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THE STATISTICAL TOOL KIT

Most decision making in quality control, as in most other areas of modern human endeavor (e.g.,
evaluation of new medical treatments and scanning machines, planning of scientific polling, and
marketing and investment strategies, to name a few), rests on a base of statistics—defined narrowly
as the collection, analysis, and interpretation of data or, more broadly, as “the science of decision
making under uncertainty.” For the practitioner, statistics can be thought of as a kit of tools that helps
to solve problems. The statistical tool kit shown in Table 44.1 lists problems to be solved, applica-
ble statistical tools, and where in this handbook the tool is to be found.

Examples of actual practice will be used as extensively as the space allocated to it allows to pro-
vide the reader with both a model for solution and a data set with correct analysis that can be used
to verify the accuracy of local computer software. Annotated computer program output from such
packages as SAS and BMDP will be used in many of these examples.

In addition to the basic statistical methods discussed in this section, four other sections cover spe-
cific areas—Section 45, Statistical Process Control; Section 46, Acceptance Sampling; Section 47,
Design and Analysis of Experiments; and Section 48, Reliability Data Analysis. Many other sections
include additional applications. Also, Appendix III, Selected Quality Standards, Specifications, and
Related Documents, includes documents on statistical techniques and procedures.

SOURCES AND SUMMARIZATION OF DATA

The source of a set of data that we desire to analyze to solve a problem is a very important consid-
eration. The two sources we will address and that are the most common are historical data and data
from planned experimentation. Investigators using historical data are like blind people probing an
elephant, for reasons discussed below under Historical Data, Their Uses, and Caveats, and under
Data from Planned Experimentation. Note that all data need careful review, as discussed under Data
Screening, below.

Planning for Collection and Analysis of Data. The tools cited in Table 44.1 must be
used in an effective manner to yield a return appropriate for the cost of using them. To achieve this
return, it is not sufficient to plug numbers into formulas. The full process must include careful plan-
ning of data collection, analysis of the data to draw statistical conclusions, and making the transition
to answer the original technical problem. A checklist of some of the key steps in achieving this is as
follows:

1. Collect sufficient background information to translate the engineering problem statement into a
specific statement that can be evaluated by statistical methods.

2. Plan the collection of data.
a. Determine the type of data needed. Variables data (readings on a scale of measurement) may

be more expensive than attributes data (go or no-go data), but the information is much more
useful.

b. Determine if any past data are available that are applicable to the present problem; however,
bear in mind the hazards of historical data sets.

c. If the problem requires an evaluation of several alternative decisions, obtain information on
the economic consequences of a wrong decision.

d. If the problem requires the estimation of a parameter, define the precision needed for the esti-
mate.

e. Determine if the error of measurement is large enough to influence the sample size or the
method of data analysis; laboratory error often can dwarf experimental variability.

f. Define the assumptions needed to calculate the required sample size.
g. Calculate the required sample size considering the desired precision of the result, statistical

risk, variability of the data, measurement error, and other factors.
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TABLE 44.1 The Statistical Tool Kit

Reference pages 
Problem Statistical tool or sections

Planning and analyzing data for solving spe-
cific problems

Frequency distributions, histograms, and
indices

Probability distributions

Basic theorems of probability

Tests of hypotheses

Sample size determination for hypothesis
testing

Confidence limits

Sample size determination for estimation

Statistical tolerance limits

Tolerance limits for interacting dimensions

Bayes’ Theorem

Statistical decision theory

Transformations of data

Monte Carlo sampling methods

Clustering and discrimination

Selection of the best

Regression analysis

Variables control charts
Attributes control charts

Attributes sampling plans
Variables sampling plans
Reliability sampling plans
Bulk sampling plans

One-factor experiment
Designs for two or more factors
Interlaboratory tests
Evolutionary operation (EVOP)

Response surface methodology (RSM)

Reliability prediction and analysis

Planning a statistical investigation

Summarizing data

Predicting future results from a sample

Determining a probability involving several events

Determining the significance of difference between two
sets of data or between a set of data and a standard
value

Determining the sample size required for testing a
hypothesis

Determining the ability of a sample result to estimate a
true value

Determining the sample size required to estimate a true
value

Determining tolerance limits on single characteristics

Determining tolerance limits for interacting dimensions

Incorporating past information in predicting future events

Incorporating economic consequences in defining decision
rules

Converting data to meet statistical assumptions

Predicting system performance

Determining group membership

Determining which is the best

Evaluating the relationship between two or more vari-
ables by determining an equation to estimate one vari-
able from knowledge of the other variables

Controlling process quality by early detection of process
changes:

1. Using measurements data
2. Using attributes data

Evaluating quality of lots to a previously defined quality
level

1. Quality measured on an attributes basis
2. Quality measured on a variables basis
3. Sampling to determine reliability
4. Bulk product

Planning and analyzing experiments:
1. Investigating the effect of varying one factor
2. Investigating the effect of varying two or more factors
3. Investigating the variability of laboratory measurements
4. Experimenting under process conditions to determine 

optimum settings of variables
5. Determining the optimum set of values of a group of 

variables that affect a response variable

Predicting performance without failure (reliability)

44.2–44.4

44.7–44.17

44.23–44.41

44.17–44.23

44.58–44.81

44.78–44.79

44.41–44.46

44.45–44.46

44.47–44.51

44.50–44.54

44.21–44.22
44.54–44.58

44.22

44.81–44.84

44.84–44.85

44.86–44.87

44.87–44.88

44.88–44.108

Sec. 45
Sec. 45

Sec. 46
Sec. 46
Sec. 46
Sec. 46

Sec. 47
Sec. 47
Sec. 47
Sec. 47

Sec. 47

Sec. 48



h. Define any requirements for preserving the order of measurements when time is a key para-
meter.

i. Determine any requirements for collecting data in groups defined so as to reflect the different
conditions that are to be evaluated.

j. Define the method of data analysis and any assumptions required.
k. Define requirements for any computer programs that will be needed.

3. Collect the data.
a. Use methods to ensure that the sample is selected in a random manner.
b. Record the data and also all conditions present at the time of each observation.
c. Examine the sample data to ensure that the process shows sufficient stability to make predic-

tions valid for the future.
4. Analyze the data.

a. Screen the data.
b. Evaluate the assumptions previously stated for determining the sample size and for analyzing

the data. Take corrective steps (including additional observations) if required.
c. Apply statistical techniques to evaluate the original problem.
d. Determine if further data and analysis are needed.
e. Conduct sensitivity analyses by varying key sample estimates and other factors in the analy-

sis and noting the effect on final conclusions.
5. Review the conclusions of the data analysis to determine if the original technical problem has

been evaluated or if it has been changed to fit the statistical methods.
6. Present the results.

a. Write a report, including an executive summary.
b. State the conclusions in meaningful form by emphasizing results in terms of the original prob-

lem rather than the statistical indices used in the analysis.
c. Present the results in graphic form where appropriate. Use simple statistical methods in the

body of the report, and place complicated analyses in an appendix.
7. Determine if the conclusions of the specific problem apply to other problems or if the data and

calculations could be a useful input to other problems.

Historical Data, Their Uses, and Caveats. Historical data are data that we already have
and which may seem to be relevant to a question or problem that has arisen. Such data are sometimes
also called existing data sets. Often data are saved during the production process, for example. If a
satisfactory process goes out of control after some years of operation, it is often suggested that it
would save both time and expense to statistically analyze the historical data rather than perform a
planned experiment to obtain data that could lead to process correction. Thus we have available data
that may consist of measurements Y (such as a process yield, e.g., the strength of a material pro-
duced) and associated process variables x

1
, x

2
,…, x

k
(such as x

1
! pressure and x

2
! acid concentra-

tion, with k ! 2).
This situation is extremely different from that where experiments have been run at each of a number

of settings of x
1
,…, x

k
that were selected in advance by statistical design criteria, and often little can be

learned from such data even with the most thorough statistical analysis. Some of the reasons for this are

The x’s may be highly correlated with each other; hence it may not be possible to separate an
effect as due to (for example) x

1
or x

2
.

The x’s may have been manipulated to try to control the output Y of the process (some of them
perhaps even in directions that move the output in directions that are not desired), hence giving
spurious indications of directions of effects when analyzed.
The x’s may cover a very small part of the possible operating range, so small that any indications
of changes in Y attributable to changes in the x’s may be overwhelmed by the size of the vari-
ability of the process (measured by “standard deviation,” discussed below).
Other variables that affect the output of the process (e.g., time of day, atmospheric conditions,
operator running the process, etc.) may not have been held constant and may in fact be the real
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causes of changes observed in the process (while an analysis conducted based only on the x’s may
erroneously yield a model that has no basis in reality).

For these and other reasons, much more information generally can be obtained from a carefully
designed experiment than from extensive analysis of historical data sets collected in uncontrolled cir-
cumstances. The best one usually can hope for from such historical data set analysis is an indication
of the most important variables to include in the designed experiment.

As an example of one of the failings described above, suppose that a historical data set consists
of a yield Y at each of the five (x

1
, x

2
) pairs given in Table 44.2. We see that there is what appears to

be a good spread on the x
1

(acid concentration) values, from 80 to 110, and also a good spread on
the x

2
(pressure) values, from 105 to 144. However, a plot of the data points (x1, x2 ), as shown in

Figure 44.1, shows that in fact all five of the data points lie on a straight line. Thus there is no hope
of any analysis of these data telling us whether any effect we see is due to x

1
or to x

2
. The points do

not “cover” the space of x
1

between 80 and 110 and x
2

between 105 and 144 well at all. Also, to solve
the production problem, it may be desirable to explore outside this space of historical operation, and
this is not allowed for in the historical data set.

A problem such as that shown in Figure 44.1 is called multicollinearity of the data points, i.e., of
the sets of (x

1
…, x

k
) that we have available for analysis. With k ! 2, such a problem is easy to detect

by a graph such as that in Figure 44.1, and such a graph should always be made. With k ! 3 it may
be possible to detect such a situation graphically using computer graphics packages. Often, however,
k is much larger than 2 or 3, and then statistical analysis is needed to detect multicollinearity. Near
multicollinearity (i.e., when the points almost fall on a line when k ! 2, on a plane when k ! 3, or
on what is called a k " 1 dimensional hyperplane when k is larger than 3) is just as much of a prob-
lem and is much harder to detect. For an extensive bibliography and comments on computer routines
for this problem, see Hoerl and Kennard (1981). For some more recent results, see Huh and Olkin
(1995), where numerical illustrations using the classic data of Longley (1967) are included.

Data from Planned Experimentation. Data from planned experimentation are data gath-
ered in an attempt to study a problem that has arisen or is contemplated. Such data are gathered at
various settings of the variables felt to be of importance (x1,…, xk), while holding constant (if possi-
ble, and recording the values of in any case) all other variables that could conceivably have an effect
on the output (xk # 1,…, xm)—for example, atmospheric pressure may not be able to be controlled in
most circumstances but should be monitored and recorded in every experiment if it is felt beforehand
that it might have an effect on the output. (If it is irrelevant, it can be disregarded later; if it is rele-
vant but not recorded, we will not be able to detect that relevance.) Details of designs to use, i.e.,
how to choose the values of (x1,…, xk) for the experiments once the variables to be varied have been
chosen, are considered in Section 47, Design and Analysis of Experiments, and in Dudewicz and
Karian (1985).

Data Screening. Once the data specified in the preceding checklist for collection and analysis
of data, step 2, has been collected (step 3), the first step in its analysis (step 4a) is to screen the data.
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We will now discuss the need for this critical (and often omitted) step, some common methods of
screening, and a very commonly used method that has some great dangers.

The Need for Data Screening. A data set that contains no instances of incorrectly transcribed val-
ues, contains no values that are technically correct but where the experiment went awry for some rea-
son (such as equipment malfunction), and where the basic model does not change its form over the
region of experimentation is called a clean data set. Such data sets are commonly expected to be
obtained by experimenters who exercise care in their experimental conduct and recording. However,
contrary to this expectation of the experimenters, few statisticians have ever seen a clean data set
(despite many years of studying many data sets arising in many areas). It follows, then, that all data
sets need, as a first stage of analysis, to be examined for values that may cause invalid inferences to
be made if those values are left in the data set. Procedures for performing this examination are called
data screening methods. Among the most powerful such methods are those which are used on the
results of a regression analysis (studied later in this section).

There are also a number of methods that can and should be used at the outset, before any regres-
sion analyses are performed, with the goal of detecting outliers, that is, observations (or groups of
observations) that deviate markedly from the other available data. Numerous tests are available for
detecting outliers [see Sheesley (1977) for some of these]. One simple rule calls an observation an
outlier if it lies 2.5, 3, or 4 standard deviations or further from the mean (Draper and Smith 1981).
This is discussed further below.
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Methods of Data Screening. One of the most common methods of data screening is to classify
observations as outliers if they are outside an interval of L multiples of the standard deviation about
the mean. (Standard deviation is discussed below under Sample Characteristics.) The number L is
commonly taken to be 2.5, 3, or 4. The larger L is, the less likely it is that outliers will be detected,
while the smaller L is, the more good observations one will wrongly detect as potential outliers. For
example, from Table B in Appendix II, we see that if L ! 3, then (100) (.0027) ! 0.27 percent of the
observations will be further than 3 standard deviations from the mean even if there are no outliers in
the data set; this assumes a normal distribution for the observations. Thus, if one uses L ! 3, one
expects to find about 3 possible outliers in a data set of 1000 data points (since 0.27 percent of 1000
is 2.7, i.e., roughly 3). As the data set being considered becomes larger, the more possible outliers one
will identify even if there are no problems with the data (which is quite unlikely). For this reason,

Outliers should be deleted from the analysis only if they can be traced to specific causes (such as
recording errors, experimental errors, and the like).
Typically, one takes L to depend on the size of the data set to be screened; with n ! 1000 points,
L ! 3 is reasonable; with n ! 100, L ! 2.5 can be used and only (100) (0.0124) ! 1.24 outliers
will be expected to be found if the data have no problems.

After bad data are deleted or replaced (this is desirable if the experiment can be rerun under compa-
rable conditions to those specified in the experimental plan), the data should be screened again: With
the “worst” points removed/corrected, less extreme cases may come to be identified as possible out-
liers. Another commonly used method, that of crossplots, is discussed below.

Crossplots and Their Hazards. In crossplots (also called scatter plots), one simply plots each pair
of variables in the data set on a set of axes. For example, in the example of Table 44.2, one would
plot Y versus x1, Y versus x2, and x1 versus x2. The last of these plots was given in Figure 44.1 (and
showed some problems with the data that have already been discussed). Note that when using this
technique, one uses all variables that were measured (and not just the variables that are thought to
be of primary interest; see Nelson 1979, Section 4).

Such plots must be used with great caution. While points that seem odd (e.g., away from the
majority of the data points) should be subjected to examination to see if there are problems with
them, one should not use such plots to conclude relationships of the yield with x1 and/or x2. For
example, suppose one has the data set of Table 44.3. Then from crossplots of Y versus x1 and Y ver-
sus x2 (see Figure 44.2), one would be tempted to conclude that Y is a decreasing function of x1 and
an increasing function of x2 (and so, in attempting to maximize yield, might set x

1
as low as possi-

ble and x2 as high as possible). However, as can easily be verified, the data in Table 44.3 came exactly
from the relationship (model) Y ! 10"x1"2x2. Thus, in fact, Y is an increasing function of x

1
(not a

decreasing function as the crossplot had suggested). Daniel (1977) has suggested that the data set of
Table 44.4 may give additional insight here. Crossplots for that data set are given in Figure 44.3.
Thus one sees that even with a strong true relationship (here Y ! 10 " x1 " 2x2 is used again), the
crossplots may yield no insight at all. Even worse, clearly by choosing the points (x1, x2 ) one may
give the Y versus x1 relationship any slope (negative, as with Table 44.3 and Figure 44.2; zero; or
positive), or the relationship can be smoothly curved in any direction or degree of complexity. (Note
that the regression methods given later in this section would not be fooled by the relationships in the
data of Table 44.4. They would give the true relationships.) Thus crossplots are useful for detection
of possible outliers; however, they are not a substitute for regression and can easily be misused.

Descriptive Statistics for Summarizing Data. Many of the most practical methods of
summarizing data are quite simple in concept. Depending on the goals of the data summarization,
sometimes one method will provide a useful and complete summarization. More often, two or more
methods will be used to attain the clarity of description that is desired. Several key methods are plots
versus time order of data, frequency distributions and histograms, sample characteristics (mean,
median, mode, variance, standard deviation, and percentiles), measures of central tendency/location,
and measures of dispersion.
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TABLE 44.3 Data Set A for Crossplots
Example

FIGURE 44.2 Crossplots of Y versus x
1

and of Y versus x
2

for data set A
of Table 44.3.

