phrase “assur-
ance of quality.” The guidance goes on to state that
“working within the design space is not considered
as a change.” Of course this begs the question: “How
much assurance?” Further, the ability to modify the
production recipe without regulatory approval (if one
stays within the design space) means that manu-
facturers could pursue continuous improvement with
their manufacturing processes.

Currently, however, pharmaceutical manufactur-
ers may have little business incentive for continuous
improvement in their manufacturing processes after
regulatory approval—for two reasons. First, typical

" manufacturing processes require costly and lengthy

regulatory approval for any change in the specified
manufacturing conditions. Second, there is the per-
ceived risk of product batch failure due to changing
the manufacturing conditions (i.e., process parame-
ters and input variables).

However, a valid design space, approved by regu-
lators, would provide pharmaceutical manufacturers
with the ability to make small-to-moderate changes
in their manufacturing conditions (within the design
space) without the time-consuming process of regu-
latory approval. This would also allow manufactur-
ers to safely experiment within the design space and
thereby gain important information about their man-
ufacturing process after approval by regulators.

The ICH Q8 Annex (2007) appears to suggest
the classical approach of “overlapping mean response
surfaces” as a way to construct a design space. But,
as previously noted, such an approach does not quan-
tify “how much assurance” of acceptable product,
and the resulting “sweet spot” may possess factor
combinations associated with poor process reliabil-

ity.

A Bayesian approach to the ICH Q8 definition of
design space has been given by Peterson (2008), al-
though such a region for an HPLC assay had been
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suggested earlier by Peterson (2004, Fig 6). Two case
. studies are also illustrated in Stockdale and Cheng
(2009). Here, design space is defined as

{z:Pr(Y € A|=, data) > R}, = (1)

where Pr(Y € A | z, data) is the posterior predictive -

probability that a new vector of relevant production
responses, Y, will fall within the specification (i.e.,
acceptance) region, A, given the experimental data
and a vector of controllable process factors, =. Here,
R would be some prechosen level of reliability. (See
Peterson (2008) for some comments on the choice
of a value for R.) For the design space in (1), the
input variables (e.g., raw material attributes) could
be treated as noise variables.

On the other hand, a design space could be defined

as
{(z,2z) : Pr(Y € A|z,z, data) 2 R}, (2)

where z is a vector of input-material measure-
ments. The design space in (2) would be useful
for feed-forward control procedures where movement
within the design space would be motivated primar-
ily by input-material measurements (MacGregor and
Bruwer (2008)). A further discussion of other appli-
cations of the Bayesian approach can be found in the
authors’ technical report, Peterson et al. (2009).

The Impact of Statistical Software
and Information Technology

For drug-discovery research, the pharmaceutical
industry has already witnessed the rapid increase in
software for number crunching and information stor-
age and retrieval. Part of this has been due to the
genomic revolution and the associated ‘omic’ techno-
logical platforms for generating such data. However,
with the advent of the PAT initiative, technology
will again be driving the need for more sophisticated
software and information technology to store data,
retrieve it, and manage it. Further, .emerging statis-
tical methods, as outlined in the previous section,
will also require, to some degree, additional com-
puting support or application development. Mean-
while, increased computing speed, storage, and in-
teractive capability are also affecting quality and in-
dustrial statistics in the pharmaceutical industry. On
one hand, need will, in some cases, drive software cre-
ation. On the other hand, software availability will
guide what statisticians and quality engineers are
willing to do with statistics and graphics.

The increased availability of easy-to-use statistical
commercial software allows scientists, engineers, and

Journal of Quality Technology

various technicians to do their own analyses. Such
software is useful not only for statisticians but for
teaching and the enablement of (nonstatistical) en-
gineers and scientists. It can also help to empower a
trained statistical “champion.”

The pharmaceutical industry is inundated with so-
phisticated assay equipment and measuring devices
(e.g., for image or spectroscopic analyses). Some of
this equipment has built-in proprietary algorithms
that are statistical in nature. It can be difficult to
ascertain how well these algorithms perform or what
“fine print” assumptions are required for reliable sta-
tistical analyses. Some statistical packages have their
algorithms well documented, while others do not.

Along with data mining, opportunities in the field
of high-dimensional information visualization arise
with PAT as well. Shop-floor technicians and chemi-
cal/biochemical engineers will have a strong desire to
view information in their data whether or not it may
be high dimensional. The visual package Spotfire®
(Spotfire Inc.) can help here, but much more is pos-
sible in theory (see, e.g., Fayyad et al. (2002)).

Further opportunities for information technology
to contribute lie in the field of database and knowl-
edge management. A pharmaceutical-industry sur-
vey (Morris (2005)) has indicated that only 10%
of database information has been leveraged to im-
prove overall competitiveness and compliance. So
good opportunities exist for database and knowledge-
management professionals to impact the pharmaceu-
tical industry from both competitiveness and regu-
latory perspectives. As mentioned above, the PAT
initiative will only increase these needs due to data
complexity and volume.

In addition to communication among repositories
of collected data, there is a need for related databases
of information that allow for easy storage and re-
trieval of data analyses (graphs, point estimates, con-
fidence intervals, etc.) along with the language code
and software that generated such entities from the
data. Again, all of this is more pressing for the highly
regulated pharmaceutical industry.

For all of the foregoing reasons, the pharmaceu-
tical industry has become interested in “enterprise”
statistical and information systems. Such systems al-
low users to store and track information across vari-
ous groups within an organization. Examples of such
systems are the Statistica Enterprzse wide SPC sys-
tem (StatSoft, Inc.) , the SAS® Enterprise Guide®
4.1 for Statistical Analysis (SAS Institute Inc.), and
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the Minitab Quality Companion (Minitab Inc.). Such
systems provide electronic venues for developing add-
on modules for analyses particular to the pharmaceu-
tical industry. But such systems also call for greater
due diligence in software validation across a large
group of company subunits that are in a regulated
‘environment.

Despite the need for reliable software validation,
increasing sophistication in technology is driving the
need for increasing sophistication in statistical anal-
yses and algorithms (Steinberg et al. (2008)). Many
younger statisticians (particularly recent graduates)
in both the pharmaceutical industry and associated
regulatory agencies (e.g., the FDA) have learned
their applied statistics using the R (open source)
computing environment (Bell et al. (2006)). Conse-
quently, these statisticians want to use R because
it is familiar and often has relatively recent statisti-
cal methods that are not yet available in commercial
packages. In fact, the Drug Information Association
and the FDA cosponsor an “Open Toolbox Initiative
Forum” to support vendor-neutral software products
in an integrated environment.

Interestingly, there are no federal regulations pro-
hibiting the use of open-source statistical software
(Bell et al. (2006)). Instead, the FDA rightly sup-
ports good software validation that produces a “level
of confidence” in the results. Further, the choice of
statistical software should not alter the results (Bell
et al. (2006)). Given the growing complexity of sta-
tistical software, this appears to imply that identical
(or possibly similar) analyses using two or more dif-
ferent software applications may be needed to help
provide such a level of confidence. Of course, such
“level 1” validation exercises may not be considered
sufficient for many statistical analyses subject to reg-
ulatory oversight. For a discussion of unmet software
needs for industrial statistics, see the authors’ tech-
nical report, Peterson et.al. (2009).

The Changing Role of Statisticians

As the foregoing discussion makes clear, the uti-
lization of statistical thinking and methods has made
significant contributions to the success of the phar-
maceutical industry. Undeniably, statistical methods
now play an integral part in the industry—in discov-
ery by chemists and biologists, in drug development
and manufacturing by chemists, engineers, and phar-
maceutical scientists, and in regulatory compliance
and quality control.

Vol. 41, No. 2, April 2009

But what of statisticians themselves? Certainly,
they have played a major role in providing the in-
frastructure as well as in solving important problems
and expanding the use of statistics in the pharmaceu-
tical industry. However, as statistical thinking and
methods become even more critical for success in
the industry, statisticians will need to acquire new
skills, particularly leadership skills, to move from
their traditional role as passive advisor to a more
dynamic role as creator of value. Statisticians in the
pharmaceutical industry can provide leadership in
three basic, and synergistic, areas: (i) within their
own company, (ii) within the pharmaceutical indus-
try (e.g., the Pharmaceutical Research and Manufac-
turers of America (PhRMA)), and (iii) in collabora-
tion with statisticians at the FDA (e.g., the annual
FDA /Industry Statistics Workshop).