TABLE 44.4 Data Set B for Crossplots
Example

FIGURE 44.3 Crossplots for data set B of Table 44.4.



Plots versus Time Order of Data. After a data set has been obtained, it is very instructive in many
situations to plot the output Y against the time order in which the experiments were run (which is
essentially a crossplot of Y versus time t). Among the possible phenomena that may come to our
attention from such a plot are these:

A few observations, often at the start of the experimentation, are far from the others; this often
represents a learning curve of the experimenters with the experimental situation, and those exper-
iments should be repeated if possible.
There are trends within each day (or within each week, etc.); this may represent such phenome-
na as warming of a machine or process, operator fatigue, or similar time-related trends.
Variability decreases (or increases) with time; this may be due to a learning curve or raw material
characteristics (as when one lot of material is used up and the next lot has less or greater hetero-
geneity).

While the preceding trends may be apparent even in a plot of the original observations Y versus
time, they are often more easily spotted in plots of the residuals of the observations (difference
between the observed and predicted value) after a regression analysis. See later in this section under
Regression Analysis.

Frequency Histograms. The frequency histogram (or distribution) is a statistical tool for present-
ing numerous data in a form that makes clearer the central tendency and the dispersion along the
scale of measurement, as well as the relative frequency of occurrence of the various values.

Table 44.5 shows “raw data” representing measurements of electrical resistance of 100 coils. A
practitioner scanning these 100 numbers has difficulty in grasping their meaning.

Table 44.6 shows the same data after tabulation. Note how the analyst’s tallies in the column
“Tabulation” make more evident where the central tendency is and what the dispersion is. The col-
umn “Frequency” is merely a recorded count of these same tallies. The column “Cumulative fre-
quency” shows the number of coils with resistance equal to or greater than the associated resistance
value.

Table 44.6 exhibits a range of values from 3.44 to 3.27, or 17 intervals of 0.01 ! each. When it
is desired to reduce the number of such intervals, the data are grouped into “cells.” Table 44.7 shows
the same data grouped into a frequency distribution of only six cells, each 0.03 ! wide. Grouping
the data into cells simplifies presentation and study of the distribution but loses some of the detail.
(However, one can always go back to the original data if necessary.)

The following are the steps taken to construct a frequency distribution:

1. Decide on the number of cells. Table 44.8 provides guidelines that are adequate for most cases
encountered. These guidelines are not rigid and should be adjusted when necessary; their aim is
not only to provide a clear data summary but also to reveal any underlying pattern in the data.
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2. Calculate the approximate cell interval i. The cell interval equals the largest observation minus
the smallest observation divided by the number of cells. Round this result to some convenient
number.

3. Construct the cells by listing cell boundaries. As an aid to later calculation:
a. The cell boundaries should be to one more decimal place than the actual data and should end

in a 5.
b. The cell interval should be constant throughout the entire frequency distribution.

4. Tally each observation into the appropriate cell and then list the total frequency f for each cell.

There are several ways of showing a frequency distribution in graphic form. The most popular is
the frequency histogram. Figure 44.4 shows the electrical resistance data of Table 44.7 depicted in
histogram form. The diagram is so easy to construct and interpret that it is widely used in elemen-
tary analysis of data.
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One example of wide, effective use of frequency histograms is comparison of process capabili-
ties with tolerance limits. The histogram of Figure 44.5 shows a process that is inherently capable of
holding the tolerances drawn on the same figure. The high degree of defectives being produced is the
result of running this process at a setting that does not locate its central tendency near the midpoint
of the tolerance range. (See Section 22, under Operations Analysis, for other examples.)

Analyses of histograms to draw conclusions beyond the sample data customarily should be based
on at least 50 measurements.

Sample Characteristics: Mean, Median, Mode, Variance, Standard Deviation, Percentiles. Faced
with a large data set, descriptive statistics furnish a simple method of extracting information from
what often seems at first glance to be a mass of numbers without rhyme or reason to it. These char-
acteristics of the data may relate to a “typical (or central) value” (mean, median, mode), a measure
of how much variability is present (variance, standard deviation), or a measure of frequency (per-
centiles). The first two types of characteristics (typical value and variability) will be discussed below,
but first we will present the concept of percentiles.
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TABLE 44.8 Number of Cells in Frequency
Distribution

FIGURE 44.4 Histogram of resistance.



A percentile curve is a plot of the percentile rank of the data against the data values. For example,
for the data of resistance of 100 coils given in Table 44.6, 1 percent are at or below resistance 3.27, 2
percent are at or below 3.28, 5 percent are at or below 3.29, and so on, as given in Table 44.9. The
percentile rank plot (or percentile curve) for these data is given in Figure 44.6. Note that while the
data will result in a “rough” curve (since the percentile curve of the data will jump at each data point
and remain constant between actual data points), a smooth curve drawn through the data will be a bet-
ter representation of reality; this is the dashed curve drawn in Figure 44.6. (Thus while values 3.42
and 3.43 did not occur in our sample, we expect they would in a larger sample; hence the smooth
curve is the one we would utilize to assess their chances of occurring.) Note that no data are discard-
ed (or grouped) in making the percentile curve of a data set; in this sense, this is a more precise
process than construction of a histogram of the data (since no information is “lost” in the process).
Most statistical work uses the percentile curve, under the name distribution function of the data. (In
early papers this was called the cumulative distribution function.) Since the distribution gives the pro-
portion of the data falling at or below each value, the graph and curve are the same; only the scale on
the vertical axis is changed to read from 0 to 1 (since 0 to 100, divided by 100, runs from 0 to 1).

Measures of Central Tendency/Location. Most frequency distributions exhibit a central tendency,
i.e., a shape such that the bulk of the observations pile up in the area between the two extremes.
Central tendency is one of the two most fundamental concepts in all statistical analysis.

There are three principal measures of central tendency: arithmetic mean, median, and mode. The
arithmetic mean (the ordinary “average”) is used for symmetric or near symmetric distributions or
for distributions that lack a clearly dominant single peak. The arithmetic mean X! is the most gener-
ally used measure in quality work. It is employed so often to report average size, average yield, aver-
age percent defective, etc. that control charts have been devised to analyze and keep track of it. Such
control charts can give early warning of significant changes in the central value (see Section 45,
Statistical Process Control).

The mean is calculated by adding the observations and dividing by the number of observations.
A short method for calculating the mean is given in a subsequent example under Measures of
Dispersion.

The median (the middle value when the figures are arranged according to size) is used for reduc-
ing the effects of extreme values or for data that can be ranked but are not economically measurable
(shades of color, visual appearance, odors) or for special testing situations. If, for example, the aver-
age of five parts tested is used to decide whether a life-test requirement has been met, then the life-
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time of the third part to fail can sometimes serve to predict the average of all five, and thereby
the decision of the test can be made much sooner. As shown on Figure 44.6, the median is sim-
ply the horizontal scale value where the percentile curve reaches the height 50 percent.

The mode (the value that occurs most often in data) is used for severely skewed distributions,
describing an irregular situation where two peaks are found, or for eliminating the effects of extreme
values. The statistical “efficiency” of these measures varies. See Dixon and Massey (1969, chap. 9)
or Dudewicz (1976, pp. 221–222) for elaboration.

Measures of Dispersion. Data are always scattered around the zone of central tendency, and
the extent of this scatter is called dispersion or variation. A measure of dispersion is the second
of the two most fundamental measures in all statistical analysis.
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FIGURE 44.6 Percentile curve of a data set.
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There are several measures of dispersion. The simplest is the range, which is the difference
between the maximum and minimum values in the data. Since the range is based on only two val-
ues, it is most useful when the number of observations is small (about 10 or fewer).

The most important measure of variation is the standard deviation. The definition of the sample
standard deviation is

s ! !"
where s ! sample standard deviation

∑ ! “sum of”
X ! observed values
X# ! arithmetic mean
n ! number of observations

For calculation purposes, an equivalent formula is

s ! !"
The square of the standard deviation is called the variance. There is also a measure called covari-

ance, which gives information on the relationship between pairs of observations on characteristics X
and Y. This is defined as

s
XY

! 

Further discussion of the relationship between two or more variables is given later in this section
under Regression and Correlation Analysis.

With data in frequency distribution form, shortcut calculations can simplify finding the average
and the standard deviation. This is illustrated in Table 44.10. To start, an arbitrary origin A is assumed
as 3.37. A zero is arbitrarily placed on this line in the d ′ column. The other figures in this column
indicate how many cells the entry is above or below the arbitrary zero. Minus signs are attached
when the entry is smaller than the assumed value, 3.37. The fd ′ values in column (4) are found by
multiplying together the entries in columns (2) and (3). Similarly f(d ′)2 is found by multiplying the
figures in columns (3) and (4). Note that the totals in the last two columns are identified in the for-
mulas as ∑fd ′ and ∑f(d ′)2, respectively, and i is the cell interval. Since the multiplications are small
enough to be carried out mentally, the complete table can be made quickly.

X# ! A"$ % i ! 3.37 " $ % 0.03 ! 3.344

s ! i !"
s ! 0.03 !"" ! 0.031

For sample sizes of about 10 or fewer observations, the standard deviation can be approximated
from the range by calculating R/d2, where d2 is a factor in Appendix II, Table A. For example, suppose
the first column of values in Table 44.5 represents a sample of 10. The range is 3.40#3.29, or 0.11.
From Table A in Appendix II, d

2
! 3.078. The estimate of the standard deviation is therefore

0.11/3.078 ! 0.036. This is much simpler than calculating the standard deviation directly. Subsequent

100(185) # (#87)2

$$$
100(99)

n∑ f(d ′)2 # (∑ fd ′)2

$$
n(n # 1)

#87
$
100

∑ fd ′
$

n

∑[(X # X#)(Y # Y#)]
$$$

n # 1

n∑(X2) # (∑X)2

$$
n(n # 1)

∑(X # X#)2

$$
n # 1
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topics in this section further illustrate this feature of the range. Dixon and Massey (1969, pp. 136–140)
furnish procedures and tables for a variety of applications of the range.

A final measure of variation is the coefficient of variation. This is defined as the standard deviation
divided by the mean and is thus a relative measure of variation. It can be helpful in comparing several
sets of similar data that differ in mean value but may have some commonality in relative variation.

The methods of summarizing data covered in the previous paragraphs can be performed on a
computer, as discussed below. (Also see Section 10 in general for additional information on com-
puter programs for quality control.)

Stem-and-Leaf Plots, Boxplots, and Statistical Graphics. Looking at data to find patterns and
other characteristics is very important. In fact, it is often said that “the first rule of statistics is: Look
at the data.” This does not mean to pass the data on to be fed into some computer program without
a careful examination of them. It does mean to visually scan the data, to calculate classic measures
of important characteristics, to check to see if known measures of validity are satisfied, and to make
graphic representations of some data characteristics. There are many methods and approaches to this
initial stage of data analysis, some favored by one or another school of statisticians, all of some use,
and the total group being of significant size and utility. Some widely valued methods (in addition to
those covered in detail earlier) include stem-and-leaf plots and boxplots, for which one can refer
to many introductory statistics texts. The area as a whole is part of what is called statistical graph-
ics, and computer programs to perform such calculations are widely available. However, to achieve
their full potential (and rise above mediocrity or inferiority), these methods need to be used careful-
ly and intelligently (as we saw earlier with crossplots, for example). An excellent reference in this
regard (one that is filled with examples, and when the examples are of bad graphics shows how to
use a good graphic on the same data) is Schmid (1983).

Accurate Calculation of Descriptive Statistics. Accurate calculation of even simple
descriptive statistics is not as easy a task as it might seem at first, as the example in the paragraph
on coding of data below shows. In particular,

Calculation by hand is an error-prone process, especially if there are 10 or more data points.
Construction of computer programs to perform the calculations is a task that requires knowledge
of both statistics and numerical analysis as well as computer programming; hence it is inadvis-
able to “roll your own” in most cases.
Many of the computer software routines that come with computers (especially microcomputers)
are not of high quality.

In light of the preceding, it is recommended that a high-quality package of computer routines for
statistics be obtained and used for all such analyses. In particular, I suggest packages called SAS,

BASIC STATISTICAL METHODS 44.15

TABLE 44.10 Calculation of Average and Standard Deviation



BMDP, STATPRO, and LABONE. These are of high quality and among them cover a wide variety
of computers on which they will run (including IBM and Data General mainframe computers,
APPLE and IBM PC microcomputers, and a variety of minicomputers). Additional packages that are
in wide use and widely valued include MINITAB and SPSS. There are many other packages, some
specially designed for particular areas of statistics (such as design of experiments). It is good to bear
in mind that quality varies widely; SAS is felt by many to be the “gold standard” of such packages.

For details of SAS, see SAS Institute, Inc. (1982). For BMDP, see Dixon (1983). For STATPRO,
see Pinsky (1983). For LABONE, see Levy and Dumoulin (1984). In each case, a telephone call will
bring current information regarding which computers the package is available for, as well as licens-
ing information.

Section 10, under Computer Applications and Quality Systems, presents additional information
on statistical packages. The graphics available with these packages (such as SAS/GRAPH with SAS)
are of such a quality that they would often justify the expenditure for the package to management.
The American Society for Quality annually publishes a “Directory of Software for Quality
Assurance and Quality Control” (see, for example, ASQC 1996).

Coding of Data. Suppose that we have five observations, X
1
,…, X

5
as in Table 44.11 and wish to

compute the mean and standard deviation. Then on a pocket calculator (such as the Texas
Instruments TI-55) or on a mainframe computer, we find

!
5

i ! 1
X

1
! 49345 !

5

i ! 1
X

i
2 ! 4.8698581 " 108

X" ! 9869 s2 ! 0.985 s ! 0.992

The only problem with these answers is that they are wrong. For example, 9869 is less than all the
observations; hence it cannot be the mean. And the standard deviation is a measure of the spread in
the data; that spread from largest to smallest is 0.00008; hence 0.992 is much too large. The prob-
lem that has led to this inaccuracy is that the computers used keep only about eight decimal places
of accuracy, and this results in discarding digits that are needed for accurate calculation. If it can be
so troublesome to calculate the mean and standard deviation of five numbers accurately, clearly,
problems of meaningful size require careful analysis of numerical inaccuracy, as discussed above,
and for this reason, software should not be trusted without a careful analysis of its capabilities. The
four packages suggested are of high quality.

If one must use untested software, it is recommended that one code the data; that is, calculate
using Y

1
,…, Y

5
, where Y

i
!a(X

i
#b) for some a and b. For example, if we choose a ! 105 and b !

$9869, we will have Y
1
! 13, Y

2
! 7, Y

3
! 15, Y

4
! 8, and Y

5
! 9. For these we calculate (on the

same computers)

!
5

i ! 1
Y

i
! 52 !

5

i ! 1
Y

i
2 ! 588 Y" ! 10.4 s

Y
2 ! 11.8 s

Y
! 3.4351

which are exactly correct. Now it can be shown that the relation between X", s
X

2 and Y", s
Y

2 is

X" ! Y" $ b s
X

2 ! s
Y

21
%
a2

1
%
a
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Hence we find (exactly again)

X! ! 10.4 " 10#5 $ 9869 ! 9869.000104

s
X

2 ! 11.8 " 10#10 (hence s
X

! 0.000034)

This method of coding the data will preserve accuracy in many other, more complex statistical
calculations (such as regression) and is in fact done internally by many of the high-quality statisti-
cal computer packages. Thus it should be used whenever you are using a package other than one of
the high-quality ones listed earlier. In addition, many absurd results from inaccurate software will
be detected early if one observes the cardinal rule of statistics, namely, “Look at the data.” (It is all
too common to have the data gathered and analyzed via computer without a careful look at them
with the measures recommended in this section, and this has led to many costly problems for many
companies.)

In terms of the choice of a and b for the coding, the best values to use are a ! 1/sX and b ! #X!.
If these values cannot be calculated in a trustworthy manner by the software, the simple estimates of
the next paragraph may be used instead.

Simple Estimates of Location and Dispersion. Simple estimates of the center and the spread of
a set of data are often desired (e.g., for use in coding of data, as discussed earlier, and also for
rapid analysis of a data set under time pressure). Two simple measures for the center are the medi-
an ("X) and the midrange, expressed as

A simple measure for the variability is

For the data of Table 44.11, the true value was X! ! 9860.000104. The two simple methods yield
9869.00009 and 9869.000110, respectively. Similarly, the true value of the standard deviation was
sX ! 0.000034, and the simple estimate yields 0.000020. (If we use Table A in Appendix II and take
the range divided by d2 instead of the range divided by 4, we will have a better estimate. With five
data points, d2 ! 2.326, so our estimate of s

X
is then 0.000080/2.326 ! 0.000034.)

PROBABILITY MODELS FOR EXPERIMENTS

A distinction is made between a sample and a population (or universe). A sample is a limited num-
ber of measurements taken from a large source. A population is a large source of measurements from
which the sample is taken. (Note that a population may physically exist, such as all stereo sets in a
certain lot. It also may be conceptual, as all experiments that might be run.)

A probability distribution is a mathematical formula that relates the values of the characteristic
with their probability of occurrence in the population. Figure 44.7 summarizes some distributions.
When the characteristic being measured can take on any value (subject to the fineness of the mea-
suring process), its probability distribution is called a continuous probability distribution. For exam-
ple, the probability distribution for the resistance data of Table 44.7 is an example of a continuous
probability distribution because the resistance could have any value, limited only by the fineness of
the measuring instrument. Experience has shown that most continuous characteristics either follow
one of several common probability distributions, the normal distribution, the exponential distribu-
tion, and the Weibull distribution, or can be fitted with an empirical estimate, as discussed later in
this section. These distributions find the probabilities associated with occurrences of the actual

Maximum (X) # minimum (X)
%%%%

4

Maximum (X) $ minimum (X)
%%%%

2
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values of the characteristic. Other continuous distributions (e.g., t, F, and chi square) are important
in data analysis but do not provide probabilities of occurrence of actual values.

When the characteristic being measured can take on only certain specific values (e.g., integers 0,
1, 2, 3, etc.), its probability distribution is called a discrete probability distribution. For example, the
distribution for the number of defectives r in a sample of five items is a discrete probability distrib-
ution because r can only be 0, 1, 2, 3, 4, or 5. The common discrete distributions are the Poisson,
binomial, negative binomial, and hypergeometric (see Figure 44.7).

The following paragraphs explain how probability distributions can be used with a sample of
observations to make predictions about the larger population.

Sample Space. Statistics deals with the outcomes of experiments. When an experiment is per-
formed, some outcome results; let us denote a typical outcome by the symbol e. Such an outcome is
called a simple event. If we list all the possible outcomes of the experiment of interest to us, that set
is called the sample space of the experiment.

As an example, if we perform the experiment of tossing three coins and observing for each coin
whether it lands heads (H) or tails (T), the sample space will contain the eight possible outcomes

HHH HHT HTH THH HTT THT TTH TTT

For simplicity of notation, let us denote these simple outcomes, respectively, by e
1
, e

2
, e

3
, e

4
, e

5
, e

6
,

e
7
, and e

8
.

We associate a number called probability with each of the simple events. We think of this num-
ber as representing the proportion of times each simple event would occur in a very large number of
experiments of this type. For example, the probability of HHH in our experiment of tossing three
coins is usually taken to be 1!8 " 0.125 because it typically occurs in about one-eighth of a large
number of experiments where three coins are tossed. We denote the probability of a simple event e
by P(e); thus we usually have P(HHH) " 1!8.

Since some outcome occurs in each experiment, when we add up the proportion of times that
each e in the sample space occurred, we must obtain a sum of 1. Since probabilities represent what
those proportions would be in a large number of experiments, we also must have probabilities that
sum to 1 when all outcomes are accounted for. For example, in our example with three coins,

P(e
1
) # P(e

2
) # P(e

3
) # P(e

4
) # P(e

5
) # P(e

6
) # P(e

7
) # P(e

8
) " 1

Events. Very often we are interested not in a simple event but in a combination of them,
called a composite event. For example, the event “more heads than tails” occurs if and only if one
of the simple events e

1
, e

2
, e

3
, e

4
(i.e., the simple events HHH, HHT, HTH, THH) occurs in our

example of tossing three coins. The frequency with which we find “more heads than tails” will
be the sum of the relative frequencies of e

1
, e

2
, e

3
, and e

4
. Thus we say the probability of the event

“more heads than tails” is the sum of the probabilities of the simple events that comprise the
event “more heads than tails”:

P (more heads than tails) " P(e
1
) # P(e

2
) # P(e

3
) # P(e

4
)

To make this simpler to write, we often denote the event of interest by a symbol, such as A for the
event “more heads than tails.” Then

P(A) " P(e
1
) # P(e

2
) # P(e

3
) # P(e

4
)

Thus the probability of a composite event is the sum of the probabilities of all the simple events that
comprise it. (Note that simple events are always mutually exclusive.) Since in the example with three
coins we have P(e

1
) " P(e

2
) " ... " P(e

8
) " 1!8, we find

P(A) " 1!8 # 1!8 # 1!8 # 1!8 " 1!2
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FIGURE 44.7 Summary of common univariate probability distributions. (Asterisks indicate that these are
discrete distributions, but the curves are shown as continuous for ease of comparison with the continuous
distributions.)



i.e., we expect to find more heads than tails (when three coins are tossed) in about 50 percent of such
experiments.

In the example with three coins, we have equally likely simple events, i.e., P(e
i
) ! P(e

j
) for all i,

j. When this is true, it follows that for any composite event A we have

P(A) ! 

In the case of the three coins, this yields the same answer obtained before, namely, P(A) ! 4"8 ! 1"2.
We say two composite events A

1
and A2 are mutually exclusive if no e

i
is in both A1 and A2 . For

example, if A1 is the event “2 heads” and A2 is the event “more tails than heads,” then A1 and A2 are
mutually exclusive because A1! {e2, e3, e4} and A2! {e5, e6, e7, e8} have no point in common. We
often express the fact that A1 and A2 are mutually exclusive in shorthand by writing

A1A2 ! #

If A
1

and A
2

are mutually exclusive, then for the event “A
1

or A
2
” (which occurs if and only if at

least one of A
1
, A

2
occurs), we have

P(A1 or A2) ! P(A1) $ P(A2)

This follows because P(A1 or A2) equals the number of e
i
in either A1 or A2 divided by the total num-

ber of simple events; since there are no points in both A1 and A2, this is the same as taking the num-
ber of points in A

1
and adding to it the number in A2 and then dividing by the total number of simple

events. In our example, P(A1 or A2) ! P(A1) $ P(A2) ! 3"8 $ 4"8 ! 7"8.
In our example so far, we have discussed the events

A: “more heads than tails”
A

1
: “2 heads”

A
2
: “more tails than heads”

These are shown on the sample space in Figure
44.8. Here A and A

1
are not mutually exclusive,

so the simple addition of the probabilities does
not hold for them, since P(A) $ P(A

1
) ! 4"8 $

3"8 ! 7"8 counts the points e
2
, e

3
, e

4
twice as to

their probabilities. Thus we see that a correct
equation for P(A or A1) will need to subtract this
overcounting part, which is P(A and A1), i.e., the
probability that we have an experimental out-
come where both A and A

1
occur, which is P(A

and A1) ! 3"8 in this example. Thus we have reasoned to the fact that for any events A and A1 the
addition rule is

P(A or A
1
) ! P(A) $ P(A

1
) % P(A and A

1
)

For mutually exclusive events, the P(A and A
1
) would be 0 so that this would reduce to simple addi-

tion of P(A) and P(A
1
) in that case.

Rules of Probability, Combinatorics. Probability theory underlies all decisions that are
based on sampling. As we have seen, probability is expressed as a number that lies between 1.0 (cer-
tainty that an event will occur) and 0.0 (impossibility of occurrence), and the most intuitive defini-
tion of probability is one based on a frequency interpretation. In the simple case when an event A can
occur in s cases out of a total of n possible and equally probable cases, then the probability that the
event will occur is

number of simple events in A
&&&&
number of points in the sample space
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FIGURE 44.8 Events and sample space, experiment of
tossing 3 coins.



P(A) ! ! 

Counting s and n can be complex, in which case it is called a problem of combinatorics.

Example: A lot consists of 100 parts. A single part is selected at random, which means
that each of the 100 parts has an equal chance of being selected. Suppose a lot contains a
total of 8 nonconforming parts. Then the probability of drawing a single part that is non-
conforming is 8/100, or 0.08.

The following theorems are useful in solving problems involving probability:

Theorem 1: If P(A) is the probability that an event A will occur, then the probability that
A will not occur is 1 " P(A).

Theorem 2: If A and B are two events, then the probability that either A or B occurs is

P(A or B) ! P(A) # P(B) " P(A and B)

A special case of this theorem occurs when A and B cannot occur simultaneously (i.e., A and B
are “mutually exclusive”). Then the probability that either A or B occurs is

P(A or B) ! P(A) # P(B)

Example: The probabilities of r defectives in a sample of six units from a 5 percent
defective lot are found below by the binomial. The probability of zero defectives is 0.7351;
the probability of one defective is 0.2321. The probability of zero or one defective is then
0.7351 # 0.2321, or 0.9672.

Theorem 3: If A and B are two events, then the probability of the joint occurrence of both
A and B is

P(A and B) ! P(A) $ P(B|A)

where P(B|A) ! probability that B will occur assuming A has already occurred.
A special case of this theorem occurs when the two events are independent; i.e., when the occur-

rence of one event has no influence on the probability of the other event. If A and B are independent,
then the probability of both A and B occurring is

P(A and B) ! P(A) $ P(B)

Example: A complex system consists of two major independent subsystems. The prob-
ability of successful performance of the first subsystem is 0.95; the corresponding proba-
bility for the second subsystem is 0.90. Both subsystems must operate successfully to
achieve total system success. The probability of the successful operation of the total sys-
tem is therefore 0.95 $ 0.90 ! 0.855.

The preceding theorems have been stated in terms of two events but can be expanded for any
number of events.

Conditional Probability; Bayes’ Theorem. In conditional probability, we seek an answer
to such questions as, “If I know that A2 has occurred, then on those trials of the experiment where A2
has occurred, how often does A1 occur?” We use a special shorthand symbol for this conditional
probability:

P(A
1
|A

2
)

which is read as “the probability of A
1
, given that A

2
is known to have occurred” and is calculated

from the formula

number of successful cases
%%%%
total number of possible cases

s
%
n
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P(A
1
|A

2
) ! 

If P(A
1
|A

2
) " P(A

1
), we say A

2
carries “positive information” about A

1
.

If P(A
1
|A

2
) # P(A

1
), we say A

2
carries “negative information” about A

1
.

If P(A
1
|A

2
) ! P(A

1
), we say A

2
carries no information about A

1
or that A

1
and A

2
are “indepen-

dent events.” In this last case, knowing that A
2

has (or has not) occurred does not change the
chances of A

1
occurring.

The powerful conditional probability reversal formula, namely,

P(A
1
|A

2
)P(A

2
) ! P(A

1
and A

2
) ! P(A

2
and A

1
) ! P(A

2
|A

1
)P(A

1
)

is the basis of Bayes’ theorem. In the simplest setting, this states that

P(A
2
|A

1
) ! 

(Here, “not A2” is the event that A2 does not occur.) For worked solutions of problems in probability,
see Dudewicz (1993).

The techniques presented under Tests of Hypotheses in this section consist of analyzing a sam-
ple of observations and reaching a conclusion (with defined sampling risks) to accept or reject a
hypothesis. The experimenter considers the consequences of drawing incorrect conclusions and, to
a lesser degree, the likelihood that extreme values of the population parameter will occur. However,
this is usually done on a qualitative basis and involves judgment. In practice, a sample size is limited
by economics, and the experimenter defines the type I error (usually 0.05 or 0.01) in numerical terms
and then must accept the type II error that results with the sample size fixed by economics. There is
a methodical way of defining the consequences of the type I and type II errors and the likelihood of
extreme values. The approach involves Bayes’ theorem and statistical decision theory.

Statistical Decision Theory. This concept requires two items of information not formally used in
classic analysis:

1. The economic consequences of making type I or type II errors.
2. The probabilities that different values of the population parameter will occur. (The classical

approach has no assumption concerning different values of the population parameter.)

Statistical tables and sampling plans based on Bayes’ theorem or statistical decision concepts are
not common, but the concepts can have a significant effect, and therefore development work seems
imminent and worthwhile. Oliver and Springer (1972) give an example of Bayesian acceptance sam-
pling tables. Hadley (1967) provides background material including examples on tests of hypothe-
ses, confidence limits, and acceptance sampling plans. Lenz and Rendtel (1984) compare the
performance of MIL-STD-105D, Skip Lot, and Bayesian sampling plans. See also the discussion in
Section 46, under Bayesian Procedures.

Simpson’s Paradox. What is called Simpson’s paradox was discovered in 1951 by E. H. Simpson.
Since then, it has been found to have many important implications in industry, medicine, and many
other fields; a discussion is given in Dudewicz and Mishra (1988, pp. 55–57) and examples are given
in Wardrop (1995) and its references. I will give an example to illustrate the problem and discuss
how to avoid it.

Suppose that a company has two plants in different parts of the world. Both make a state-of-the-
art product that is not yet fully understood (and hence much rework or scrap results). A new process
modification is to be tried in both plants, head to head with the present method. The results of the
trial come back and are summarized for management as follows: 46 percent successes (on 11,000

P(A1|A2)P(A2)$$$$
P(A

1
|A

2
)P(A

2
) % P(A

1
|not A

2
)P(not A

2
)

P(A1 and A2)$$
P(A

2
)
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units made) with the new method but only 11 percent successes (on 10,100 units made) with the pre-
sent method. Do you have enough information, and if so, what decision do you make on selection of
a method to use in the future?

It is tempting to decide to use the new process; after all, it had over four times the success rate of
the present process with a substantial number of trials. However, suppose we ask for more than the
executive summary report, namely, for results in both the plants. In fact, it may be the case that
the present method was substantially superior in both the plants, as illustrated in Table 44.12. There
we see that the new method decreased the success rate in Plant 1 from 10 to 5 percent and in Plant
2 from 95 percent with the present method to 50 percent with the new method. Thus the present
method was substantially superior in both plants (both Plant 1, which operates in adverse conditions
and has a correspondingly lower success rate, and Plant 2, which has a higher success rate and thus
received 10,000 of the new materials to test with).

This is paradoxical because the present method does better in both plants, but when one sums
over plants, it does worse. In fact, people often think that this is impossible before studying a numer-
ical example such as we have provided. To avoid erroneous decisions (such as selection of the infe-
rior method), there are a number of actions one can take. First, in the design of trials that will take
place in different facilities, assign the same number of test cases to each facility. (This is not always
possible, since facilities may vary in size, prior commitments, etc.) Second, when assessing results
that come from several (two or more) locations, machines, technicians, states, etc., insist that more
than the overall summary of successes by method be provided (namely, one also needs to see the suc-
cesses by location, machine, technician, state, etc.). This should allow one to avoid errors due to
Simpson’s paradox (and in addition will allow one to detect possibly important nonuniformity in suc-
cess rates at different locations, machines, etc. that might otherwise go undetected).

DISCRETE PROBABILITY DISTRIBUTIONS

Discrete probability distributions are used to model situations where the outcome of interest can take
on only a few discrete values (such as 0 or 1 for failure or success or 0, 1, 2, 3,…as a number of
occurrences of some event of interest). Below I give the model leading to the most commonly occur-
ring such distributions and consider where one can obtain numerical values of their probabilities, and
their uses in quality control.

The Discrete Uniform Distribution. If each of the values x
1
,…, x

n
is equally likely to occur

as the result of an experiment, then we say the value obtained has the uniform distribution on the set
of values x

1
,…, x

n
. In this case the probability of x

i
is 1/n. Since the probabilities are so simple, no

special tables are needed.

Model Leading to a Uniform Distribution. The model leading to a uniform distribution is random
selection from a finite population in which each value occurs the same number of times. (This makes
values equally likely to occur in the sample.)

Uses of Random Choices. Random choices are often used in sampling inspection. For example,
suppose that a lot of 1000 items is sequentially numbered from 500 through 1499. Then the chance
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TABLE 44.12 Simpson’s Paradox with Two Methods
in Two Locations

Plant 1 Plant 2

Present Successes 1000 95
method: Failures 9000 5

New Successes 50 5000
method: Failures 950 5000



that an item selected at random from the lot will have number i (for any i between 500 and 1499)
is 1/1000 ! 0.001. The probability that such an item will have a serial number at least 1400 is
100/1000 ! 0.10.

The Binomial Distribution. If the probability of occurrence p of an event is constant on each
of n independent trials of the event, then the probability of r occurrences in n trials is

pr q n " r

where q ! 1 " p.
In practice, the assumption of a constant probability of occurrence is considered reasonable when

the population size is at least 10 times the sample size (under this circumstance, the change in prob-
ability from one trial to the next due to depletion of the population is negligible).

Table F in Appendix II provides partial tables for the binomial and gives references for more com-
plete tables. King (1971, chaps. 20 through 22) discusses binomial probability.

Model Leading to a Binomial Distribution. When n independent trials of an experiment each
have a constant probability p of occurrence of an event of interest (commonly termed a success),
then the number of occurrences follows a binomial distribution. The name comes from the fact that
the factor

in the probabilities is called a binomial coefficient in mathematics.

Binomial Probabilities and Uses. A lot of 100 units of product is submitted by a vendor whose
past quality has been about 5 percent nonconforming. A random sample of six units is selected from
the lot. The probabilities of various sample results are given in Table 44.13.