From Consultant to Collaborator to Leader

As statistics originally evolved with scientific
management, statisticians became highly specialized
functionaries in large organizations. They analyzed
data that other people had created and passed along
their analysis to engineers and business leaders who
used the analysis in making decisions. In the phar-
maceutical industry, as in other industries, statisti-
cians first served in that consultative role, typically
working one-on-one with internal “clients,” design-
ing studies, analyzing data, and providing training.
They provided methods for data collection, strategies
for design of experiments, and provided guidance on
the most effective use of the concepts, methods, and
tools of statistics. When statistical software emerged,
they added that expertise to their portfolios.

A confluence of several powerful trends in recent
years is requiring new roles for the statistician. First,
the internet now makes many data sets accessible
to anyone instantly, undermining the statistician’s
“ownership” of data. Second, the ubiquitous com-
mercial statistical software described above enables
nonstatisticians to perform many of the statistical
operations that were formerly the province of spe-
cialists. Third, statistics classes are now common-
place in academia, including in business, engineer-
ing, economics, and social-science curricula; and the
widespread use of statistics-intensive methodologies,
like Six Sigma, has provided mass statistical training
for nonstatisticians in many organizations.

But more positively, and perhaps most impor-
tantly, pharmaceutical industry scientists and engi-
neers began to recognize the value that statisticians
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TABLE 4. Expanded Role of Statisticians

Consultant (Old)

Leader (New Expanded)

Analyze data and design experiments
Teach statistical tools

‘Work with technical people

Consult on other people’s projects
Narrow expertise and accountability
Follow simple regulatory guidelines
Reactive

Determine the appropriate strategy and approach

Design training systems, coach, mentor, and train

‘Work with managers and gechnical personnel

Lead cross-functional projects

Broad expertise and accountability

Collaborate with regulatory agencies to influence new guidance
Proactive

could provide. As statisticians were assigned to more
and more project teams, their role changed from con-
sultant to collaborator. They made unique contribu-
tions in their capacity as the primary interpreters
of data, guiding interpretation and determining the
most effective use of tools and methods. Today, in
many industries, statisticians serve as team leaders,
providing guidance and oversight of programs from
beginning to end. While this role is less common in
the pharmaceutical industry, it is 2 model that can
work effectively and should be considered.

New Skills Needed

One index of the increasing value that the indus-
try places on statistical methods may be found in the
number of industry organizations devoted to address-
ing statistical issues. Those organizations include:

o PhRMA Chemistry, Manufacturing, and Con-
trol (CMC) Statistics Expert Team comprised
of ~30 statisticians from ~20 PhRMA member
companies;

o Informal Nonclinical Statistics Forum, a collo-
quium of nonclinical statistical managers who
meet yearly to share experiences;

e Midwest Biopharmaceutical Statistics Work-
shop and the FDA/Industry Statistics Work-
shop, which has been including an increas-
ing number of CMC-related statistics topics on
their program list.

The role of statistics and statisticians will grow
even more central as regulators move toward the risk-
based approach to compliance embodied in PAT and
QbD. With the door thus open for even broader and
deeper use of statistical thinking and methods, in-
dustry statisticians and their employers will need not
only to rethink their technical skills but also to learn
to deploy PAT and QbD. As statisticians take on
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their expanded roles, they .will need to expand their
skills dramatically (See Table 4).

Many of these leadership skills are new to statis-
ticians, and they will have to work to acquire them
(Snee and Hoerl (2004)). Other new skills may play
into some of the traditional strengths of statisticians.
Among the most important leadership skills are the
following:

o Effective leaders not only know how to lead,
they also have substantial business and regula-
tory knowledge. In their new role, statisticians
will need to understand how business works in
general, how it works in the pharmaceutical in-
dustry, and how it works specifically for their
companies. They will therefore need to under-
stand strategic planning (the process for arriv-
ing at change objectives) and strategic deploy-
ment (the process of implementing strategy).

o Leaders are comfortable with process and sys-
tems thinking. In many ways, this is the eas-
iest aspect of leadership for statisticians. Af-
ter all, improving the way work gets done in-
evitably entails improving processes. Statisti-
cians, steeped in analytic rigor, are uniquely
positioned in that regard. Because leaders are
also familiar with the proven, structured im-
provement methods, such as Six Sigma or
Lean Sigma, that provide the practical means
for improving processes, statisticians have a
head start in these statistics-intensive methods.
Statisticians are also most strongly positioned
to develop sound statistical approaches and co-
gent quantifications relative to ideas put forth
in new regulatory guidance documents, such
as the “design space” concept. But it should
be remembered that those methods also in-
clude such management and leadership skills
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as project selection, project management, and
results-tracking with clear metrics and mile-
stones.

o Leaders possess.the so-called soft skills in abun-
dance (Snee (1998)). To be real leaders of crit-
ical projects, statisticians.must know how to
create stakeholders in a project, including those
executive stakeholders and champions who are
necessary for success. They must become adept
at reviewing, coaching, and communicating.
They must understand group dynamics, know
how to lead teams, and know how to design
and facilitate meetings. Projects, no less than
grand strategy, require vision and direction for
success. Statisticians must not only know how
to set such direction but also communicate it
concisely and clearly to their teams. In addi-
tion, they should be adept at removing barri-
ers, like insufficient resources, lack of training,
and inadequate time, that impede success. And
they should remember some of those barriers
lie in people’s psyches—especially in their fear
of change—and that the best way to overcome
them is through coaching and counseling, not
criticism.

‘With these leadership skills, coupled with tech-
nical expertise, statisticians should be ideally posi-
tioned to help deploy new risk-based compliance ini-
tiatives, to show their organizations where statistical

methods can create value, and to create and sustain

statistically driven continuous improvement with the
aim of cutting costs, speeding time to market, and

Half Normal Plot

Half normal probability (%)

Effect

lightening regulatory burdens. The challenge is con-
vincing others that statisticians are capable of being
in these leadership positions. In a sense, current lead-
ers are being asked to allow some newcomers into the
game. This is not easy.

Pharmaceutical Case Studies

The four case studies discussed below provide a
small sample of the types of problems encountered
in the development and manufacturing of pharma-
ceuticals.

Case 1: Improving Yield for a Pharmaceutical
Synthesis

As described in Aggarwal (2006), the yield from
the synthesis of a small-molecule pharmaceutical (the
API) was lower than desired (~40%). The labora-
tory decided to optimize the process using DoE. In
a sequential experimental design, the initial design
(a full factorial) was used to screen for significant
factors. A follow-up experiment (a response surface
study) was performed over the appropriate region to
optimize the process, using factors suggested by the
initial experiment. The factors studied in the screen-
ing experiment are illustrated in the following half
normal plot of experimental results (Figure 5).

Solvent volume, the catalyst loading, and reaction
temperature were clearly identified as having an im-
pact on yield. Interaction ‘plots (Figure 6) revealed
some of the nature of the effects.

The labs used this information to generate a re-
sponse surface design (a face-centered central com-

A =Volume

B = catalyst

(C = base; no significant effect)
D = temperature

(E= time; no significant effect)

FIGURE 5. Half-Normal Plot of Effects from Pharmaceutical Synthesis Experiment.
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Volume/Temperature Interaction
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F!GURE 6. Plots for Volume~Temperature and Catalyst~Temperature Interactions.

posite design, to avoid setting levels in excess of the
capability of the reaction), using the factors identi-
fied in the screening design. The labs also hoped to
discover how to manage catalyst load using some of
the other factors because the catalyst was expensive.
The resulting response surface revealed that yield
could be optimized with increases in temperature and
solvent volume, while the amount of catalyst could
be decreased due to the synergistic impact of these
two factors. Final yields were confirmed to be in ex-
cess of 90% compared with average yields of approx-
imately 40% that were observed prior to employing
DoE. Thus, the lab doubled its capacity, while saving
in cost by using less catalyst.

Case 2: Leadership for Design-Space Issue

As stated previously, the new regulatory concept
of “design space” involves creating a multidimen-
sional process capability region that has been demon-
strated to provide “assurance of quality”. Recently,
in a large, multinational pharmaceutical company,
various scientists (process chemists, pharmaceutical
scientists, chemometricians, etc.) were meeting to
formulate ideas about how to develop an approach to

Journal of Quality Technology

design-space construction within their company. See-
ing this as an opportunity, some statisticians within
the company decided to develop a probabilistic risk-
based approach to design-space construction to ad-
dress, in particular, the need to demonstrate “assur-
ance of quality” as required by the ICH Q8 guidance.