In using the formula, note that 0! ! 1. Table F in Appendix II lists binomial probabilities in
cumulative form, i.e., the probability of r or fewer occurrences in n trials. For the preceding
example, the probability of 1 or fewer nonconforming items in a sample of 6 can be read from
the table as 0.9672. Note that this is the sum of the probabilities for r ! 0 and r ! 1, i.e., 0.7351
# 0.2321 ! 0.9672.

The Hypergeometric Distribution. Occasionally, the assumptions of the Poisson (see
below) or binomial cannot be met even approximately. Subject only to the assumption of a random

n!
$$
r!(n " r)!

n!
$$
r!(n " r)!
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TABLE 44.13 Table of Binomial Probabilities



sample, the hypergeometric gives the probability of exactly r occurrences in n trials from a lot of N
items having d defectives as

where (N
n ) is the “combinations” of N items taken n at a time and is equal to N!/[n!(N ! n)!], where

N! " [N(N ! 1) (N ! 2) ... 1] and 0! " 1. The calculations can be avoided by using tables such as
those prepared by Lieberman and Owen (1961). Duncan (1974) compares the results of Poisson,
binomial, and hypergeometric distributions.

Model Leading to a Hypergeometric Distribution. The hypergeometric distribution is appropriate
when independent trials are conducted, but the probability of occurrence of the event of interest changes
from trial to trial because of depletion of a finite population. Because of their simpler form, in this situ-
ation one often uses the binomial or Poisson distributions if their assumptions are approximately met.

Hypergeometric Probabilities and Uses. A lot of 100 units is submitted by a vendor whose past
quality has been about 5 percent nonconforming. A random sample of 20 units is selected from the
lot. To calculate the probability of 0 nonconforming in 20, note that the lot has 5 nonconforming
items and 95 conforming. Then

P(0 in 20) " " " 0.319

Repeat substitutions into the formula are made to find P(r in 20), where r in this example is 0, 1, 2,
3, 4, and 5.

The Poisson Distribution. In practice, the most important discrete distribution is the
Poisson. It is an approximation to more exact distributions (the hypergeometric and the binomial)
and applies when the sample size is at least 16, the population size is at least 10 times the sam-
ple size, and the probability of occurrence p on each trial is less than 0.1. (These conditions are
often met.)

Figure 44.7 states the Poisson probability function, but the real work is done by cumulative prob-
ability tables.

Model Leading to a Poisson Distribution. As well as being an approximation to more exact
distributions, the Poisson is the exact distribution when certain assumptions are met. These assump-
tions are that events occur at random (in time, or in space, or in location, for example) with a prob-
ability of occurrence roughly proportional to the length of time (or volume of space, or area) and
that there is no “clumping.” [For details, see Dudewicz (1976, Section 3.2).] For example, if a tar-
get 0.1 mi2 in size is known to be contained in an area 10 mi2 in size, and this area is shelled at ran-
dom (one shell at a time so there will be no clumping), the probability of a hit will be 0.1/10 " 0.01.
The number of hits will follow a Poisson distribution, and the number of shells fired may be set so
that the probability of eight or more hits on the target will be at least 0.95; this is often done in prac-
tice when it is known that eight or more hits will effectively destroy the target and a 95 percent kill
probability is desired.

Poisson Probabilities and Uses. A lot of 300 units of product is submitted by a supplier whose past
quality has been about 2 percent nonconforming. A random sample of 40 units is selected from the
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lot. Table E in Appendix II provides the probability of r or fewer defectives in a sample of n units.
(The application of these probabilities is explained in Section 46, under Operating Characteristic,
OC, Curve.) Entering the table with a value of np equal to 40(0.02), or 0.8, gives Table 44.14.
Individual probabilities can be found by subtracting cumulative probabilities. Thus the probability of
exactly two defectives is 0.953!0.809, or 0.144.

The Negative Binomial Distribution. The negative binomial distribution is one of the
most commonly occurring distributions in situations where the sample size is not set in advance but
rather is determined as the experiment proceeds.

Model Leading to a Negative Binomial Distribution. If the probability of occurrence of an event
is constant from trial to trial and we make trials until we find m occurrences, then the probability that
r trials will be needed is

pm(1 ! p)r!m

where r can be m, m"1, m"2,.…This equation is equivalent to the more complex one listed in
Figure 44.7. Other situations leading to a negative binomial distribution are discussed in Chapter 5
of Johnson and Kotz (1969). Tables are available in Williamson and Bretherton (1963) in case direct
calculation is burdensome; Johnson and Kotz (1969) give references to additional tables.

Negative Binomial Probabilities and Uses. A large lot is inspected until the first defective (m # 1)
is found; if this occurs in the first five trials, the lot is rejected. Hence the lot will be accepted if no
defective is found in the first five trials (and thus trials 6, 7,… need not be performed—we will never
inspect more than five items with this scheme). If the lot is 10 percent nonconforming, then from Table

(r ! 1)!
$$
(m ! 1)!(r ! m)!
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TABLE 44.14 Table of Poisson Probabilities

TABLE 44.15 Table of Negative Binomial
Probabilities (m#1, p#0.10)



44.15 we see that the probability the lot is accepted is 1 ! (0.10 " 0.09 " 0.081 " 0.0729 " 0.06561)
# 0.59049.

The Multinomial Distribution. The discrete probability distributions discussed up to this
point (the uniform, binomial, hypergeometric, Poisson, and negative binomial) all relate to situations
that are univariate, that is, where the outcome of interest relates to one variable’s value (such as the
number of defectives in a sample of size n in the binomial case). However, there are important cases
where the outcome is multivariate. One such example is that where in a sample of size n one
observes both the number needing rework and the number to be scrapped, since there are two quan-
tities, this is called a bivariate situation. The multinomial distribution can be used when there are any
number of categories into which the items may be classified.

Model Leading to a Multinomial Distribution. If exactly one of the events E
1
,…, E

k
occurs on

each of n independent trials and the probabilities of occurrence of the events are respectively p
1
,…,

p
k

(with p
1
"…" p

k
# 1 so that one of them must occur), then the probability that E

1
occurs x

1
times

and E
2

occurs x
2

times,…, and E
k

occurs x
k

times (where x
1
" x

2
"…" x

k
# n since there are n tri-

als and one of E
1
,…, E

k
must occur on each trial) is

p
1
x1 p

2
x2…p

k
xk

Tables are not widely available, and calculations are usually done directly from the probability for-
mula, or (if n is large) the multivariate normal distribution (a continuous multivariate distribution
discussed later in this section) is used as an approximation.

Multinomial Probabilities and Uses. Suppose that n # 5 large assemblies are manufactured and
inspected each day. The results of each inspection are either pass, rework, or scrap. Past results have
shown that 80 percent pass, 15 percent need rework, and 5 percent need to be scrapped. What are the
probabilities of the various possible outcomes of one day’s output?

Figure 44.9 shows the probabilities of the outcomes, calculated directly from the basic formula.
Note that once the number to be reworked (e.g., 1) and the number to be scrapped (e.g., 0) are spec-
ified, the number passed is determined (e.g., 5 ! 1 ! 0 # 4). We have had to use the multinomial
probability distribution because the categories are not independent (an item cannot be both passed
and scrapped).

Selecting a Discrete Distribution. Selection of which discrete distribution to use is usually
made either by knowledge of the underlying situation or by fitting a model from relative frequency
probability. In either case, a test of the model selected is desirable to check its validity.

Selection from a Model of Reality. In many cases one will know (or assume) that the model that
leads to one of the distributions we have discussed underlies the practical situation. For example, if
one draws 50 items at random from a large lot with 100p percent defective, one will assume the
binomial model with n # 50 and probability p of a defective on each trial.

(Chi Square) Test of Model Validity. To test the validity of an assumed discrete model, where cell
i should occur with probability p

i
, one compares the observed cell totals with those predicted by the

model using the chi square test discussed later (Test 12b). Such a confirmatory test can be omitted
only if one is willing to run the risk of assuming a model that in fact may have little basis in reality.
[See Section 9.12 of Dudewicz and Mishra (1988) and especially Problem 9.12.2 on p. 532.]

Empirical Models via Relative Frequency Probability. If there is little or no reason to lead to the
adoption of one of the specific models discussed, a model can be fitted to the data using the relative
frequencies observed in the past. For example, if one has observed that in 100 items produced in the

n!
$$
x

1
!x

2
!…x

k
!
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past there have been blemishes present in the numbers given in Table 44.16, one would estimate
the probability of r blemishes as its relative frequency in the past work, i.e., as in Table 44.17. Such
a model should be tested by taking a new sample and performing a chi square test as previously dis-
cussed. See also Bootstrap Methods later in this section.

CONTINUOUS PROBABILITY DISTRIBUTIONS

Continuous probability distributions are used to model situations where the outcome of interest can
take on values in a continuous range (such as all values greater than zero for the failure time of a
motor that is run continuously). Below I give the model leading to the most commonly occurring
such distributions and consider where one can obtain numerical values of their probabilities and their
uses in quality control.

The Continuous Uniform Distribution. If all values between a and b (a ! b) are possible,
and the chances of the value being in a subinterval are proportional to its length, then the uniform dis-
tribution is appropriate. The probability function is flat over the interval (a,b), where y " 1/(b # a).
Thus the probability the value is in a subinterval of length c is c/(b # a). Since the probabilities are
so simple, no special tables are needed.
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FIGURE 44.9 Table of multinomial probabilities, k " 3 Categories, n " 5, p
1

" P(Rework)
" 0.15, p

2
" P(Scrap) " 0.05, p

3
" P(Pass) " 0.80.



Model Leading to a Uniform Distribution. The model leading to a continuous uniform distribu-
tion over the range (a,b) is random selection of a value between a and b. For example, if a valve on
a water line is spun at random between pressure 0 lb/in2 (closed) and 100 lb/in2 (fully open), then the
resulting pressure will be a uniform random variable on (0, 100).

Uses of Random Numbers. Uniform random variables on the range (0, 1) are called random num-
bers. Such variables are often used to drive digital computer simulation models and are of great
importance in simulation studies of quality systems. Full details on sources of high-quality random
numbers may be found in Dudewicz and Ralley (1981). Special considerations for simulation uses
on microcomputers are given in Dudewicz et al. (1985).

The Exponential Distribution. The exponential probability function is

y ! e"X/#

Figure 44.7 shows the shape of an exponential distribution curve. Note that the normal and expo-
nential distributions have distinctly different shapes. An examination of the tables of areas shows that
50 percent of a normally distributed population occurs above the mean value and 50 percent below
it. In an exponential population, 36.8 percent are above the mean and 63.2 percent below the mean.
(This refutes the intuitive idea that the average is always the 50 percent point.) The property of a
higher percentage below the average sometimes helps to indicate applications of the exponential. For
example, the exponential describes the loading pattern for some structural members because small-
er loads are more numerous than larger loads. The exponential is also useful in describing the dis-
tribution of failure times of certain complex equipment.

Model Leading to an Exponential Distribution. It can be shown that the exponential distribution
of failure times arises when failures occur “at random” (and are not due to wearout but to such items
as random shocks). In fact, the exponential distribution is characterized as the only continuous dis-
tribution with the “lack of memory property” that the chances of the item living an additional t

0
time

units depend only on the length t
0

and not on how long the item has already been in use [see
Dudewicz (1976), pp. 88, 106, for details].

Predictions with Exponential Distributions. Predictions based on an exponentially distributed
population require only an estimate of the population mean. For example, the time between succes-
sive failures of a complex piece of equipment is measured, and the resulting histogram is found to

1
$
#
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TABLE 44.16 Blemishes per Item in Past Work

TABLE 44.17 Blemish Probabilities via
Relative Frequency Estimation



resemble the exponential probability curve. The results of a sample of measurements indicate that
the average time between failures (commonly called MTBF, or mean time between failures) is 100 h.
What is the probability that the time between two successive failures of this equipment will be at
least 20 h?

The problem is one of finding the area under the curve beyond 20 h (Figure 44.10). Table C in
Appendix II gives the area under the curve beyond any particular ratio X/!. In this problem,

" " 0.20

and from Table C in Appendix II the area under the curve beyond 20 h is thus 0.8187. The proba-
bility that the time between two successive failures is greater than 20 h is 0.8187; i.e., there is about
an 82 percent chance that the equipment will operate without failure continuously for 20 or more
hours. Similar calculations would give a probability of 0.9048 for 10 or more hours. In Section 48,
Reliability Concepts and Data Analysis, this probability is calculated for the specified mission time
of a product, and the result is called reliability. These analyses also could be made using exponen-
tial probability paper.

Example: The Relationship Between Part and System Reliability: It is often assumed
that the probability of survival Ps (the system reliability) is the product of the individual
reliabilities of the n parts within the system: Ps " P1P2… Pn. This is known as the product
rule. The formula assumes (1) that the failures of any part will cause failure of the system
and (2) that the reliabilities of the parts are independent of each other, i.e., that the relia-
bility of one part is not dependent on the reliability of another part. [Evans (1966) gives a
good discussion of this and other assumptions in reliability calculations.] A set of lights in
series on a Christmas tree demonstrates the product rule. These assumptions are usually
not 100 percent correct. However, the formula is a convenient approximation that should
be refined as information becomes available on the interrelationships of parts and their
relationship to the system. [The redundancy formula (see below under Example:
Redundancy) is an example of this.] I will now illustrate the product rule.

Suppose that the following reliability requirements have been set on the subsystems of
a communications system:

Subsystem Reliability (for a 4-h period), %

Receiver 0.970
Control system 0.989
Power supply 0.995
Antenna 0.996

What is the expected reliability of the overall system if the preceding requirements
are met?

P
s
" (0.970)(0.989)(0.995)(0.996) " 0.951

The chance that the overall system will perform its function without failure for a 4-h
period is 95 percent.

If it can be assumed that each part follows the exponential distribution, then

P
s
" e#t1$1e#t 2$2…e#tn$n

Further, if t is the same for each part,

P
s

" e#t∑$

20
%
100

X
%
!
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Thus, when the failure rate is constant (and therefore the exponential distribution applies),
a “reliability prediction” of a system can be made based on the addition of the part failure
rates. This is illustrated in Section 19, under Designing for Reliability, Maintainability, and
Availability.

Example: Redundancy: A number of system designs have been devised that attempt to
increase system reliability by introducing redundancy. The simplest such system is the
parallel system, which operates if at least one of its components operates. If each compo-
nent has reliability R(t

0
), then the parallel system consisting of m components has reliabil-

ity equal to [see Dudewicz (1976, p. 39)]:

1 ! [1 ! R(t
0
)]m

which is greater than R(t
0
).

Many other designs have been introduced, with a view both to reliability and to cost,
such as the k-out-of-n systems. For details on these and other aspects of reliability, see
Zacks (1983), Ireson (1982), and Lloyd and Lipow (1982).

The Weibull Distribution. The Weibull distribution is a family of distributions having the
general density function

y " #$(X ! %)$!1 e!#(X! %)$

where # " scale parameter, $ " shape parameter, and % " location parameter.
The curve of the function (Figure 44.7) varies greatly depending on the numerical values of the

parameters. Most important is the shape parameter $, which reflects the pattern of the curve. Note
that when $ is 1.0, the Weibull function reduces to the exponential and that when $ is about 3.5 (and
# " 1 and % " 0), the Weibull closely approximates the normal distribution. In practice, $ varies
from about 1&3 to 5. The scale parameter # is related to the peakedness of the curve; i.e., as # changes,
the curve becomes flatter or more peaked.

The location parameter % is the smallest possible value of X. This is often assumed to be zero,
thereby simplifying the equation. It is often unnecessary to determine the values of these parameters
because predictions are made directly from Weibull probability paper. King (1971, pp. 136–140)
gives procedures for graphically finding #, $, and %.
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The Weibull covers many shapes of distributions. This makes it popular in practice because it
reduces the problem of examining a set of data and deciding which of the common distributions (e.g.,
normal or exponential) fits best. In particular, both IFR (increasing failure rate) and DFR (decreas-
ing failure rate) cases are included, respectively, with ! " 1 and ! # 1 [see Dudewicz (1976, pp.
88–89)].

Model Leading to a Weibull Distribution. It can be shown that a Weibull distribution arises if an
exponential variable is raised to a power; i.e., if Y is exponential, then Y1/! has a Weibull distribution
(Dudewicz 1976, p. 89).

Predictions with Weibull Distributions. An analytical approach for the Weibull distribution (even
with tables) is cumbersome, and the predictions are usually made with Weibull probability paper. For
example, five heat-treated shafts were stress tested until each of them failed. The fatigue life (in
terms of number of cycles to failure) is

10,263
12,187
16,908
18,042
23,271

The problem is to predict the percentage failure of the population for various values of fatigue
life. The solution is to plot the data on Weibull paper, observe if the points fall approximately in
a straight line, and if so, read the probability predictions (percentage failure) from the graph.

Although Weibull plotting can follow the mean rank procedure of normal probability paper (see
below under Predictions with Normal Distributions), much of the literature on Weibull applications
uses “median ranks.” Table D in Appendix II gives, for various sample sizes, the values of the medi-
an rank. (Note that the mean rank procedure does not require a table.) The median ranks necessary
for this particular example are based on a sample size of five failures and are as shown in Table
44.18. (The mean rank estimates are shown for comparison.) The cycles to failure are now plotted
on the Weibull graph paper against the corresponding values of the median rank (see Figure 44.11).
These points fall approximately in a straight line [King (1971, pp. 126–128) describes how to mod-
ify a plot to help obtain a straight line], so it is assumed that the Weibull distribution applies. The
vertical axis gives the cumulative percentage of failures in the population corresponding to the fatigue
life shown on the horizontal axis. For example, about 50 percent of the population of shafts will fail
in less than 17,000 cycles. About 90 percent of the population will fail in less than 24,000 cycles. By
appropriate subtractions, predictions can be made of the percentage of failures between any two
fatigue life limits.

It is tempting to extrapolate on probability paper, particularly to predict life. For example, sup-
pose the minimum fatigue life were specified as 8000 cycles and the five measurements above were
from tests conducted to evaluate the ability of the design to meet 8000 cycles. Since all five tests
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TABLE 44.18 Table of Median and Mean Ranks



exceeded 8000 cycles, the design seems adequate and therefore should be released for production.
However, extrapolation on the Weibull paper predicts that about 8 percent of the population of shafts
would fail in less than 8000 cycles. This suggests a review of the design before release to produc-
tion. Thus the small sample (all within specifications) gave a deceiving result.

Extrapolation can go in the other direction. Note that a probability plot of life-test data does not
require that all tests be completed before the plotting starts. As each unit fails, the failure time can
be plotted against the median rank. If the early points appear to be following a straight line, then it
is tempting to draw in the line before all tests are finished. The line can then be extrapolated beyond
the actual test data, and life predictions can be made without accumulating a large amount of test
time. The approach has been applied to predicting, early in a warranty period, the “vital few” com-
ponents of a complex product that will be most troublesome. However, extrapolation has dangers. It
requires the judicious melding of statistical theory and engineeirng experience and judgment.

Moult (1963) describes the use of a Weibull plot in comparing the suitability of two types of steel
for use in bearings. The plot is shown in Figure 44.12. Nelson (1982) discusses Weibull paper.
Probability graph paper is available for the normal, exponential, Weibull, and other probability dis-
tributions. (A source is TEAM, Technical and Engineering Aids for Management, Box 25,
Tamworth, NH 03886.) Although the mathematical functions and tables provide the same informa-
tion, the graph paper reveals relationships between probabilities and values of X that are not readily
apparent from the calculations. For example, the reduction in percentage defective in a population as
a function of wider and wider tolerance limits can be easily portrayed by the graph paper.

The Normal Distribution. Many engineering characteristics can be approximated by the
normal distribution:

y ! e"(X" #)2/2$2

where e ! 2.718, % ! 3.141, # ! population average, $ ! population standard deviation.

1
&
$!2"%"
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Problems are solved with a table, but note that the distribution requires estimates of only the aver-
age ! and standard deviation " of the population (unless otherwise indicated, Greek symbols will be
used for population values and Roman symbols for sample values) in order to make predictions about
the population. The curve for the normal probability distribution is related to a frequency distribution
and its histogram. As the sample becomes larger and larger and the width of each cell becomes small-
er and smaller, the historgram approaches a smooth curve. If the entire population (in practice, the pop-
ulation is usually considered infinite, e.g., the potential production from a process) were measured, and
if it were normally distributed, the result would be as shown in Figure 44.7. Thus the shape of a his-
togram of sample data provides some indication of the probability distribution for the population. If the
histogram resembles the “bell” shape shown in Figure 44.7, this is a basis for assuming that the popu-
lation follows a normal probability distribution. (It is not necessary that the sample histogram be per-
fectly normal—the assumption of normality is applied only to the population, and small deviations
from normality are expected in random samples.) Hahn (1971) gives a practical discussion of assum-
ing normality. (The name normal distribution dates back to a time when all other distributions were
erroneously thought to be abnormal. Today, some prefer the name Gaussian distribution.)

Model Leading to a Normal Distribution (Additive Errors, Central Limit Theorem). It can be
shown that if a variable Y is the result of adding many other variables and those variables are not
highly dependent on each other, then Y will have approximately a normal distribution. [This result is
called the central limit theorem; see Dudewicz (1976, p. 149).] Statisticians usually recommend that
10 or more terms be added before this result is relied on to produce normality; however, a number
of applied studies have shown good results with as few as three terms being added.

Predictions with Normal Distributions. Predictions require just two estimates and a table. The
estimates are

Estimate of ! # X! and estimate of " # s

The calculations of the sample X! and s are made by one of the methods previously discussed.
For example, from past experience, a manufacturer concludes that the burnout time of a particu-

lar light bulb it manufactures is normally distributed. A sample of 50 bulbs has been tested and the
average life found to be 60 days, with a standard deviation of 20 days. How many bulbs in the entire
population of light bulbs can be expected to be still working after 100 days of life?
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FIGURE 44.12 Composite fatigue endurance—process “C” vacuum degassing
versus air cast AISI 8620.



The problem is to find the area under the curve beyond 100 days (see Figure 44.13). The area
under a distribution curve between two stated limits represents the probability of occurrence.
Therefore, the area beyond 100 days is the probability that a bulb will last more than 100 days. To
find the area, calculate the difference between a particular value X and the average of the curve in
units of standard deviation:

K ! 

In this problem, K ! (100 " 60) ÷ 20 ! #2.0. Table B in Appendix II shows, for K ! 2, a proba-
bility of 0.9773. Applied to this problem, the probability that a bulb will last 100 days or less is
0.9773. The normal curve is symmetrical about the average, and the total area is 1.000. The proba-
bility of a bulb’s lasting more than 100 days then is 1.0000 " 0.9773, or 0.0227, or 2.27 percent of
the bulbs in the population will still be working after 100 days.

Similarly, if a characteristic is normally distributed, and if estimates of the average and standard
deviation of the population are obtained, this method can estimate the total percentage of production
that will fall within engineering specification limits.

Figure 44.14 shows representative areas under the normal distribution curve (these can be derived
from Table B in Appendix II). Thus 68.26 percent of the population will fall between the average of
the population plus or minus 1 standard deviation of the population, 95.46 percent of the population
will fall between the average ±2$, and finally, ±3$ will include 99.73 percent of the population. The
percentage of a sample within a set of limits can be quite different from the percentage within
the same limits in the population. This important fact is crucial in testing hypotheses (covered later
in this section).

Another way of making predictions based on a normal distribution employs probability paper.
Probability paper is so constructed that data from a particular kind of distribution plots as a
straight line; i.e., a sample of data from a normally distributed population plots approximately as
a straight line on normal probability paper. (Small deviations from a straight line are expected
because the data represent a sample of the population.) The following are the steps taken to plot a
set of individual observations on probability paper:

1. Arrange the observations in ascending values. The smallest value is given a rank i of 1 and the
largest value a rank of n.

2. For each value, calculate the cumulative frequency.

X " %
&

$
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3. For each value, calculate

! 100

This provides the mean rank probability estimate, in percent, for plotting the data.
4. Plot the observed values against their mean rank probability estimate.

If the observations are in frequency distribution form, the procedure is the same, except that
instead of using the observed values, the probability estimates are plotted against the cell boundaries.
This is illustrated for the resistance data (see Table 44.19).

The plot is shown in Figure 44.15. Lower cell boundaries are plotted against the last column of
Table 44.19 using the upper (Percent Over) scale. The line has been drawn in by eye, and the fit
appears reasonable. This line represents an estimate of the population, and predictions like those
obtained from the normal probability table can be read directly from the graph. For example, 5 per-
cent of the population of coils will have resistance values greater than about 3.39. Also, 95 percent
will have values greater than about 3.29. (Therefore, 95 " 5, or 90 percent, will have values between
3.29 and 3.39.)

Figure 44.16 shows a form that incorporates probability paper plotting with further analysis such
as confidence limits and control limits. (This type of form was originally developed by E. F. Taylor.)

King (1971) gives a practical description of probability paper procedures for the normal and other
important distributions. While fit is often evaluated by eye when we have clearly good fit (as in
Figure 44.15), statistical tests are available and should be used in cases that are not so clearcut; see
Iman (1982) for details and graphs on which this analysis can be performed.

The Lognormal Distribution. If Y # eZ, where Z has a normal distribution, Y is said to have
a lognormal distribution (since the logarithm of Y has a normal distribution).

Cumulative frequency
$$$

n % 1
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Model Leading to a Lognormal Distribution (Multiplicative or Percentage Effects). Lognormal vari-
ables arise when effects are percentages or multiplicative, which is common in biological and many
other applications. For example, if a random percentage of a stock of items goes bad each time period,
the percentage still good after a large number (10 or more) of time periods will be lognormally distrib-
uted. (This result follows from the central limit theorem already discussed when considering the normal
distribution, since the logarithm of a product is the sum of the logarithms of the items in the product.)

Predictions with Lognormal Distributions. As with the normal distribution, predictions require
two estimates. For details, see Cohen and Whitten (1981). Note that the lognormal distribution is
positively skewed and is widely employed as a model for distribution of life spans, reaction times,
income distributions, and other economic data.

Often the mean, standard deviation, and probabilities of the lognormal variable Y itself are of
basic interest; thus, while one can easily estimate these for Z (the logarithm of Y ! eZ), this does not
answer the real problem. For example, if Y is the lifetime of some system, one may want to estimate
the average life of the system—not the mean of the logarithm of Y. This is why the special methods
referred to above have been developed for this distribution.

Mixture Distributions. Y is said to have a mixture distribution if Y results from source i a per-
centage 100p

i
of the time (i ! 1, 2,…).
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Model Leading to a Mixture Distribution. When output from several sources is mixed (e.g., output
from several suppliers, several plants, several machines, several workers, and so on), the quality char-
acteristics of the resulting mix have mixture distributions. If each of the components coming into the
mix has exactly the same distribution, then the mix also will have that distribution. However, if the com-
ponents coming into the mix have different distributions, then the mix will have a mixture distribution.

Fitting of Mixtures. As can be seen from Figure 44.7, the distributions we have considered so far
are unimodal (have one peak). When in practice one sees two or more peaks in the histogram, one
suspects that a mixture underlies the data. In some cases, this itself leads to a study of the items
coming into the mix, often to find a problem in one of the streams of what should be homogeneous
product.

In other cases, the streams coming into the mix cannot be separated (or it is not desired to sepa-
rate them), but rather one wishes to fit the density of Y as p1 f (ZZ1) ! p2 f (Z2 ) !…! pk f (Zk ) for
some k (2 or more). Here the p

i
’s add to 1 (100 percent of the mix), and often the Zi’s are known to

be normal. To fit the distribution of the Y, one must then select k " 1 p’s (since they add to 1, the last
one is then determined), k means, and k variances. This process requires use of modern computer
software such as LABONE. As an example, consider the data of Table 44.20. A histogram of these
data shows that a mixture (of two terms, since there are two peaks) may be involved. The distribu-
tions seem to the eye to be normal. Using LABONE Expert Statistical Programs (ESP), we are able
to easily fit a mixture of normal distributions.

The Multinormal Distribution. The continuous probability distributions discussed up to
this point (the uniform, exponential, Weibull, normal, lognormal, and mixture) all relate to situa-
tions that are univariate, that is, where the outcome of interest has one component (such as life-
time). If there are additional components of interest (such as weight and height), then the outcome
is multivariate (in this case of three, trivariate). The multinormal distribution is appropriate when
each of the components has a normal distribution and is the most widely used continuous multi-
variate distribution.

Model Leading to a Multinormal Distribution. The same sort of additive process that leads to a
univariate normal distribution leads to a multivariate normal distribution when more than one com-
ponent is being measured.

Predictions with Multinormal Distributions. Predictions with multinormal distributions require
computer packages in most cases. The details, with computer code and examples, are discussed by
Siotani et al. (1985).

The Extended Generalized Lambda Distribution. A one-parameter lambda distribution
was proposed in 1960 by J. Tukey, generalized in 1972 and 1974 by J. S. Ramberg and B. Schmeiser,
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and developed and tabled by Ramberg et al. (1979). While it fits a wide variety of curve shapes and
can fit any mean and any variance, it cannot fit all combinations of skewness and kurtosis. Thus it is
useful when it fits, but for some data sets it does not fit. Recently, Karian et al. (1996) gave an exten-
sion called the extended generalized lambda distribution (EGLD), which can fit any and all values of
the mean, variance, skewness, and kurtosis; tables needed in applications were given in Dudewicz and
Karian (1996). Thus now the benefits of this empirical family are available in all univariate data sets.
These methods are extended to bivariate GLD cases in Karian and Dudewicz (1999).

Selecting a Continuous Distribution. Selection of which continuous distribution to use is
usually made either by knowledge of the underlying situation or by fitting a model to the histogram
(often via plots on probability papers of the most usual distributions). In either case, a test of the
model selected is desirable to check its validity.

Selection from a Model of Reality. In many cases one will know (or assume) that the model that
leads to one of the distributions we have discussed underlies the practical situation. For example, if
the life distribution of the equipment under study has, in the past, always been adequately fitted by
a Weibull model (though with parameters that change from application to application), one will usu-
ally start with a Weibull assumption.

Testing Distributional Assumptions (Probability Plotting, Tests for Specific Distributions). In
practice, a distribution is assumed by evaluating a sample of data. Often it is sufficient to evaluate
the shape of the histogram or the degree to which a plot on probability paper follows a straight line.
These convenient methods do require judgment (e.g., how “straight” must the line be?) because the
sample is never a perfect fit; quantitative tests for probability plots should be used (see Iman 1982).
Be suspicious of the data if the fit is “perfect.” “Goodness of fit” tests (see Tests of Hypotheses later
in this section) evaluate any distribution assumption using quantitative criteria.

Fitting Empirical Probability Distributions. If there is little or no reason to suggest one of the spe-
cific models discussed, or if they are rejected (e.g., because of a poor probability paper fit), an alter-
native is to fit an empirical model. Such models can adapt to a wide range of distributional shapes,
including many of those of the specific models discussed above. One of the most widely used empir-
ical families has been the generalized lambda distribution (GLD) family. However, as discussed ear-
lier, the new EGLD enhances its capabilities and should be used instead; often the two give the same
result, but when the GLD has difficulty, the EGLD can still match the population’s sample moments.

As an example, Table 44.21 presents data (from p. 219 of Hahn and Shapiro, 1967) on the coef-
ficient of friction of a metal in 250 samples. Using procedures and tables given in Ramberg et al.
(1979), a probability function can be developed.

44.40 SECTION FORTY-FOUR

TABLE 44.21 Coefficient-of-Friction Data



As a check on the goodness of the fit, it is recommended that the probability function always be
plotted on the same graph as the histogram for a visual assessment of the fit (which can be supple-
mented by a chi square test if desired). This is done in Figure 44.17, and we see that the fit is excel-
lent (a chi square test comes to the same conclusion).

Bootstrap Methods. Bootstrap methods suggest that one fit a model such as the EGLD to the
data, and then, assuming that the fit passes testing, use that model in a “bootstrapping” analysis. (See
The Generalized Bootstrap and Bootstrap Method later in this section.)

STATISTICAL ESTIMATION

In statistical estimation, we make inferences about parameters of a population from data on a sam-
ple. For example, if we have a random sample of 100 items from a large lot, information on the sample
can be used to infer information about the proportion of defectives p in the lot. This inference takes
the form of either a single number (a point estimate) or a pair of numbers (an interval estimate); there
are several types of interval estimates, depending on our goals. If we found that 15 of the 100 items
in the sample were defective, we would estimate p as being 15/100 ! 0.15 (point estimate); a typi-
cal interval would be to state that we are 95 percent confident that p is between 0.08 and 0.22 (con-
fidence interval estimate). Thus a confidence interval sets limits on the unknown parameter, here the
proportion p. Two other types of intervals often needed are prediction intervals and tolerance inter-
vals. Let X denote the number of defectives in a future sample; a prediction interval sets limits on X,
such as

P[L
1
≤ X ≤ U

1
] ! 0.95

In this example, a prediction interval would state that X would be between 5 and 25; these are lim-
its within which one could be 95 percent sure the number of defectives in a future sample of 100
items would lie. A tolerance interval sets limits (L, U) such that one can be 95 percent sure that at
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least 99 percent of the population will be included within these limits. In this example, the popula-
tion is all lots of 100 items drawn from the same process; at least 99 percent of the lots will have a
proportion of defectives between L ! 0.05 and U ! 0.25. These items are discussed in more detail
below.