The statisticians involved (in both the United
States and Europe) worked together as an infor-
mal team and separately as individual consultants
and members of matrix teams to formulate and
build example Bayesian design spaces as defined in
(1) in the Emerging Statistical Methods section.

‘This approach was applied to problems in both

(small-molecule) pharmaceutical and biopharmaceu-
tical projects. Some prototype programs were written
in R and SAS/IML, and then data from experiments
were analyzed and presented to scientists and their
management. Some external presentations and pa-
pers were generated. Eventually many in-roads were
made to acceptance by the company scientists of this
creative formulation of a design space. A simplified
example of one of their reliability-based design spaces
is shown in the probability surface plot in Figure 7.

Further progress toward company-wide accep-
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FIGURE 7. Reliability Contour Plot (See Level Scale on Right). The elliptical region in white is a prototype design space.
This region has higher relative probability of simultaneously meeting all product-release specifications as a function of the
temperature and catalyst factor levels. (Plot obtained from Stockdale and Cheng (2009). Used with permission from the

Association for Quantitative Management.)

tance is still ongoing. Some future hurdles remain
(e.g., addressing functional data). A definitive mea-
sure of success would be for such a design space to be
submitted by the company, approved by regulatory
authorities, and implemented in the manufacturing
plant.

Case 3: Validation of a Complex Tedious
Biological Assay

Validation of biological assays, particularly assays
using large numbers of animals, is a tedious and ex-
pensive prospect. It’s particularly important, as well,
to make sure that a minimum number of animals are
utilized for these purposes. An animal potency as-
say was developed for a vaccine product that uses
120 animals per run and takes 6 weeks to perform.
The challenge was to obtain the maximum amount
of information with minimum use of mice and time.
The laboratory chose to include an assessment of
the product distribution together with the assay val-
idation and thereby gain valuable information about
both assay and product variability. Ten lots of prod-
uct were strategically identified, which were manu-

Vol. 41, No. 2, April 2009

factured across a range of processing conditions, in

vorder to best simulate the product distribution. Each

lot was assayed twice in the bioassay, in a manner
that would allow for independent estimates of inter-
run variability throughout the experiment using the
design shown in Figure 8.

A reference (Ref) was included in each run to cal-
ibrate bioassay results, while a clinically relevant lot
(Clin) was included in order to set a specification
for commercial materials tested in the bioassay. The
reference was tested in duplicate in order to derive
a criterion for “parallelism” in the bioassay accord-
ing to Hauck et al. (2005). The validation results are
illustrated in Figure 9.

Excellent precision was observed between replicate
runs of the bioassay for all lots, while commercial ma-
terials performed as well as or better than lots tested
in clinical trials (POC Lots 1-3 in Figure 9). The pre-
cision estimated from these data was used together
with a minimum threshold to derive a release po-
tency limit for lots of commercial material according
to Apostol (2008).
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Run
1 2 3 4 5 6 7 8 9 10
Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref
Lot 1l Lot 1 Lot 2 Lot 4 Lot 4 Lot 5 Lot 7 Lot 7 Lot 8 Lot 9
Lot 2 Lot 3 Lot 3 Lot 5 Lot 6 - Lot 6 Lot 8 Lot 9 Lot 10 Lot 10
Clin Ref Clin Ref Clin Ref Clin Ref Clin Ref

FIGURE 8. Design for Biological Assay Validation.

Ca;se 4: Regulatory Action and Use of
Statistical Methods

A brief conceptualized version of a recent incident
illustrates the leverage exercised by regulatory au-
thority. A pharmaceutical company manufactures a
tablet with two active ingredients. One of the ingre-
dients is present in a very small absolute amount
by weight. Small absolute deviations in the actual
weight of this ingredient produce large relative (per-
cent) deviations from the targeted dosage. As with
most drug products, the specifications for this active
ingredient are expressed as an allowable range of per-
centage of target dose. These ranges are typically 90
to 110% of target dose.

More important for this discussion, the manufac-
turer is required to report all OOS events to the
FDA. These events are monitored and the agency has
a series of escalating remedies to enact. Early among
these is the right to send inspectors to the manu-
facturing facility at any time, announced or unan-
nounced. The inspectors must have a stated purpose,
but once an inspection begins, their audit trail may
lead in many directions, particularly if irregularities
are encountered along the way. In the example here,
a series of OOS lots of product occurred over the
course of a number of months—not every. lot failed,
but there were enough failures to cause notice. The
facility was inspected; the OOS reports were audited,
and the conclusion was reached by the FDA that the
manufacturer did not understand the root cause of
the failures and was therefore presenting an unmiti-
gated risk to the public. Note that this is not a case
of direct contamination or of an immediately harmful
level of active ingredient. The regulator was princi-
pally concerned about the lack of apparent under-
standing demonstrated by the manufacturer.

The manufacturer’s responses to the regulatory
concerns were deemed unsatisfactory and the FDA
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determined to use its ultimate stricture—seizure of
product at the manufacturing site. Federal marshals
entered the manufacturing site and seized all lots of
the particular product. Manufacturing of the prod-
uct was halted. The FDA appointed a third party
“monitor” to oversee the investigation of root cause,
the implementation of process changes, and the as-
sessment of new manufacture postimprovement. The
third-party monitor was hired at the expense of the
product manufacturer. Additionally, the manufac-
turer was required to post a substantial bond that
would be forfeited in the event of insufficient cooper-
ation and progress.

Where were the statisticians? The ultimate ques-
tions in this incident regarded patient safety. One
slightly underdosed tablet may not be harmful, but
when a medicine is taken daily to treat a chronic
ailment (e.g., asthma or diabetes), the potential
long-term effects are of chief concern. Therefore,
the statisticians were asked to calculate probabili-
ties such as, “How many defective tablets were likely
to occur in a monthly supply of 307” or “How many
defective tablets might a patient obtain in a year’s
supply?” These probabilities depend on the failure
rate in the manufacturing process. The underlying
statistical questions then become “the best estimate
of the tablet failure rate” and “the upper bound on
the failure rate.” The data suggest that the tablet
failure rate, w, varies from batch to batch. Binomial
mixture models are suggested, where « is a random
effect associated with variations in the set-up, inputs,
and conditions of each manufacturing run.

In terms of uncovering root causes for the fail-
ures, a primary question is “When did the problem
begin?” This means extensive examination of time-
series manufacturing data. An element of statisti-
cal interest is that the batch sizes vary and range
from hundreds of thousands to millions of tablets,
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FIGURE 9. Results for Biological Assay Validation Study. (Note: run 4 of the design was repeated due to a performance
issue related to the duplicate of the reference; thus, three replicates of lots 4 and 5 appear in the figure.)

and the number of tablets sampled from batches also
varies—ranging from 20 to a few hundred. Control-
chart techniques were heavily utilized. In addition, a
variety of graphical techniques, including box plots
and cusums, were helpful in explaining statistical
conclusions to both regulators and company senior
managers. Identification of a starting point allowed
the manufacturer to identify process changes or inci--
dents that occurred in the specified time frame. This
generated hypotheses regarding ultimate causes. The
statisticians were again involved in helping design ex-
periments that would test those hypotheses. Resolu-
tion and prevention were largely engineering consid-
erations. However, an extensively revised monitoring
system was put in place—again with heavy emphasis
on the use of control-charting techniques, including
appropriate training and interpretation. Ultimately,
the manufacturer was successful in reinstating their
product in the marketplace.

Summary

Throughout most of the 20th century, pharmaceu-
tical regulation was largely a matter of reactive leg-
islation, but this century has seen the rise of science-
based regulatory initiatives, including ICH guide-
lines on pharmaceutical development, pharmaceuti-
cal quality, the pharmaceutical quality system, and
the FDA’s guidance on Good Manufacturing Prac-
tice (GMP), Process Analytical Technology (PAT),
and Quality by Design (QbD). These initiatives have
brought a new emphasis on process understanding
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and quality and the use of statistical methods for
both. These regulatory trends, as well as the in-
herent complexity of pharmaceutical manufacturing,
economic pressures, and the increased need for tech-
nology transfer, will continue to accelerate the in-
dustry’s need for sophisticated, statistics-driven ap-
proaches to quality and process understanding as
well as the statisticians to apply them. '

Today, pharmaceutical development, following
the discovery of an active pharmaceutical ingredi-
ent (API), typically proceeds along several paral-
lel paths, each requiring particular statistical tech-
niques. These tools and statistical methods in-
clude Design of Experiments (DoE), screening ex-
periments, optimization studies, regression mod-
eling, process optimization, and robustness stud-
ies. Analytical-method development employs such
tools as analysis of variance (ANOVA), variance-
component studies, method ruggedness studies, and
basic statistical techniques, including graphics. In
manufacturing, statistical process control (SPC) is
used extensively to monitor and improve processes.
Statistical techniques found in Six Sigma, Lean Man-
ufacturing, PAT, Design for Six Sigma, and QbD are
also increasingly being used to improve processes.