Point Estimates. Point estimates are customarily the points at which the interval estimates are
centered. In many cases, it is preferable to give an interval estimate, since that estimate tells us how
much uncertainty is associated with the estimate. For example, if we observe that 15 of 100 items
chosen at random from a very large lot are defective, then we will estimate the proportion of defec-
tives in the lot as 15/100 ! 0.15. Similarly, if we observe three defectives in a sample of 20 items,
we will estimate the proportion of defectives as 3/20 ! 0.15. However, in the first case the interval
estimate (at 95 percent confidence) will be that p is between 0.08 and 0.22, while in the latter case
the interval estimate (at 95 percent confidence) will be that p is between 0.00 and 0.31. In either case,
if forced to estimate proportion defective in the lot by a single number, that number would be 0.15;
however, the uncertainty in that estimate is much greater with the smaller sample size (where as much
as 31 percent of the population might be defective) than with the larger sample size (where as
much as 22 percent of the population might be defective). The typical point estimates are covered
below, as the centers of the respective intervals.

Confidence Interval Estimates. Estimation is the process of analyzing a sample result in
order to predict the corresponding value of the population parameter. For example, a sample of 12
insulators has an average impact strength of 4.952 ft"lb (6.7149 N"m). If this is a representative sample
from the process, what estimate can be made of the true average impact strength of the entire popu-
lation of insulators?

1. The point estimate is a single value used to estimate the population parameter. For example, 4.952
ft"lb (6.7149 N"m) is the point estimate of the average strength of the population.

2. The confidence interval is a range of values that includes (with a preassigned probability called
confidence level) the true value of a population parameter. Confidence limits are the upper and
lower boundaries of the confidence interval. Confidence level is the proportion of times in the
long run that an assertion about the value of a population parameter is correct.

Duncan (1974) provides a thorough discussion of confidence limits. The explanation here indicates
the concept behind the calculations.

If the population mean is #, the probability that the sample mean will be between

# ± 1.96 

is equal to 0.95:

P!# $ 1.96 ≤ X" ≤ # % 1.96 # ! 0.95

This is algebraically equivalent to saying that the sample mean plus 1.96 standard deviations of
means lies above # and the sample mean minus 1.96 standard deviations of means lies below #:

P!# ≤ X"%1.96 and X"$1.96 ≤ ## ! 0.95

or

P!X" $ 1.96 ≤ # ≤ X" % 1.96 # ! 0.95
&

'
$n"

&
'
$n"

&
'
$n"

&
'
$n"

&
'
$n"

&
'
$n"

&
'
$n"
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Or the 95 percent confidence interval on ! is X! ± 1.96 ("/"n!). Before the sample is taken, this inter-
val has a 0.95 probability of including the population value: 95 percent of the set of such intervals
would include the population value. In practice, this is interpreted to mean that there is a 95 percent
“confidence” that the limits based on one sample will include the true value.

For the sample of 12 insulators, suppose that " # 0.25. Then, the 95 percent confidence limits are

X! ± 1.96 # 4.952 ± 1.96 # 4.811 and 5.093

This is interpreted to mean that there is 95 percent confidence that ! is between 4.811 and 5.093. The
95 percent is the confidence level (confidence levels of 90, 95, or 99 percent are usually assumed in prac-
tice, and some statisticians call these the “holy” numbers), and 4.811 and 5.093 are the limits of the con-
fidence interval. A confidence level is associated with an assertion based on actual measurements and
measures the proportion of times that the assertion will be true in the long run. Confidence limits are lim-
its that include the true value with a preassigned degree of confidence (the confidence level).

Table 44.22 summarizes confidence limit formulas for common parameters. The following exam-
ples illustrate some of these formulas.

Example: Sixty-one specimens of brass have a mean hardness of 54.62 and an estimated
standard deviation of 5.34. Determine the 95 percent confidence limits on the mean.

Solution:

Confidence limits # X! ± t

# 54.62 ± 2.00 

# 53.25 and 55.99

There is 95 percent confidence that the true mean hardness of the brass is between 53.25
and 55.99.

Example: A radar system has been operated for 1200 h, during which time eight failures
occurred. What are the 90 percent confidence limits on the mean time between failures for
the system?

Solution:

Estimated m # # 150 h

Upper confidence limit # # 301.4

Lower confidence limit # # 91.3

There is 90 percent confidence that the true mean time between failures is between 91.3
and 301.4 h. [Epstein (1960) discusses several cases of making estimates from life test
data.]

Confusion has arisen on the application of the term confidence level to a reliability index such as
mean time between failures. Using a different example, suppose the numerical portion of a reliabil-
ity requirement reads as follows: “The MTBF shall be at least 100 h at the 90 percent confidence
level.” This means that

1. The minimum MTBF must be 100 h.

2(1200)
$
26.296

2(1200)
$

7.962

1200
$

8

5.34
$
"6!1!

s
$
"n!

(0.25)
$
"1!2!

"
$
"n!
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2. Actual tests shall be conducted on the product to demonstrate with 90 percent confidence that the
100-h MTBF has been met.

3. The test data shall be analyzed by calculating the observed MTBF and the lower one-sided 90
percent confidence limit on MTBF.

4. The lower one-sided confidence limit must be ≥100 h.

The term confidence level, from a statistical viewpoint, has great implications on a test program.
Note that the observed MTBF must be greater than 100 if the lower confidence limit is to be ≥ 100.
Confidence level means that sufficient tests must be conducted to demonstrate, with statistical valid-
ity, that a requirement has been met. Confidence level does not refer to the qualitative opinion about
meeting a requirement. Also, confidence level does not lower a requirement; i.e., a 100-h MTBF at
a 90 percent confidence level does not mean that 100 h is desired but that 0.90 ! 100, or 90 h, is
acceptable. Such serious misunderstandings have occurred. When the term is used, a clear under-
standing should be verified and not assumed.

Determination of the Sample Size Required to Achieve a Specified Precision in an Estimate.
Additional tests will increase the precision of the estimates obtained from a test program. The
increase in precision usually does not vary linearly with the number of tests—doubling the number
of tests usually does not double the precision (even approximately). Further, if the sample is selected
randomly and if the sample size is less than 10 percent of the population size, then precision depends
primarily on the absolute size of the sample rather than on the sample size expressed as a percent-
age of the population size. Thus a sample size that is 1 percent of a population of 100,000 may be
more precise than a 10 percent sample from a population of 1000 (see Hahn 1972).

The cost of additional tests must be evaluated against the value of the additional precision.
Confidence limits can help to determine the size of a test program required to estimate a product
characteristic within a specified precision. Suppose it is desired to estimate the true mean life of a
battery. The estimate must be within 2.0 h of the true mean if the estimate is to be of any value. The
variability is known as " # 10.0. A 95 percent confidence level is desired on the confidence state-
ment. The 2.0 h is the desired confidence interval half-width, so

2.0 # n # 96

A sample of 96 batteries will provide a mean that is within 2.0 h of the true mean (with 95 percent
confidence). Notice the type of information required: (1) desired width of the confidence interval

(1.96)(10)
$$

!n"
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(the precision desired in the estimate), (2) confidence level desired, and (3) variability of the char-
acteristic under investigation. The number of tests required cannot be determined until the engineer
furnishes these items of information.

Table 44.23 summarizes formulas and graphs useful in determining the sample size required to
estimate a population parameter with a specified precision. The following examples illustrate some
of the formulas.

Example: A sample must be selected to estimate the population mean length of a part.
It appears reasonable to assume that length is normally distributed. An estimate of the stan-
dard deviation is not available, but process knowledge suggests that “almost all” produc-
tion falls between 2.009 and 2.027 in. As a first approximation, the standard deviation is
estimated as (2.027!2.009) divided by 6, or 0.003 in. It is desired that the estimate of "
be within 0.001 in of the true " and that the estimation statement be made at the 95 per-
cent confidence level. Referring to Appendix II, Chart S, E/s # 0.001/0.003 # 0.33, and
the required sample size is about 37. It is instructive to calculate n for other values of E
and s (see Table 44.24). Such a sensitivity analysis is helpful in evaluating the cost of extra
tests against the value of extra precision.

Example: It is desired to estimate the standard deviation $ of a population within 20 per-
cent of the true value at the 95 percent confidence level. Referring to Appendix II, Chart T,
the required degrees of freedom is about 46 and, therefore, the sample size is 46 % 1, or 47.
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Prediction Intervals. A prediction interval is used when the desire is not an estimate of pop-
ulation characteristics directly but rather a prediction of what we will find when we take a future item
from the population. For example, in the example of n ! 61 specimens of brass with a mean hard-
ness of 54.62 and an estimated standard deviation of 5.34, we previously found that 95 percent con-
fidence limits on the mean were

X! " t ! 53.25 and 55.99

Now we ask: What limits can we be 95 percent sure the next item sampled will have its hardness
within? The appropriate interval here is

X! " ts "1# "### ! 54.62 ± (2.00)(5.34)(1.0082)

!43.85 and 65.39

For further considerations and tables, see Hahn (1970a, 1970b).

Tolerance Intervals. Statistical tolerance limits are similar to process capability; i.e., they
show the practical boundaries of process variability (see Section 22, under Operations) and therefore
can be a valuable input in the determination of engineering tolerance limits (which specify the allow-
able limits for product acceptance). Methods for calculating statistical tolerance limits are of two
types—those which assume a normal distribution and those which do not require any distributional
assumption. Table 44.25 summarizes these methods.

Table 44.26 shows data I will use to illustrate these methods. Five samples of four each were
taken and an outside dimension of a cathode pole recorded. A confidence level of 95 percent and a
population percentage of 99 percent have been chosen.

Using method 1 and the standard deviation s, the statistical tolerance limits are

X! ± ks ! 1.00287 ± 3.615(0.00034) ! 1.00164 and 1.00410

Using method 2 and the overall range R of the combined data, the limits are

X! ± K
1
R ! 1.00287 ± 1.005(0.00134) ! 1.00152 and 1.00422

Using method 3 and the average of the ranges R, the limits are

X! ± K
2
R! ! 1.00287 ± 1.783(0.00078) ! 1.00148 and 1.00426

These methods assume that the characteristic is normally distributed. Method 4 is “distribution-
free” and assumes only that the distribution is continuous and the sample is a random one (these
assumptions apply to all methods). The statistical tolerance limits by this method are simply the
extreme observations in the combined sample, i.e., 1.00231 and 1.00365. Appendix II, Table W indi-
cates that at least 78.4 percent of the population will be included within these limits. (Note that
Appendix II, Table X provides the sample size required to include 99 percent of the population; i.e.,
a sample of 473 is needed to be 95 percent confident that the sample extremes would include 99 per-
cent of the population.)

When it is feasible to assume a normal distribution, method 1 is preferred because it usually pro-
vides the narrowest set of limits while recognizing the variation in the sample. Methods 2 and 3 are
good approximations. If normality cannot be assumed, then method 4 is appropriate but at the cost
of a larger sample size. In practice, a partial sample can first be obtained to evaluate the assumption
of normality. If normality can be assumed, the partial sample is then used to determine statistical tol-
erance limits. Otherwise, the full sample should be taken and the distribution-free approach (method
4) applied to determine the limits.

Tolerance intervals also have been developed for other cases, such as where the distribution is
exponential. Ranganathan and Kale (1983) give such intervals that are resistant to the presence of an

1
#
n

s
#
$n!
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outlier in the observations. Their Section 5 includes an example with data on reliability of air con-
ditioning on a Boeing 727 jet aircraft.

All the preceding methods involve two probabilities, i.e., a confidence level ! and the probabili-
ty P of falling within limits. This is confusing, but these two probabilities are needed to obtain a
mathematically correct statement concerning the limits. An approximation uses the sample average
X! and standard deviation s and regards these as highly reliable estimates of " and #. If normality is
assumed, then 99 percent statistical tolerance limits are calculated as

X! ± 2.58s

where the value of 2.58 is obtained from the normal distribution table (Appendix II, Table B):

X! ± 2.58 $ 1.00287 ± 2.58 (0.000274)

$ 1.00216 and 1.00358

These limits are then interpreted to mean that 99 percent of the population is within 1.00217 and
1.00357. Another approach sets the limits at simply X! ± 3s. At best, these are only approximate
because X! and s are not exactly equal to " and #. Bingham (1962) discusses the X ± 3s approxima-
tion. (Confidence limit calculations could indicate the size of the possible error.)

Another approach to simplify the probability statement uses the Chebyshev inequality theorem,
which holds for any continuous distribution. The theorem states that the probability of obtaining a
value that deviates from " by more than k standard deviations is less than 1/k2. For the limits to
include 99 percent,

0.01 $ 

or

k $ 10

The 99 percent limits would be calculated at X! ± 10s. These limits are distribution-free, and the pre-
diction statement is simple; i.e., at least 99 percent of the population is within X! ± 10s. However, the
multiple of 10 is highly conservative and results in limits much wider than any of the other methods.

For the methods listed in Table 44.25, no provision is made for the division of the remaining
100(1 % P) percent between the upper and lower tails of the distribution. Owen and Frawley (1971)
give a procedure and tables for setting limits that do provide for controlling the percentage outside
each of the two limits.

Statistical tolerance limits are sometimes confused with other limits used in engineering and sta-
tistics. Table 44.27 summarizes the distinctions among five types of limits. Hahn (1970a, 1970b)
gives an excellent discussion with examples and tables to illustrate the differences among several
types of limits. Also see Harter (1983), under “Tolerance Limits.”

Tolerance Limits for Interacting Dimensions. Interacting dimensions are those which mate or
merge with other dimensions to create a final result. Setting tolerance limits on such dimensions is
discussed in the following paragraphs. Setting tolerance limits on noninteracting dimensions makes
use of the methods presented under Statistical Tolerance Limits in this section.

Conventional Method Relating Tolerances on Interacting Dimensions. Consider the simple
mechanical assembly shown in Figure 44.18. The lengths of components A, B, and C are interacting
dimensions because they determine the overall assembly length.

The conventional method of relating interacting dimensions is simple addition. For the example
of Figure 44.18,

Nominal value of the result $ nominal value
A

& nominal value
B

& nominal value
C

1
'
k2
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Tolerance T of the result ! T
A

" T
B

" T
C

Nominal value of assembly length ! 1.000 " 0.500 " 2.000 ! 3.500

Tolerance of assembly length ! 0.0010 " 0.0005 " 0.0020 ! ±0.0035

This method assumes 100 percent interchangeability of components making up the assembly. If the
component tolerances are met, then all assemblies will meet the assembly tolerance determined by
the simple arithmetic addition.

The approach of adding component tolerances is mathematically correct but often too conservative.
Suppose that about 1 percent of the pieces of component A are expected to be below the lower tolerance
limit for component A, and suppose the same for components B and C. If a component A is selected at
random, there is, on average, 1 chance in 100 that it will be on the low side, and similarly for compo-
nents B and C. The key point is this: If assemblies are made at random, and if the components are man-
ufactured independently, then the chance that an assembly will have all three components
simultaneously below the lower tolerance limit is

# # ! 

There is only about one chance in a million that all three components will be too small, resulting in
a small assembly. Thus, setting component and assembly tolerances based on the simple addition for-
mula is conservative in that it fails to recognize the extremely low probability of an assembly con-
taining all low (or all high) components.

Statistical Method of Relating Tolerances on Interacting Dimensions. This method states for the
example Figure 44.18:

1
$$
1,000,000

1
$
100

1
$
100

1
$
100
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Nominal value of the result ! nominal value
A

" nominal value
B

" nominal value
C

Tolerance of the result ! !T"
A
2""" T"

B
2" "" T"

C
2"

Then:

Nominal value of the assembly ! 1.000 " 0.500 " 2.000 ! 3.500

T of the assembly ! !(0".0"0"1")2" "" ("0".0"0"0"5")2" "" ("0".0"0"2")2" ! ±0.0023

Practically all (but not 100 percent) of the assemblies will fall within 3.500 ± 0.0023. This is nar-
rower than 3.500 ± 0.0035 (the result by the arithmetic method).

In practice, the problem often is to start with a defined end result (e.g., assembly length specifi-
cation) and set tolerances on the parts. Suppose the assembly tolerance was desired to be ±0.0035.
Listed in Table 44.28 are two possible sets of component tolerances that when used with the qua-
dratic formula will yield an assembly tolerance equal to ±0.0035. The tolerance set using the con-
ventional formula is also shown.

The advantage of the statistical formula is larger component tolerances. With alternative 1, the
tolerance for component A has been doubled, the tolerance for component B has been quadrupled,
and the tolerance for component C has been kept the same as the original component based on the
simple addition approach. If alternative 2 is chosen, similar significant increases in the component
tolerances may be achieved. This formula, then, may result in a larger component tolerance with no
change in the manufacturing processes and no change in the assembly tolerance. Note that the largest
single tolerance has the greatest effect on the overall result.