The FDA’s encouragement of the pharmaceutical
industry to achieve better-understanding of manufac-
turing procésses and to quantify the risks associated
with out-of-specification product has widened the set
of statistical tools to include the use of multivari-
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ate mathematical approaches, such as response sur-
' - face methodologies, process simulation, and pattern
recognition tools, in conjunction with knowledge-
management systems. These emerging statistical
methods are also driving the development of more
powerful commercial statistical software, which is
enabling nonstatisticians to do their own statisti-
cal analyses. Information technology is also making
contributions to data mining, database management,
and knowledge management, increasing the indus-
try’s interest in “enterprise” statistical software that
can be used across an organization. ‘

As statistical thinking and methods become even
more critical for success in the industry, statisticians
have begun to move from their traditional role as
passive advisor to a more dynamic role as creator
of value. Their role is becoming even more central
as regulators move toward the risk-based approach
to compliance embodied in PAT and QbD, requiring
industry statisticians to rethink their technical skills,
learn to deploy PAT and GQbD, and acquire new lead-
ership skills commensurate with the increased impor-
tance of their discipline within the industry. With
those new skills and methods, they can become cat-
alysts for both process-development understanding
and product-quality improvement.
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Key Abbreviations and Acronyms (Continued )

Appendix
Key Abbreviations and Acronyms
Abbreviations/
acronyms Meaning
'API Active pharmaceutical ingredient
cGMP Current Good Manufacturing
Practice
CMC Chemistry, manufacturing,
and control
DCU Dose-content uniformity
EMEA European Medicines Agency
FDA Food and Drug Administration

Journal of Quality Technology

GMP Good Manufacturing Practice

ICH International Conference on
Harmonisation

LC , Label claim

LOA Limit of agreement

NDA New drug application

00S Out of specification

PAT Process analytical technology

PhRMA Pharmaceutical Research and
Manufacturers Association

QbD Quality by design .

QC Quality control

RSD Relative standard dSeviation

USP United States Pharmacopeia
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Discussion

ROGER W. HOERL
GE Global Research, One Research Circle, Niskayuna, NY 12309

wouLp first like to thank the authors for writing
this article and the editor for inviting me to com-
ment on it. The authors have provided a window into
the world of statisticians working in the pharmaceu-
tical industry, beyond the scope of the clinical trials
that we typically think of in pharma. They have made
a clear case that statistical thinking and methods are
just as integral outside of clinical trials as they are in
them, and for this I would like to thank them.

Irom reading their paper, it is clear that this is
a time of significant change in pharma, especially as
it relates to statistics and statisticians. We therefore
have a unique opportunity to expand our roles and
become even more value adding to this industry. For
example, the authors imply that the FDA is driving

much of the change that is occurring today, especially .

that change related to better understanding of man-
ufacturing processes. This is a good thing from the
FDA, but begs the question of why the statistical
community is following the FDA rather than lead-
ing it. Of course, in a regulated industry statisticians
cannot dictate to the FDA, but I would hope that, in
the future we could play a larger role in proactively
influencing their thinking toward more modern, sci-
entific approaches that have proven to be effective
outside of pharma. As noted by the authors, new
skills will be needed to assume this proactive role, as
opposed to the more passive consulting role we have
traditionally sought.

The authors also noted that the commercial statis-
tical software widely available today allows scientists
and others to perform many of their own analyses.
This is certainly true and I think provides us with
another opportunity. We can no longer “own” statis-
tical methods, and that is a good thing, I think. For
example, I have found the massive statistical training
at GE that has occurred through its Six Sigma ini-
tiative to be liberating to professional statisticians.

Dr. Hoerl is Manager of the Applied Statistics Laboratory
at GE Global Research. He is an ASQ Fellow. His email ad-
dress is hoerl@crd.ge.com.

Vol. 41, No. 2, April 2009

135

‘We no longer have to spend time doing routine analy-
ses or explaining to our peers why you divide by n—1
instead of n. Rather, with people able to do,the ba-
sics for themselves, we are freed to tackle the bigger
and more challenging unsolved problems where our
advanced expertise is truly needed. This allows us to
have greater impact on the organization and provide
greater value to the bottom line.

There are several indications given by the au-
thors that we need to move quickly to establish more
proactive, leadership roles for statisticians working in
pharma. This is because, based on this paper at least,
it appears the industry is lagging other industries
in the United States in the areas of modern quality
management and also in expanding the application
and influence of statistical methods. For example, in
their discussion of developments in the 21st century,
the authors note: “Process development and manu-
facturing issues have only come to the forefront with
recent FDA initiatives.” Such topics have been the

- focus areas of the statistics profession in electronics,

chemicals, and many other applications for years.

As noted previously, this begs the question of why
we waited for the FDA to assume leadership and
mandate us to develop our processes? Why didn’t
we, the statistics community, see the need for this
and make a convincing case to our own management
and the FDA for the overall benefit of process devel-
opment and manufacturing excellence, relative to the
investment required? Government regulations have
certainly helped our profession in important ways,
such as mandating statistically-based clinical trials
and analysis. However, I am concerned that they
have also slowed our progress, at least to some degree,
in that we may have focused too much on meeting
existing regulations rather than being proactive and
pushing for improvement.

The regulatory action case study would seem to
add credence to this point. Insufficient efforts had
been made to understand the process, resulting in the
FDA seizing product at the manufacturing site. As
noted by the authors, “The regulator was principally
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concerned about the lack of apparent understanding
demonstrated by the manufacturer.”

As another example, the role of statisticians in Ta-~
ble 3 is listed as “statistical support”. The authors
note in the section on the Changing Role of Statisti-
cians that we need to be moving from passive “sup-
port” roles to being equal collaborators, and even-
tually to being organizational leaders. I wholeheart-
edly agree. However, in the same case study, we read:
“Resolution and prevention were largely engineering
considerations.” Engineers should certainly have a
role in resolution and prevention of these manufac-
turing problems, perhaps the largest role. I would
hope, however, that as equal collaborators statisti-
cians would also have an important role. The engi-
neers bring more subject-matter knowledge, but we
bring better understanding of the scope and limita-
tions of data analyses, as well as how to verify that
prevention has actually been achieved.

In terms of quality managemerft, the systems out-
lined in the Quality Control section seem to be pri-
marily inspection based. Moving from product in-
‘spection to process control and process design was
one of Deming’s main points going back to the 1950s
and 60s. Much of American industry has begun this
journey, and while no one is so good at design and
control that they don’t need to think about checking
the product, it would be fair to say that most indus-
tries have a strong focus on process design and con-
trol. Continuing to expand the focus in pharma to
include process design, process understanding, and
process control, as noted by the authors, needs to
happen rapidly, to enhance public safety and also to
bring down costs.

1t is particularly disappointing to hear from the
authors that the current system in pharma provides
little incentive for continuous improvement and, in
fact, some disincentive. The needs for regulatory ap-
proval for process changes and the risks associated
with changes that do not work are real and must
be considered. However, in other industries, even in
regulated ones such as the food industry, statisticians
have often been able to create a culture of continuous
improvement, in conjunction with enlightened man-
agement (which doesn’t have to be an oxymoron).
‘While we can’t create such an environment on our
own, we shouldn’t use this fact as an excuse and wait
for someone else to initiate changes. Leadership is a
choice.

As we think about our path forward as a profes-
sion in pharma, I would like to highlight the three
arenas mentioned by the authors where we can and
must show more leadership going forward. These are
within our own companies, within the pharmaceuti-
cal industry, and in collaboration with statisticians
at the FDA. I completely agree with the authors that
within our own companies we need to take the initia-
tive to exhibit more leadership behaviors, waiting for
someone to stop us, rather than waiting.for someone
to ask us to lead. If we wait until we are asked to lead,
we will be waiting a long time, I'm afraid! However,
if we begin to proactively exhibit leadership by pro-
moting modern approaches to process development
and quality management, we will be helping our or-
ganizations be more competitive and may even catch
management’s attention along the way. We simply
can’t afford to wait until the FDA mandates contin-
uous improvement.

Because driving organizational change can be so
difficult and because there are industry-wide regu-
lations to consider, it is also important for us fo
show leadership within the pharmaceutical industry
as a whole, so that it can speak with one voice and
drive broader change across the industry. The Phar-
maceutical Research and Manufacturers of Amer-
ica (PhRMA) is one example of an industry-level
organization within which statisticians can provide
greater leadership, particularly in the area of pro-
moting modern approaches to process development
and control.

Eventually, we need to be working with FDA
statisticians to determine the direction for change
that will enhance both the cost and safety of phar-
maceuticals. Rather than waiting for the FDA to de-
termine what steps are needed, we should be taking
the initiative to reach out to them and partner to
develop the statistical approaches and methods that
will be needed in the future. I would suggest that
this partnership focus not only on statistical tech-
niques per se, but also look at the broader question
of how existing statistical technology can be best uti-
lized for broad, organizational improvement. That is,
1 suggest we also research how to best integrate the
available tools in our tool kit into overall strategies
for improvement in pharma. I strongly believe that
this broader, more holistic approach will provide sig-
nificant value to both our organizations and society
as a whqle.
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Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285

wouLD like to thank the authors for an excellent
overview of the use of statistics in the pharma-
ceutical industry in the area of chemistry, manufac-
turing, and controls (often referred to as CM&C).
The stated goal of the article was to provide an
overview of the use of statistical thinking and meth-
ods in the R&D and manufacturing functions of
the pharmaceutical industry, and the authors clearly
achieved this objective. The authors covered a great
deal of ground in their paper and my discussion will
focus primarily on the future opportunities and chal-
lenges for CM&C statisticians, some of which were
mentioned by the authors and a few others that were
not discussed.

Themes for the Future

I would like to focus my discussion on themes for
the future for CM&C statisticians. Many factors have
and will continue to change the role of the CM&C
statistician in the decade ahead. In reviewing the
list, many, if not all, of these factors are likely simi-
lar challenges faced by many industrial statisticians,
with some unique aspects linked to pharmaceuticals.
A few of the most important factors I see facing phar-
maceutical CM&C statisticians in the coming years
include: ' :

e the increasing use of PAT technology, result-
ing in the generation of large amounts of data
yearning to be deciphered and converted into
essential learning to reduce the cost of develop-
ment for similar molecules or platforms and to
improve the quality of manufactured pharma-
ceuticals,

the increasing use of cross-functional teams of
formulators, chemists, engineers, chemometri-
cians, and statisticians collaborating to design,
aggregate, and analyze data to identify fun-
damental relationships that can be leveraged
across multiple compounds to speed the devel-

Mr. Hofer is a Research Advisor. He is a member of ASA
and ASQ. His email address is jhofer@lilly.com.
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opment process and improve processes. These
fundamental learnings are often referred to as
prior knowledge or institutional learning and
will become a key focus area of interest at many
companies in the coming years, if it is not al-
ready occurring, ‘

o the increasing prevalence of outsourcing aspects
of development and manufacturing,

e improvements in the availability and capabil-
ities of user-friendly software to facilitate so-
phisticated analyses,

o the challenge of defining requirements for
CM&C quality attributes that ensure accept-
able product performance,

developing and obtaining clear agreement
among all parties involved on the interpretation
of specification acceptance criteria for analyti-
cal properties,

o the development of more definition around the
target level of assurance of quality within a de-
sign space, and

the need for statisticians to continue to increase
their leadership both internally and externally
on Rey issues.

A brief discussion of each of these factors is provided.

As highlighted by the authors, the use of pro-
cess analytical technology will increase the amount
of data and also change the type of data that are en-
countered by industry statisticians. The data will be
multivariate in nature and may also be time series in
nature. One of the key goals of looking at data of this
type will be data compression and the ability to de-.
velop models to identify and quantify the underlying
relationships that exist between the responses of in-
terest and the latent variables or fundamental mate-
rial properties that are identified as the variables for
reliable prediction. Statisticians should look to col-
laborate with formulators, analytical chemists, engi-
neers, and chemometricians as spectroscopic calibra-
tion models are developed and validated allowing for
rapid assessment of one or more analytical properties

www.asq.org



138 JEFF HOFER

on large quantities of individual dosage units. The
experimental design outlining what types of batches
to include in the model-building process, the evalu-
ation of the partial least-squares model-building op-
tions, and the development of the product-control
strategy for the implementation of this technology
are key areas where statisticians can contribute to
the project team and ensure efficient model develop-
ment and successful registration.

Another area where statisticians can contribute
to key initiatives is in the collaboration toward the
development of predictive models based on material
attributes combining data across many compounds
that use the same manufacturing platform. Similar to
spectroscopic model building, the ability to work con-
structively on multidisciplinary teams will become an
essential skill set for this endeavor. The goal of this
effort is to generate prior knowledge that can be used
to reduce the development time for new compounds.
For successful completion of this activity, the ability
to define and manage large data sets and combine
and collectively model data from compounds using
the same manufacturing platform will be necessary.
The efficient use of experimental design techniques
and multivariate data analysis will be the statistical
tools of choice. Once again, the statisticians will ben-
efit greatly by collaborating with chemometricians
and engineers on the interpretation of the analysis
results. If it is possible to build reliable models, devel-
opment timelines may be reduced as optimal process
conditions may be rapidly predicted with a few trials
by using the prior knowledge of those projects that
preceded it. Both technical and non-technical skills
(e.g., influence) will be necessary to most effectively
contribute to these large efforts.

As more and more companies outsource various

aspects of development and manufacturing, the abil-
ity to work with third parties will increase in impor-
tance. The ability to define the essential data that
must be generated and the data-format requirements
will be important aspects for statisticians to rapidly
support projects and collaborate with teams to ef-
‘ficiently identify the best formulation and process
conditions. In manufacturing, the ability to create
tools to obtain, analyze, and summarize third-party
results as efficiently ds possible will be key produc-
tivity enhancements that can minimize the impact of
third-party manufacture and allow for rapid decision
making.

In all situations, a key area for CM&C statisti-
cians to focus on is the ability to concisely and clearly
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convey the results of their analysis to a wide variety
of scientists and levels of management. The data-
analysis methods will likely become more complex
but it will be important to explain the findings in a
manner that all parties can understand the benefits
and what limitations, if any, exist for the models. An
emphasis on good presentation skills will be an im-
portant aspect for success for statisticians and should
not be overlooked as the nature of the data analysis
becomes more complex.

The need for user-friendly software (in particular,
multivariate and that related to the concept of design
space) will be very important. The ability to easily
manage the data and the capability to produce clear
visualizations of the analysis results and sensitivi-
ties will be important considerations as these tools
become more commonly used. Given the highly reg-
ulated nature of the pharmaceutical industry, one of
the key aspects of software use is the ability for com-
mercially available software to have validated built-
in algorithms (such as those discussed in the design-
space discussion) so that its use can be rapidly em-
ployed. The ability for vendors to effectively imple-
ment some of the design-space methodologies out-
lined in the article and other analysis methodologies
(e.g., mixture designs, partial least squares) will be
important to enabling statisticians to effectively col-
laborate with scientists on formulation, process, or
analytical studies. ‘

The authors mentioned that specifications are ide-
ally established based on fitness for use. Currently,
we do not explicitly accomplish this goal. In general,
most acceptance criteria are established more based
on the perceived process capability, based on the data .
provided at the time of submission. By doing so, it
is an attempt to ensure fitness for use by striving for
similarity to past data. An area of opportunity for
statisticians in both development and clinical use is
to develop approaches to determining specification-
acceptance criteria that are more closely linked to
true patient fitness for use. This is not an easy en-
deavor but is very much in line with the FDA goals.
The ability to partner with clinical and pharmacoki-
netics experts in this area is an opportunity waiting
to be tapped.

Another area ripe for resolution is the funda-
mental interpretation of acceptance criteria. This in-
terpretation is currently not consistent among vari-
ous regulatory guidances (reference USP, FDA OOS
Guidance, ICH Q1E, Analysis of Stability Data) and
is an area where logical alignment would facilitate
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rational development of solutions. The bottom-line
question of this issue is “To what do acceptance cri-
teria refer?”, or, put another way, “To what am I
drawing an inference?”