The disadvantage of the quadratic formula is that it involves several assumptions that, even if met,
will still result in a small percent (theoretically 0.27 percent) of results not conforming to the limits
set by the formula. The assumptions are

1. The component dimensions are independent and the components are assembled randomly. This
assumption is usually met in practice.

2. Each component dimension should be normally distributed. Some departure from this assumption
is permissible.

3. The actual average for each component is equal to the nominal value stated in the specification.
For the original assembly example, the actual averages for components A, B, and C must be 1.000,
0.500, and 2.000, respectively. Otherwise, the nominal value of 3.500 will not be achieved for the
assembly, and tolerance limits set about 3.500 will not be realistic. Thus it is important to control
the average value for interacting dimensions. This means that process control techniques are
needed using variables measurement rather than go no-go measurement.

A summary of the two methods of tolerance is given in Table 44.29.
The statistical tolerancing formula applies both to assemblies made up of physically separate

components and to a chain of several interacting dimensions within one physical item. Further, the
result of the interacting dimensions can be an outside dimension (assembly length) or an internal
result (clearance between a shaft and hole).
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Further Applications of Statistical Tolerancing. It is easy to be deceived into concluding that the
statistical method of tolerancing is merely a change from an expression of tolerances in the form of
limits on each component to a form of

1. Upper and lower limits on the average X! of the mass of components
2. An upper limit to the scatter ! of the components

The change is much more profound than mere form of the specification. It affects the entire cycle of
manufacturing planning, production, inspection, quality control, service, etc. It is, in effect, a new
philosophy of manufacture.

The first published example of a large-scale application of statistical tolerancing appears to be
that of the L-3 coaxial system (a broad-band transmission system for multiple telephone or televi-
sion channels). Dodge et al. (1953) discuss the application.

The general plan was

1. Discovery of the key quality characteristics of each component element of the system.
2. Determination of the precision of measurement to separate measurement variability from process

and product variability.
3. Collection of data on process capability for the key qualities, to aid in establishing realistic tolerances.

The foregoing were preliminary to

4. Establishment of tolerances for the key quality characteristics in the dual form of a maximum on
the standard deviation ! and limits on the average X!. The limits on X were established as ±(1"3)!
around the nominal.

5. Establishment of control procedures.

It was recognized that the limits on ! and X! required further interpretation if the intent of the
designers was to be carried out by the manufacturers. To this end, three forms of product acceptance
were established:
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1. Control charts. Shewhart control charts for X! and ! could be used for product acceptance, pro-
vided “eligibility” was established (seven consecutive subgroups, of five pieces each, all met the
control limits for X! and !) and provided subsequent statistical control was maintained (based on
chart results plus absence of major changes in process).

2. Batch control. This was based on examination of a sample of (normally) 50 pieces by variables
measurements, with limits on X! and ! appropriate to the sample size of 50. Each batch stood or
fell on its own measurements.

3. Detailed classification. Product that did not qualify under 1 or 2 was measured in detail. The
resulting conforming units were classified into one of three variable classes. The packaging was
then done by selecting classified units in such a way that each package contained an assortment
of product which conformed to the intent of the design as to X! and !.

Grant and Leavenworth (1980) discuss statistical tolerancing, including an application to shafts
and holes. The Western Electric Company, Inc. (1982), in its Statistical Quality Control Handbook
(pp. 122–127), presents examples and discusses the assumptions. Peters (1970) discusses statistical
tolerancing, including a method for recognizing cost differences among components. Choksi (1971)
discusses the use of computer simulation to determine optimum tolerances.

The concept may be applied to several interacting variables in an engineering relationship. The
nature of the relationship need not be additive (assembly example) or subtractive (shaft and hole
example). The formula can be adapted to predict the variation of results that are the product and/or
the division of several variables. Mouradian (1966) discusses these applications.

Bayesian Estimates. Bayesian estimation can be used when the parameter to be estimated can
be considered to be a random variable for which we know the distribution. For example, in sampling
inspection, the proportion of defectives p in a lot may be a random variable about which we can fit
a distribution by our sampling inspection over time. If so, then in the future that information can be
used to provide quality assurance with less sampling (see Lenz and Rendtel 1984).

When it is not possible to cumulate information about a stable process, some have proposed that
we use our “feelings” about the parameter to choose a statistical distribution for it and then proceed
as if the parameter were a random variable with that distribution. This is called the personal proba-
bility approach, and those who use it are called Bayesians. Some of the proponents of this approach
say that it is the only method that any sensible person should use, and this has been cause for bitter
debates and ill-will. In my view, while a person in a management position might find this a reason-
able way to express his or her insights quantitatively, in most cases this will be an unscientific way
of simply incorporating prejudices into the decision process, resulting in costly errors. This approach is
of some use in general statistical decision theory (see Chapter 12 of Dudewicz 1976), but there it
is used to generate a set of decision rules that contains all good rules, not just one rule based on one’s
“feelings.” The Bayesian approach should be considered whenever information can be gathered over
time on a stable process.

Intervals with Fixed Width and Precision. The intervals considered up to now typically
either had a random width (e.g., parts 7 and 8 of Table 44.22) or required that one know such parame-
ters as variances (e.g., part 6 of Table 44.22). If one can take observations in two stages, then one can
control both the width and the confidence. Let me illustrate for two normal means when we do not know
the variances (and do not know that they are equal). Here we can proceed in two stages as follows:

Sample n
0

observations from each of k " 2 populations (n
0

at least 10 is desirable).
Determine the total sample size for population i as

n
i
" max [n

0
# 1, (ws

i
)2] with w " h

n0
(2, (1 # P*)/2)/d

where h is from Table 44.30, d is the desired half-width, k " 2 populations, and P* is the confi-
dence desired.
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TABLE 44.30 Multipliers h!hn0
(k, P*) Needed for Solving Two-Stage Testing, Confidence Interval, and

Selection of the Best Problems* (Continued)

*The table entries are from Table 4 on pp. 17–23 of “New Tables for Multiple Comparisons with a Control (Unknown
Variances),” by E. J. Dudewicz, J. S. Ramberg, and H. J. Chen, Biometrische Zeitschrift, vol. 17 (1975), pp. 13–26. Reprinted
with the permission of Akademie-Verlag, Berlin.



Take n
1
! n

0
more observations on population 1 and n

2
! n

0
more on population 2.

Compute the sample means X!1
of n

1
observations, and X!2

of n
2

observations and the interval is X!1 !
X!2

± d (i.e., we are 100P* percent sure that the difference of the population means is within d units
of the difference of the sample means). For an example of the calculations involved, see Example
of Selection of the Best below.

STATISTICAL TESTS OF HYPOTHESES

A statistical hypothesis is an assertion about a population, often about some parameter of a popula-
tion. Tests of hypotheses (also called tests of significance) were designed so that experimenters would
not ascribe causes to variations in data that were in fact due simply to random variation (and thus did
not need a cause to explain them). Thus statistical hypothesis testing is a modern-day version of the
medieval Occam’s razor principle that “one should not multiply causes without reason.” (William of
Occam was an English Franciscan philosopher who died about 1349.) For example, if a process has
a mean weight of 14.90 lb per item produced, a change is made with a view to increasing the weight
per item produced, and a sample of 10 items (taken after the process change) has a mean weight of
15.10 lb, this does not necessarily mean that the process mean has been shifted up: It could be that it
has remained the same (or has even decreased) and that we are simply seeing the results of the ran-
domness of the process. Making correct inferences in the face of such possibilities is the gist of the
area of hypothesis testing.

Basic Concepts, Types of Errors. Hypothesis as used here is an assertion made about a
population. Usually the assertion concerns the numerical value of some parameter of the population.
For example, a hypothesis might state that the mean life of a population of batteries equals 30.0, writ-
ten as H:"

0
# 30.0. This assertion may or may not be correct. A hypothesis test is a test of the valid-

ity of the assertion and is carried out by analysis of a sample of data.
There are two reasons why sample results must be evaluated carefully. First, there are many other

samples that, by chance alone, could be drawn from the population. Second, the numerical results in
the sample actually selected can easily be compatible with several different hypotheses. These points
are handled by recognizing two types of error which can be made in evaluating a hypothesis:

1. Reject the hypothesis when it is true. This is called the type 1 error; its probability is called the
level of significance and is denoted by $.

2. Accept the hypothesis when it is false. This is called the type II error; its probability is usually
denoted by % (though some authors call it 1!%).

These error probabilities can be controlled to desired values.
The type I error is shown graphically in Figure 44.19 for the hypothesis H:"

0
# 30.0. The area

between the vertical lines represents the acceptance region for the hypothesis test: If the sample
result falls within the acceptance region, the hypothesis is accepted. Otherwise, it is rejected. Notice
that there is a small portion of the curve that falls outside the acceptance region. This portion ($) rep-
resents the probability of obtaining a sample result outside the acceptance region, even though the
hypothesis is correct.

Suppose it has been decided that the type I error must not exceed 5 percent. This is the probability
of rejecting the hypothesis when, in truth, the true average life is 30.0. The acceptance region can be
obtained by locating values of average life that have only a 5 percent chance of being exceeded when
the true average life is 30.0. Further, suppose a sample n of four measurements is taken and & # 10.0.

Remember that the curve represents a population of sample averages because the decision will
be made on the basis of a sample average. Sample averages vary less than individual measure-
ments according to the relationship &X! # &/"n!.

Further, the distribution of sample averages is approximately normal even if the distribution of
the individual measurements (going into the averages) is not normal [see Grant and Leavenworth
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(1972, pp. 69–71)]. The approximation holds best for large values of n but is adequate for n as
low as 4.

Table B in Appendix II shows that a 2.5 percent area in each tail is at a limit that is 1.96 standard
deviations from 30.0. Then under the hypothesis that !

0
" 30.0, 95 percent of sample averages will

fall within ±1.96#x! of 30.0, or

Upper limit " 30.0 $ 1.96 " 39.8

Lower limit " 30.0 % 1.96 " 20.2

The acceptance region is thereby defined as 20.2 to 39.8. If the average of a random sample of four
batteries is within this acceptance region, the hypothesis is accepted. If the average falls outside the
acceptance region, the hypothesis is rejected. This decision rule provides a type I error of 0.05.

The type II or & error, the probability of accepting a hypothesis when it is false, is shown in
Figure 44.20 as the shaded area. Notice that it is possible to obtain a sample result within the accep-
tance region, even though the population has a true average that is not equal to the average stated in
the hypothesis. The numerical value of & depends on the true value of the population average (and
also on n, #, and '). This is depicted by an operating characteristic (OC) curve.

The problem now is to construct an operating characteristic curve to assess the magnitude of the
type II (&) error. Since & is the probability of accepting the original hypothesis (!

0
" 30.0) when it

is false, the probability that a sample average will fall between 20.2 and 39.8 must be found when
the true average of the population is something other than 30.0. This has been done for many values
of the true average, and the result is shown in Figure 44.21. [This curve should not be confused with
that of a normal distribution of measurements. In some cases the shape is similar, but the meanings
of an OC curve and a distribution curve are entirely different; Juran and Gryna (1980, pp. 410–412)
give the detailed calculations; also see Dudewicz (1976, pp. 272–275).] Thus the OC curve is a plot
of the probability of accepting the original hypothesis as a function of the true value of the popula-
tion parameter (and the given values of n, #, and ').

Use of the Operating Characteristic Curve in Selecting an Acceptance Region.
The acceptance region was determined by dividing the 5 percent allowable ' error into equal parts

10
(
"4!

10
(
"4!
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(see Figure 44.19). This is called a two-tailed test. The entire 5 percent also could be placed at either
the left or the right tail of the distribution curve (Figure 44.22). These are one-tailed tests.

Operating characteristic curves for tests having these one-tailed acceptance regions can be devel-
oped following the approach used for the two-tailed region. Although the ! error is the same, the "
error varies for the three tests. (See Figure 9.2-2 on p. 275 of Dudewicz 1976.)

In some problems, knowledge is available to indicate that if the true average of the population is
not equal to the hypothesis value, then it is on one side of the hypothesis value. For example, a new
material of supposedly higher average strength will have an average equal to or greater than that of
the present material. Such information will help select a one-tailed or two-tailed test to make the "
error as small as possible. The following guidelines are based on the analysis of OC curves:

Use a one-tailed test with the entire ! risk in the right tail if (1) it is known that (if #
0

is not true)
the true mean is >#

0
or (2) values of the population mean $#

0
are acceptable and we are interested

only in detecting a population mean %#
0
. [Use a one-tailed test with the entire ! risk in the left tail

if (1) it is known that (if #
0
is not true) the true mean is $#

0
or (2) values of the population mean

%#
0

are acceptable and we are interested only in detecting a population mean $#
0
.]

Use a two-tailed test if (1) there is no prior knowledge on the location of the true population mean
or (2) we are interested in detecting a true population mean $ or % the #

0
stated in the original hypoth-

esis. (With a two-tailed test, the hypothesis is sometimes stated as the original hypothesis H
0
:#

0
& 30.0

against the alternative hypothesis H
1
:#

0
≠ 30.0. With a one-tailed test, H

0
:#

0
& 30.0 against the alter-

native H
1
:#

1
$ 30.0 if ! is placed in the left tail or H

1
:#

1
% 30.0 if ! is placed in the right tail.)
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Every test of hypothesis has an OC curve. Duncan (1974) and Natrella (1963) are good sources
of OC curves. [Some references present “power” curves, but power is simply 1 ! (the probability of
acceptance) " 1 ! #.]

With this background, our discussion now proceeds to the steps for testing a hypothesis.

Testing a Hypothesis When the Sample Size Is Fixed in Advance. Ideally, desired
values for the type I and type II errors are defined in advance and the required sample size deter-
mined (see later discussion on Determining the Sample Size Required for Testing a Hypothesis). If
the sample size is fixed in advance because of cost or time limitations, then usually the desired type
I error is defined and the following procedure is followed:

1. State the hypothesis.

2. Choose the type I error. Common values are 0.01, 0.05, or 0.10.

3. Choose the test statistic for testing the hypothesis.

4. Determine the acceptance region for the test, i.e., the range of values of the test statistic that result
in a decision to accept the hypothesis.

5. Obtain the sample of observations, compute the test statistic, and compare the value to the accep-
tance region to make a decision to accept or reject the hypothesis.

6. Draw an engineering conclusion.
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In the case of fixed sample size, the hypothesis is said to be “accepted” in the sense that there is
insufficient evidence for the hypothesis to be rejected. However, this does not mean that the hypoth-
esis is true. (See the introductory paragraph of Statistical Tests of Hypotheses above and Drawing
Conclusions from Tests of Hypotheses below.) For this reason, one often uses the terminology “fail
to reject” rather than “accept.”

Table 44.31 summarizes some common tests of hypotheses. [These are tests commonly men-
tioned in the literature and used in practice. A number of them assume a normal distribution, Harter
and Dubey (1967) define tests for the mean and variance but assuming a Weibull distribution—
which really covers a family of distributions.] The procedure is illustrated through the following
examples. Further examples and elaboration of the procedure are provided in Dixon and Massey
(1969), Johnson and Leone (1964), Duncan (1974), Dudewicz (1976), and Natrella (1963). Table
44.31 lists a few unique or additional references for certain tests. For nonparametric tests, see espe-
cially Gibbons (1997).

Example: Tests on eight units of an experimental engine showed that they operated,
respectively, for 28, 26, 31, 29, 25, 27, 28, and 27 min with 1 liter of a certain kind of fuel.
A proposed specification states that the engine must operate for an average of at least 30
min. Does the engine meet the requirement? Assume a 5 percent significance level.

Solution: Using Test 1b of Table 44.31,

H
0
: ! " 30.0

H
1
: ! # 30.0

Test statistic:

t1 "

Acceptance region:

Degrees of freedom DF " 8 $ 1 " 7

t ≥ $1.895

A mathematical derivation of degrees of freedom is beyond the scope of this handbook,
but the underlying concept can be stated. Degrees of freedom is a measure of the assurance
involved when a sample standard deviation is used to estimate the true standard deviation
of a universe. When the true standard deviation is known, DF " ∞. More generally, DF
equals the number of measurements used to determine the sample standard deviation
minus the number of constants estimated from the data in order to compute the standard
deviation. In this example, it was necessary to estimate only one constant (the sample aver-
age) in order to compute the standard deviation, therefore DF " 8 $ 1.

Analysis:

X! " 27.6 s " 1.86

t " " $3.65

Conclusion: Reject the hypothesis. There is sufficient evidence to conclude that the
engine does not meet the requirement.

27.6 $ 30.0
%%

%
"
1.86

8!
%

X! $ !
0%

s/"n!
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Example: Solve the previous example using the range instead of the standard deviation.