As the authors noted, design-space development
is an area where there is a great deal of opportunity.
Some excellent work has been done in this area, as
pointed out by the authors, and the development or
enhancement of software to facilitate the implemen-
tation of these analysis methods will be necessary to
bring these methods into common practice. The de-
velopment of a clearer definition of the target level of
assurance of the design space will assist in the abil-
ity to more consistently define design spaces from
project to project.

The final theme of the future is that of leader-
ship. Asthe authors correctly pointed out, the role of
the statistician is changing in a positive way. CM&C
statisticians simultaneously provide support across a
wide variety of projects. This allows them to learn
and see trends across compounds and/or platforms.
This luxury is also a responsibility, as it is neces-
sary for statisticians to become leaders in sharing
best practices and driving changes across teams. This
multiproject support and broad overview is one of
the reasons that more is being expected of statis-
ticians beyond just the design and analysis of data
sets. “How can study designs be standardized across
projects? How can study results be generalized? Can
data from multiple projects be combined to find fun-
damental relationships that can be leveraged for fu-
ture projects? Is it cost effective to invest in a new
technology to improve the measurement system for a
key analytical property? What is the most effective
way to present a control strategy in a submission?”

_ These are important questions that statisticians are
well positioned to answer and we must be willing to
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step up and take on these challenges. In some cases,
there may not be a clear solution but a sound me-
thodical investigation into the possibilities is neces-
sary and many of the skill sets we possess will be
called on in the evaluation.

Concluding Thoughts

Once again, I would like to thank the authors
for an excellent summary of the general drug-
development process and the breadth of areas and
types of data analyses supported by CM&C statis-
ticians. The document highlights the exciting times
that lie ahead for those statisticians willing to flex
with the changing tide and learn new skills. The need
for leadership by CM&C statisticians is paramount.
Moving forward, more and more data will become
available for analysis and the ability of the statisti-
cian to collaborate with scientists and leaders in de-
ciphering and applying the relationships uncovered
will be essential to improving the efficiency of both
the development and manufacturing processes. The
decade ahead will be full of opportunities for CM&C
statisticians—it will be incumbent on us to be proac-
tive and seek out unique ways to have a positive im-
pact on improving the quality of information gener-
ated and reducing the time to develop such informa-
tion. For those graduate statistics students looking
for a challenging and rewarding career, the area of
industrial statistics.in the pharmaceutical industry
should be one that is considered, as many opportu-
nities exist for talented and dynamic statisticians.
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LYNN TORBECK
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P]IiHE AUTHORS are to be commended for an excel-
lent paper that will serve as an introduction and
overview of current statistical quality control in the
pharmaceutical industry. It will be a valuable refer-
ence for statisticians new to the industry and for sci-
entists, engineers, and managers taking on statistical
leadership. The following discussion supports the ar-
ticle and presents more specific issues and topics for
further consideration.

The quality of most consumer products is readily
apparent upon inspection by the buyer. Thus, the
voice of the customer is available for the company to
use for improvement. The quality of a pharmaceuti-
cal product is more difficult to determine. Who is the
customer? The patient cannot, for the most part, de-
termine if the pill taken is of high quality. Given that
the placebo effect is almost one third for some situa-
tions, getting better is not proof of efficacy. This has
lead to increased counterfeiting of drugs. The fact is
that few people know if the drug product is of high
quality. The patient doesn't know, the pharmacist
doesn’t know, and the doctor doesn’t know. They
all assume it is. Only the manager of the quality-
control analytical laboratory really has the informa-
tion at hand to determine if the product is fit for use.
Coupled with the ever needed and thankfully present
regulations and agency inspections, quality control of
pharmaceutical products is clearly not the same as
making toaster ovens. While activities like process
validation are done at nonpharmaceutical companies,
it is required for our industry. As is corrective action
/preventive action (CAPA) for out-of-specifications
(OO0S) results. Other examples abound. Our activi-
ties and statistics should reflect the differences of our
industry.

While the industry is moving forward with new
and advanced statistical tools, as noted in the arti-
cle, we need to assure that the simple tools are still
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ASA and a Senior Member of ASQ. His email is Lynn@
Torbeck.org. .

Journal of Quality Technology

being used correctly. Hundreds of small and midsized
pharmaceutical companies do not have statisticians
or statistically trained engineers and are in need of
industry and agency assistance in doing simple rou-
tine statistics correctly. Regulatory agencies assist by
enforcing the requirements for training. For exam-
ple, many quality-control staff members routinely use
attribute- and variables-sampling plans for incoming,
in-process, and outgoing inspection. But they have
never been trained in the theory of sampling, design,
or the correct implementation of the plans. They are
expected to learn it on the job, often by just read-
ing a standard operating procedure. One can only
guess the number of lots that have been rejected that
were acceptable or the number of lots that were unac-
ceptable but shipped. Even the act of data collection
needs to be carefully monitored. Once a sample has
been taken from a batch, there is no way to know
if it is truly representative. Only by watching the
sample being taken can assurance be made. Detailed
standard operating procedures are needed to support
this. '

According to available information, OOS results
still are a major source of regulatory citations and
recalls. Industry statisticians need to join forces with
the agencies to codify scientific and statistically valid
approaches to determining specification criteria that
reflect the actual medical and manufacturing situa- °
tions. Wishful thinking by any party doesn’t serve
the patient or change the process. As an example,
Bergum’s method (1990) can give real insight to
meeting criteria for as many as 14 USP tests that
have multiple criteria.

ICH Q9 on risk management has as its core con-
cept the risk to the patient. It does a good job of
discussing risk management but surprisingly doesn’t
discuss the risk to the patient for type II or beta er-
rors. It also doesn’t-discuss the “consumer” risk for
the limiting quality (LQ) for sampling plans. This
should be part of the discussion on setting specifica-
tion criteria and determining sample sizes for testing.

The authors are to be commended for raising the
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topic of designed experiments in general and mech-
anistic models specifically. The industry should look
more closely to teaching and implementing mecha-
nistic model building. Many scientists and engineers
are put off by the use of generic empirical models, as
they aren’t “scientific” enough. They want to work
from first principles. More journal articles and suc-
cessful case studies are needed.

Statisticians, including this one, said for yearsthat
the square root of n plus one was not a valid sampling
plan because we could not find a statistical author-
ity to reference. Then we discovered that it does in-
deed meet the definition of a sampling plan as given
in ANSI/ASQ Z1.4 (2003), section 9.1. “A sampling
plan indicates the number of units of product from
each lot or batch which are to be inspected (sam-
ple size or series of sample sizes) and the criteria
for determining the acceptability of the lot or batch
(acceptance and rejection numbers).” Further, calcu-
lation of the sample sizes finds them to be very close
to the sample sizes for Z1.4, General Inspection Level
1. Because the OC curves can be calculated as well,
it is a valid sampling plan and can be used with the
same care and caution as any other sampling plan.
Statisticians need to assist in implementing this cor-
rectly.

Statisticians outside of biology, chemistry, and the
pharmaceutical industry are surprised to find the
wide-spread use and abuse of the percent relative
standard deviation, %RSD, better known to statis-
ticians as the coefficient of variation (CV). A statis-
tic that statisticians love to hate, it has a number
of properties that make it less than desirable. Yet,
over the last couple of decades, it has become even
more popular and widely abused. Laboratory ana-
lysts routinely add, subtract, and average %RSD’s
with abandon. It is almost universally used as a re-
placement for the standard deviation; often times for
calculating confidence intervals and t-tests. It is also
widely misinterpreted. For example, a constant RSD
over different levels of concentration is perceived as

not a change in the variability. One can only won- -
der at the number of incorrect decisions as a result.
Given that this abuse is nearly 100%, it is not clear
how industry statisticians can correct it in this gen-
eration.

Another statistical tool subject to.wide-spread
abuse is the sample average plus and minus three
times the sample standard deviation without con-
sideration of the sample size. It is used as a confi-
dence interval, specification setting criteria, looking
for statistical significance, identifying outliers and
other statistical questions. The worst offense is when
non-U.S. regulatory agencies requir‘e companies to
set specification criteria using it with sample sizes as
small as five. The probability of rejecting good lots
in the future can be high. Cpk, with its multiplier
of three, is a related example. This writer has seen
companies accept and reject lots of product based on
Cpk values calculated from small samples.

‘While applied statistics must be pragmatic, it can-
not be incorrect. Good science and good manufac-
turing practice regulations demand that the correct
tools be used correctly for a given problem. Using
%RSD and X =+ 38, as in the above discussion, is in-
correct statistically, particularly so for small sample
sizes. Given the wide-spread abuse, the topics beg to
be clarified. While advanced statistics bring benefits,
the misuse of simple statistics endangers patients.

Conclusion .

To conclude, the authors have presented a well-
written article that is on target for its intended au-
dience. With that as a foundation, we, as an indus-
try, also need to address some of the areas discussed
above.
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E COMMEND the authors’ efforts to document

the historical development of pharmaceutical
quality and manufacturing controls as well as the
statisticians’ past roles and future opportunities in
this area. We recognize that advances in quality
and manufacturing controls are continuously evolv-
ing and, hence, it is difficult to cover all of them.
However, there are three statistical concepts that
play important roles in modern approaches to qual-
ity assessment and control that are relevant to this
paper. The first concept is the shift from accept-
ing a null hypothesis that cannot be rejected to
proper hypothesis testing. This concept is demon-
strated when “proving quality (parallelism, equiva-
lence)” by rejecting the proper null hypothesis in-
stead of “assuming quality (parallelism, equivalence)
because one is not able to prove otherwise”. The
second concept deals with defining quality in terms
of “a high proportion of the product being within
desired specifications” or “a low proportion of the
product being outside the desired specifications” in-
stead of describing quality by “its attribute and
variable measurements in a non-cohesive manner”,
which is currently the approach taken by the U.S.
Pharmacopeia. The third concept relates to achiev-
ing quality control by “understanding the relation-
ship between the finished product and the influenc-
ing factors” instead of only “understanding how the
quality assurance tests relate to the quality of the

Dr. Tsong is a Deputy Division Director and Acting CMC
Team Leader. He is a member of ASA and ICSA. His e-mail
address is yi.tsong@fda.hhs.gov

Ms. Kelly is a senior mathematical statistician. She is a
member of ASA. Her email address is Roswitha.Kelly@fda.
hhs.gov.

Dr. Shen is a senior mathematical statistician. She is mem-
ber of ICSA. Her email address is meiyu.shen@fda.hhs.gov

Dr. Zhong is a mathematica} statistician. She is a member
of ASA. Her email address is jinglin.zhong@fda.hhs.gov.

Journal of Quality Technology

product”. A more detailed treatment of recent im-
provements in statistical approaches to these three
areas may enhance the article. We provide an exam-
ple and 'additional recent references for each concept.

Recent work in the analysis of stability data and
shelf-life estimation provides an example of the ad-
vancement to “proving quality” instead of the his-
torical approach of “accepting quality if the null hy-
pothesis is not rejected”. As early as 1992, Ruberg
and Stegeman (1991) and Ruberg and Hsu (1992)
questioned the efficiency of the conventional poola-
bility test based on “accepting the null hypothesis”
when there was insufficient evidence to show a dif-
ference. Ruberg and Hsu (1992) proposed to pool
batches after demonstrating “equivalence of slopes”.
Although their proposed “equivalence of slopes” was
not considered feasible at that time (Lin and Tsong
(1991)), the research interest of “proving poolability”
continued. Yoshioka et al. (1997) suggested a “shelf-
life equivalence” method, which Tsong et al. (2003)
revised. The latter authors also developed a batch-
pooling method by establishing that all batches have
equivalent content at the targeted shelf life. Liu et
al. (2006, 2007) expanded on the content-equivalence
approach. Djira et al. provided, in 2008, a good sur-
vey and review of equivalence approaches to batch
pooling.

The second concept deals with defining quality
in terms of “a high proportion of the product be-
ing within desired specifications” (or: “a low propor-
tion of the product being outside the desired spec-
ifications”). instead of describing quality by “its at-
tribute and variable measurements in a noncohesive
manner”. Over the past 10 years, such methods have
been seen in the area of specification and sampling
acceptance testing as well as in method-transfer stud-
ies. In specification and sampling acceptance testing,
the conventional approaches were often based on two
criteria, one for variance and one for zero tolerance.

" For example, the U.S. Pharmacopeia XXIV sampling
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acceptance plan is a two-stage sampling plan. In the
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first stage, a sample of 10 tablets is assayed. The lot
complies with the dose-content uniformity (DCU) re-
quirement if dose content of each of the 10 tablets is
within 85%—115% label claim (%LC) and the relative
sample standard deviation (RSD) is <6%. It fails to
comply if more than one tablet has dose content out-
side (85%, 115%) LC or if at least one tablet has
dose content outside (75%, 125%) LC. If the lot nei-
ther passes nor fails at this point, one moves to the
second stage. In the second stage, an additional 20
tablets are randomly sampled and assayed. The lot
complies with the DCU requirement if the dose con-
tent of each of the 30 tablets is within (75%, 125%)
LG, if no more than one tablet has dose content out-
side (85%, 115%) LC, and if the RSD <7.8%. Oth-
erwise, the lot fails the DCU test. This counting rule
is for the fixed sample sizes at the two stages. Hauck
and Shaikh (2001) suggested that the determination
of specification and sampling acceptance procedures
be based on the tolerance-interval approach. Tsong
et al. (2004) also used a tolerance-interval approach
for a multitiered sampling acceptance procedure for
the dissolution test. Further, the notion of an alpha
spending function associated with group-sequential
designs was first mentioned in connection with mul-
titiered sampling acceptance procedures. T'song and
Shen (2007b) proposed a two-tiered sampling ac-
ceptance procedure based on the tolerance interval
where the probabilities of the overfill end and the
underfill end were controlled separately by using 2
one-sided tests (Schuirmann (1987)). An FDA work-
ing group of statisticians and chemists also adopted
the 2 one-sided tests in the acceptance sampling pro-
cedure (Tsong et al. (2008)) for delivery dose unifor-
mity of inhalation sprays and intranasal products.

Traditional assessment of method equivalence has
relied on concordance analysis. In recent years, it
has been recognized that the concordance statis-
tic is not a good measurement agreement between
new and initial methods. More suitable methodol-
ogy focusing on individual measurement agreement
has been developed. First Bland and Altman (1986)
proposed the limit of agreement (LOA) method to
describe the individual agreement between two clin-
ical measurements. In 1999, Bland and Altman ex-
tended the LOA method to more complicated situ-
ations. Lin et al. summarized the tools for measure-
ment agreement in 2002. Zhong and Shao (2003) and
Shao and Zhong (2004) proposed an approach that
combined the mean and variances of individual dif-
ferences into one statistic. In 2008, Zhong et al. pro-
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posed to also adopt the 2 one-sided tolerance limits
approach (Tsong and Shen (20072)) to assess the ex-
changeability of two test methods.
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Rejoinder

JOHN J. PETERSON, RONALD D. SNEE, PAUL R. McALLISTER,
TIMOTHY L. SCHOFIELD, and ANTHONY J. CARELLA

HE AUTHORS wish to thank the discussants for

their time and contribution to this article. They
have reinforced many of our views and raised some
important issues. Through our response, we hope to
summarize the broad views expressed throughout the
article and among the discussants.

Dr. Hoerl states that “... the authors imply that
the FDA is driving much of the change that is oc-
curring today, especially that change related to bet-
ter understanding manufacturing processes. This is a
good thing from the FDA, but begs the question of
why the statistical community is following the FDA,
rather than leading it”. This is an important question
that requires additional comment and context.

The transformation going on within the indus-
try is indeed highlighted by the call from regula-
tors to build quality into the manufacturing pro-
cess rather than to test quality into the product.
There is also a call from regulators to change the
manner in which pharmaceutical-development and
manufacturing practices are communicated to au-
thorities, through documentation of risk analyses,
development experiments, and process-maintenance
strategies in regulatory filings. In a highly regulated
environment, however, there is a great deal of or-
ganizational momentum to continue doing whatever
has been approved in the past. When an applica-
tion is submitted to the FDA for approval, a vast
amount of resources have already been invested by
the company. Because the company’s market exclu-
sivity is limited by patent expiry, each day of delay to
market costs tremendously in lost opportunity. This
creates pressure to use the techniques, approaches,
and statistical arguments that have been used pre-
viously. The chemical, manufacturing, and control
(CMC) sections of a new drug application are pri-
marily reviewed by relevant scientists/engineers and
only infrequently reviewed by FDA statisticians.

Thus, a confluence of effects unite to perpetuate

traditions that, in some cases, may benefit from im- '

proved statistical thought. We believe that these real-
ities partially underlie the difficulty pharmaceutical
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CMC statisticians have in providing breakthrough
leadership in the industry. This environment pro-
duces pressures that challenge change.

It is hoped that this article will inspire industrial
statisticians and industrial engineers to collaborate
with pharmaceutical scientists, chemical engineers, -
and government regulators to apply creative strate-
gies to provide continuous improvement for pharma-
ceutical development and manufacturing in the face
of these issues.

These pressures notwithstanding, CMC statisti-
cians have historically collaborated within their com-
panies, across institutions, and together with their
regulatory counterparts to define the process and to
measure the properties of manufactured materials.
The tools espoused in Six Sigma have long been used
by pharmaceutical CMC statisticians. The call to
quality by design clearly elevates these to the stand-
ing of other scientific tools that have been used his-
torically to develop safe and effective drugs and vac-
cines.

The discussants have aptly viewed statisticians
as having a leadership role in the pharmaceuti-
cal industry. While this has long been the case in
many areas of nonclinical development and control
of pharmaceuticals, the FDA call for better pro-
cess understanding and control, as well as the ad-
vent of information-rich technologies, has reinforced
the need for statistical leadership. As discussed in
this paper, pharmaceutical CMC statisticians have
shown leadership through the PhRMA CMC Statis-
tics Expert Team and the annual FDA/Industry
Statistics Workshop. In' addition, statisticians can
show, and indeed have shown, leadership through
presentations to the FDA and other regulatory bod-
ies on specific drug-application issues. Some phar-
maceutical industry statisticians publish improved
statistical methods in relevant biopharmaceutical
statistics and other scientific journals. We believe
that pharmaceutical-industry statisticians and FDA
statisticians have communicated well with each other
in the past decade. However, perhaps a more impor-
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tant question is how well have pharmaceutical in-
dustry statisticians and FDA statisticians been able
to influence their own (nonstatistician) scientific col-
laborators at their respective institutions. Such influ-
ence is less visible directly but will show itself over
the years as new industry guidance on CMC-related
issues is developed and implemented. Much like the
need for statistical leadership in the application of
sound clinical study design and data interpretation in
the 20th century, the need for leadership and support
from CMQC statisticians has been reinforced through
regulatory opportunities, in this case, through the
advent of quality by design in the 21st century.

Dr. Hoerl’s comment that “It is particularly dis-
appointing to hear from the authors that the cur-
rent system in pharma provides little incentive for
continuous improvement, and in fact some disincen-
tive” was likely drawn from a statement that cur-
rently pharmaceutical manufacturers have little busi-
ness incentive for continuous improvement after reg-

ulatory approval. This is precisely one of the rea- .

sons for establishing a pharmaceutical process de-
sign space, so that continuous improvement activi-
ties can take place within this defined region without
time-consuming regulatory approval after a process
change. Industry and regulatory statisticians have
been communicating regularly on this issue.

" Application of statistical tools related to the def-
inition of a pharmaceutical process design space has
become the focus of many activities undertaken by
the PhARMA CMC Statistics Expert Team, including
the introduction of special sessions devoted to the
topic at the ASA-sponsored FDA /Industry Statistics
‘Workshop. Furthermore, the recent articles by Pe-
terson (2008) and Stockdale and Cheng (2009) make
specific proposals for design space development. Mr.
Hofer challenges the statistical community to develop
“more definition around the target level of assurance
of quality within a design space.” We agree and be-
lieve that the referenced articles will help to provide
some quantitative clarification around this issue.

‘We need to keep in mind that, while changes to the
registered manufacturing process are subject to reg-
ulatory oversight, operational changes may be, and
should be, implemented in the manufacturing envi-
ronment in order to improve operations and reduce
costs. Thus, processes such as inventory manage-
ment, document flow, and cycle time may be studied
and improved using Lean and Lean Six-Sigma meth-
ods.

Mr. Torbeck acknowledges the utility of designed
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experiments in deriving process understanding and
defining design space, but states “The industry
should look more closely to teaching and implement-
ing mechanistic model building. Many scientists and
engineers are put off by the use of generic empirical
models, as they aren’t ‘scientific’ enough.” Clearly,
more work needs to be done with regard to mecha-
nistic models and models for functional data, as well
as software for implementation. The basic theory,
methods, and software exist for fitting (mechanis-
tic) models that are nonlinear (Gallant (1987), Bates
and Watts (1988), Seber and Wild (2003)). Optimal
design theory for estimating parameters of nonlin-
ear mechanistic models also exists (Seber and Wild
(2003)), but ‘easy-to-use software is just starting to
become available (e.g., SAS/IJMP®). As mentioned
previously in the section of our paper on The Impact
of Statistical Software and Information Technology,
% .. software availability will guide what statisticians
and quality engineers are willing to do with statis-
tics ...”. As such, mechanistic models provide an
important area for further statistical-software devel-
opment, particularly in the area of optimal design.

The authors agree with Mr. Torbeck that “Indus-
try statisticians need to join forces with the agencies
to codify scientific and statistically valid approaches
to determining specification criteria that reflect the
actual medical and manufacturing situations,” and
with Mr. Hofer that “A few of the most important
factors I see facing pharmaceutical CM&C statisti-
cians in the coming years include ... the challenge of
defining requirements for CM&C quality attributes
that ensure acceptable product performance.” As
Mr. Hofer points out, our paper challenges statis-
ticians to work together with their development and
regulatory colleagues to define specifications on the
basis of fitness-for-use (for the patient) rather than
indirect process capability limits (e.g., dissolution in
a vessel).

In this regard, an expanded view must be taken of
Mr. Torbeck’s statement that “Only the manager of
the quality-control analytical laboratory really has
the information at hand to determine if the prod-
uct is fit for use.” While it’s true that the analytical
laboratory possesses information regarding the prop-
erties of their methods and the manufacturing pro-
cess, quality is defined by the customer. The CMC
statistician has the role of collaborating with the ana-
lytical laboratory, clinical researcher, and regulatory
authorities to help provide assurances to the patient
that a drug or vaccine is safe and effective.
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Mr. Hofer states that we must achieve “clear
agreement among all parties involved in the interpre-
tation of specification acceptance criteria for analyti-
cal properties.” Parameters such as quality attributes
of clinical materials and shelf-life determination are
directed toward the true mean of development ma-
‘terials, while some regulatory guidances urge manu-
facturers to regard individual measurements against
specification acceptance criteria. This creates confu-
sion and hinders the statistician’s ability to imple-
ment “scientific and statistically valid” approaches
for maintaining product quality.

Dr. Tsong et al. have made some very impor-
tant points, worth reinforcing here. Nonstatisticians,
and even some statisticians, make the mistake of not
heeding the dictate that “absence of evidence is not
evidence of absence.” Dr. Tsong highlights contribu-
tions to stability assessment; indeed, there are many
other opportunities to reformulate the null and al-
ternative hypotheses and apply an equivalence ap-
proach. Another application is method validation,
which seeks to establish conformance of assay prop-
erties to acceptance criteria, while method transfer
looks to establish equivalence of performance be-
tween laboratories. In bioassay, the difference be-
tween, or ratio of, slopes of the test and reference
materials needs to conform to an acceptable range
in order to help assure the accuracy of the potency
measurement. These and many other applications re-
quire an equivalence approach to hypothesis testing
in order to appropriately address the research objec-
tive.

Regarding Tsong et al.’s second point, we note
that the approaches to design space described in Pe-
terson (2008) and Stockdale and Cheng (2009) do in-

deed quantify quality in terms of “a high proportion

of the product being within specifications.” Various

industrial problems may require different approaches

to defining the experimental units, but we agree that

there is a need for good probabilistic-based risk as-
“sessment.

It is our hope that this article and the contribu-
tions of the discussants have clearly communicated
that the success of pharmaceutical CMC statisti-
cians, in improving the efficiency and effectiveness of
pharmaceutical manufacturing, depends on a combi-
nation of factors. In addition to technical skills, in-
dustry statisticians must hone their leadership and
collaborative skills. Decision science must join the
other sciences routinely employed by scientists and
engineers, as well as by statisticians.

We fully support Mr. Hofer’s statement that the
pharmaceutical industry now provides an excellent
opportunity for graduate students interested in a
career in applying industrial statistical methods.
We believe that, for those statisticians in indus-
trial engineering and applied statistics departments
in academia, the pharmaceutical industry, now more
than ever, presents many interesting and fruitful op-
portunities for research and consulting in the area of
quality and efficiency improvement.
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