Solution: Using Test 1c of Table 44.31,

H
0
: ! " 30.0

H
1
: ! # 30.0

Test statistic:

$
1
" 

Acceptance region:

$
1
≥ %0.230

Analysis:

$
1
" " %0.40

Conclusion: Reject the hypothesis. There is sufficient evidence to conclude that the
engine does not meet the requirement.

Example: Solve the previous example using the sign test.

Solution: Using Test 1d of Table 44.31,

H
0
: ! " 30

H
1
: ! # 30

Test statistic: Number of positive signs r.

Acceptance region:

r & 1 (one-tailed test)

Analysis:
X X % !

0

28 %

26 %

31 '

29 % r " 1
25 %

27 %

28 %

27 %

Conclusion: Reject the hypothesis. There is sufficient evidence to conclude that the
engine does not meet the requirement.

27.6 % 30.0
((

6

X! % !0(
R
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Example: Five batches of rubber were made by each of two recipes and tested for ten-
sile strength with the following results:

Recipe 1 Recipe 2

3067 3200
2730 2777
2840 2623
2913 3044
2789 2834

Test the hypothesis that average strength is the same for the two recipes. Assume a 5
percent significance level.

Solution: First, Test 5a of Table 44.31 tests the assumption of equal variances. The out-
come of this is used to decide whether to use Test 2b or 2d to evaluate the question about
average strength.

H
0
: !

1
2 " !

2
2

H
1
: !

1
2 ≠ !

2
2

Test statistic:

DF
1
" 5 # 1 " 4 DF

2
"5 # 1 " 4

F " 

Acceptance region:

≤ F ≤ 9.60

Analysis:

s
1
2 " 16,923.7

s
2
2 " 51,713.3

F " " 0.33

Conclusion: Accept the hypothesis. This is used to satisfy the assumption of equal vari-
ances in the following test of hypothesis. Now, using Test 2b,

H
0
: $

1
" $

2

H
1
: $

1
≠ $

2

Test statistic:

X!1
# X!2t "

"# %### "##[(n
1
# 1)s

1
2 % (n

2
# 1)s

2
2]

&&&
n

1
% n

2
# 2

1
&
n

2

1
&
n

1

16,923.7
&
51,713.3

1
&
9.60

(s1)
2

&
(s2)2
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Acceptance region:

DF ! 5 " 5 # 2 ! 8

#2.306 ≤ t ≤ +2.306

Analysis:

2867.8 # 2895.6
t !

!" """" !""
! #0.2373

Conclusion: Accept the hypothesis. There is insufficient evidence to conclude that the
recipes differ in average strength.

Example: Solve the previous example using ranges instead of standard deviations.

Solution: First, Test 5b of Table 44.31 tests the assumption of equal variances.

H
0
: $

1
2 ! $

2
2

H
1
: $

1
2 ≠ $

2
2

Test statistic:

F ′ ! 

Acceptance region:

0.32 % F ′ % 3.2

Analysis:

R
1
! 3067 # 2730 ! 337

R
2
! 3200 ! 2623 ! 577

F ′ ! ! 0.58

Conclusion: Accept the hypothesis. This is used to satisfy the assumption of equal vari-
ances in the following test of hypothesis. Now, using Test 2c,

H
0
: &

1
! &

2
H

1
: &

1
≠ &

2

Test statistic:

'
d
! 

Acceptance region:

#0.493 ≤ '
d
≤ "0.493

R
1
! 3,067 # 2,730 ! 337

R
2
! 3,200 # 2,623 ! 577

X#1
# X#2((

0.5(R
1
" R

2
)

337
(
577

R
1(

R
2

(5 # 1)16,923.7 " (5 # 1)51,713.3
((((

5 " 5 # 2
1
(
5

1
(
5
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Analysis:

!
d
" " #0.061

Conclusion: Accept the hypothesis. There is insufficient evidence to conclude that the
recipes differ in average strength.

Testing a Hypothesis When the Sample Size Is Not Fixed in Advance. As noted
earlier under Testing a Hypothesis When the Sample Size Is Fixed in Advance, ideally the desired
values of type I and type II errors are defined in advance and the required sample size determined.
However, if the sample size is fixed in advance, this cannot be done in most cases, and one can con-
trol only the type I error (not the type II error). One can control both when the sample size is not
fixed in advance, as illustrated now for the case of testing if the means of two populations are equal
(H : $

1
" $

2
).

For type I error equal to % and type II error equal to & when the means differ by '* (a positive
number) in absolute value, one proceeds as follows:

Sample n
0

observations from each of the (k " 2) populations (it is desirable that n
0

be at least 10
if possible).
Determine the total sample size for population i as

n
i
" max[n

0
( 1, (ws

i
)2]

where w solves the equation (solve by trial and error)

Pn0
(#h # '* w) ( Pn0

(#h ( '* w) " &

where h " hn0
(2,1 # %/2) is found from Table 44.30, and Pn0

(t) is tabled in Table 44.32.
Take n

1
# n

0
more observations from population 1 and n

2
#n

0
more observations on population 2.

Reject the hypothesis that the means are equal if the sample means (based on all the data) differ
by more than h/w.

As an example, suppose we have an initial sample size of n0 " 15 and desire type I error % " .05
and type II error & " .10 when the means differ by '* " 4.0. Then from Table 44.30, h " hn0

(2,1 #
%/2) " h

15
(2, .975) " 3.02. We find the w that solves

P
15

(#3.02 # 4w) ( P
15

(#3.02 ( 4w) " .10

in two steps. First, we find w approximately by solving P
15

(#3.02 ( 4w) " .10 using Table 44.32.
Since Table 44.32 has entries of .4999 and larger, we first convert the equation using the fact that
Pn0

(#v) " 1 # Pn0
(v) for all v, obtaining

1 # P
15

(3.02 # 4w) " .10 or P
15

(3.02 # 4w) " .90

Since P
15

(1.9) " .8968 and P
15

(2.0) " .9079, w will (to a first approximation) be in the range of the
solutions of

3.02 # 4w " 1.9 and 3.02 # 4w " 2.0

namely, w " (3.02 # 1.9)/4 " 0.28 and w " (3.02 # 2.0)/4 " 0.255. Thus let us try a value of w "
0.255. For this value,

P
15

[#3.02 # (4)(0.255)] ( P
15

[#3.02 ( (4)(0.255)] " P
15

(#4.04) ( P
15

(#2.0) " 1 # P
15

(4.04)

( 1 # P
15

(2.0) " 1 # .9946 ( 1 # .9079 " .0054 ( .0921 " .0975 " .10

2867.8 # 2895.6
))
0.5(337 ( 577)
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TABLE 44.32 Probabilities P
n0

(t) Needed for Testing if Two Means Are
Equal in Two Stages*



TABLE 44.32 Probabilities P
n0

(t) Needed for Testing if Two Means Are Equal in
Two Stages* (Continued)

*The table entries are from p.52 of E.J. Dudewicz and S.R. Dalal (1975), “Allocation of
Observations in Ranking and Selection With Unequal Variances.” Sankhya, vol. 73B, pp.28-78.
Acknowledgment is made to the Indian Statistical Institute for permission to reproduce these tables.
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(The approximation process could be carried further, but for most practical purposes this w will suf-
fice.) Then, if s

1
! 17.3, we will need a total sample of size

n
1
! max{15 " 1, [(0.255)(17.3)]2} ! max(16, 19.46) ! 20

(since sample sizes must be integers, we round up). Since we already have 15 observations, 20 # 15
! 5 more will be required from population 1. Similarly, if s

2
! 10.4, we will need a total sample of

size

n
2
! max{15 " 1, [(0.255)(10.4)]2} ! max(16, 7.03) ! 16

Since we already have 15 observations from population 2, 16 # 15 ! 1 more will be required. If the
sample means based on all the data are X!1

and X!2
, we reject the hypothesis that $

1
! $

2
if the sam-

ple means differ by more than

! ! 11.84

For example, if X!1
! 38.3 and X!2

! 50.2, the sample means differ by 11.9, and we reject the null
hypothesis that the means are equal.

Drawing Conclusions from Tests of Hypotheses. The payoff for these tests of hypothe-
ses comes from reaching useful conclusions. The meaning of “Reject the hypothesis” or “Accept the
hypothesis” is shown in Table 44.33 along with some analogies to explain subtleties of the meanings.

When a hypothesis is rejected, the practical conclusion is that “the parameter value specified in
the hypothesis is wrong.” This conclusion is made with strong conviction—roughly speaking at a
confidence level of 100 (1#%) percent. The key question then is: Just what is a good estimate of the
value of the parameter for the population? Help can be provided on this question by calculating the
“confidence limits” for the parameter discussed under Statistical Estimation: Confidence Interval
Estimates.

3.02
&
0.255

h
&
w
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When a hypothesis is accepted, the numerical value of the parameter stated in the hypothesis has
not been proved, but it has not been disproved. It is not correct to say that the hypothesis has been
proved as correct at the 100 (1 ! ") percent confidence level. Many other hypotheses could be
accepted for the given sample of observations and yet only one hypothesis can be true. Therefore, an
acceptance does not mean a high probability of proof that a specific hypothesis is correct. (All other
factors being equal, the smaller the sample size, the more likely it is that the hypothesis will be
accepted. Less evidence certainly does not imply proof.) For this reason, often today the wording
used is “the hypothesis was not rejected at level of significance "” rather than “the hypothesis was
accepted at level ".” Only when the sample size is not fixed in advance do we have an indication that
the true value does not differ from the hypothesized value by more than #* with risk $.

With an acceptance of a hypothesis, a key question then is: What conclusion, if any, can be drawn
about the parameter value in the hypothesis? Two approaches are suggested:

1. Calculate confidence limits on the sample result (see the previous topic of Statistical Estimation).
These confidence limits define an interval within which the true population parameter lies. If this inter-
val is small, then an acceptance decision on the test of hypothesis means that the true population value
is either equal to or close to the value stated in the hypothesis. Then it is reasonable to act as if the para-
meter value specified in the hypothesis is in fact correct. If the confidence interval is relatively wide,
then this is a stern warning that the value stated in the hypothesis has not been proved and that the true
value of the population might be far different from that specified in the hypothesis.

2. Construct and review the operating characteristic curve for the test of hypothesis. This defines
the probability that other possible values of the population parameter could have been accepted by
the test. Knowing these probabilities for values relatively close to the original hypothesis can help
draw further conclusions about the acceptance of the original hypothesis. For example, Figure 44.21
shows the OC curve for a hypothesis that specified that the population mean is 30.0. Note that the
probability of accepting the hypothesis when the population mean % is 30.0 is 0.95 (or 1 ! "). Also
note that if % really is 35.0, then the probability of accepting % & 30.0 is still high (about 0.83). If
% really is 42.0, the probability of accepting % & 30.0 is only about 0.33.

Care must always be taken in drawing engineering conclusions from the statistical conclusions,
particularly when a hypothesis is accepted. [Rutherford (1971) discusses a procedure for drawing
conclusions which requires that a choice be made between two policies for drawing conclusions, i.e.,
conservative and liberal.]

Determining the Sample Size Required for Testing a Hypothesis. The previous
subsections assumed that the sample size was fixed by nonstatistical reasons and that the type I error
only was predefined for the test. The ideal procedure is to predefine the desired type I and type II
errors and calculate the sample size required to cover both types of errors.

The sample size required will depend on (1) the sampling risks desired (" and $), (2) the size
of the smallest true difference that is to be detected, and (3) the variation in the characteristic being
measured. The sample size can be determined by using the “operating characteristic” curve for the
test. Table 44.34 summarizes methods useful in determining the sample size required for two-
sided tests of certain hypotheses. [Further sources of OC curves are Duncan (1974) and Natrella
(1963).]

Suppose it were important to detect the fact that the average life of the batteries cited previously
was 35.0. Specifically, be 80 percent sure of detecting this change ($ & 0.2). Further, if the true aver-
age was 30.0 (as stated in the hypothesis), there should be only a 5 percent risk of rejecting the
hypothesis (" & 0.05). In using Appendix II, Chart R, d is defined as

d & & & 0.5

Entering with d & 0.5 and P
a
& 0.2 (the $ risk), the curves indicate that a sample size of about 30 is

required.

35.0 ! 30.0
''

10
% ! %0
'

(
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Duncan (1974) discusses the calculation of the sample size required to meet the type I and II
errors. In practice, however, one is often not sure of desired values of these errors. Reviewing the
operating characteristic curves for various sample sizes can help to arrive at a decision on the sam-
ple size required to reflect the relative importance of both risks. It is especially important to consid-
er ! as well as ", lest meaningless results be obtained. (Note that randomizing so as to reject H

0
100"

percent of the time yields a test with level of significance ". That in itself, without consideration of
!, is trivial.)

Relation to Confidence Intervals. Confidence limits provide a set of limits within which a
population parameter lies (with specified probability). Tests of hypotheses evaluate a specific state-
ment about a population parameter. These procedures are related, and most hypothesis tests also can
be made using confidence limit calculations.

Example: A sample of 12 insulators has an average strength of 4.95 ft#lb (6.7149 N#m).
The standard deviation of the population is known to be 0.25 ft#lb (0.34 N#m). It is desired
to test the hypothesis that the population mean is 5.15 ft#lb (6.9834N#m).

Solution using tests of hypotheses: Table 44.31 defines the test statistic 1a and U $ (X!
% &

0
)/('/"n!), and U is normally distributed. If " $ 0.05, the acceptance region is a U

between ± 1.96. Then

H
0
: & $ &

0
$ 5.15

H
1
: & ≠ &

0

U $ $ %2.75

Since the sample index is outside the acceptance region, the hypothesis is rejected. The
procedure using confidence limits is:

1. State the hypothesis concerning the value of a population parameter.
2. Obtain a sample of data and calculate confidence limits for the population parameter.
3. If the hypothesis value falls within the confidence limits, accept the hypothesis. If the

hypothesis value falls outside the confidence limits, reject the hypothesis.

Solution using confidence limits: From Table 44.22, parameter 1, the confidence limits are

X! ± K
" /2

'
(
"n!

4.95 % 5.15
((

0.25/"1!2!
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The 95 percent confidence limits are 4.95 ± 1.96 (0.25/ !1"2" ) ! 4.81 and 5.09. As
the hypothesis value falls outside the confidence limits, the hypothesis is rejected. This
is the same conclusion reached by using the hypothesis testing procedure.

Confidence limit concepts and tests of hypotheses are therefore alternative approaches to evalu-
ating a hypothesis. [For certain hypotheses, these two approaches will result in slightly different type
I errors (see Barr 1969).] As discussed under Drawing Conclusions from Tests of Hypotheses, con-
fidence limits are a valuable supplement to the test of hypothesis procedure. For example, in the pre-
ceding example, not only do confidence limits tell us that " is not 5.15, they also tell us that " is
between 4.81 and 5.09.

Standard Cases. Some of the most important practical cases have been covered in Table 44.31,
namely:

Binomial proportion Tests 6, 8
Two binomial proportions Test 7
Normal mean Test 1
Two means Test 2
Bivariate normal mean Test 3
One normal standard deviation Test 4
Two standard deviations Test 5
Two distributions are equal Test 9
Random order of observations Test 10
Test for outliers Test 11

Many of these problems also can be solved using sequential tests. There, the sample size is not set
in advance, but based on the data we decide how many observations are needed. For example, if one
decided to inspect a fixed number of items such as 100 items and reject the lot if 15 or more defectives
were found, clearly one could stop sampling as soon as the fifteenth defective were found. Similar ideas
allow savings in numbers of observations in most of the standard cases listed above and are especially
important when sampling is costly or time-consuming. For details, see Govindarajulu (1981).

Paired versus Unpaired Data. In Test 2e of Table 44.31 a test is given that is appropriate when data
are taken in pairs and the difference within each pair is used as the basic data. This procedure is often
used in order to “wash out” the effects of variables that are believed to have effects but whose effects
we do not wish to study.

For example, suppose that there is an effect of the operator of the machine, and we wish to compare
two types of operation on that machine—but do not wish to evaluate the size of the operator effect. Then
by letting each operator perform both operations and taking the difference, we wash out the effect of the
operator. (Whereas if one operator performed all of one procedure and another operator performed all of
the other procedure, differences observed might be due not to the procedures but to the operators.)

As another example, in testing of mailing lists to evaluate competing advertising copy, often an
“A/B split” is used. That is, one type of copy goes to names 1, 3, 5, 7,…on the list, while the other
type goes to names 2, 4, 6, .… Since (on ZIP-code-ordered lists) adjacent listings may be expected
to be more similar than entries far apart, this is an appropriate pairing.

This technique of pairing is not used when there is no advance pairing of the data. For example,
it is an error to pair items by their sequence in a data listing (where often they may be sorted by some
other characteristic).

Statistical Significance versus Practical Significance. Suppose we are using Test 1a
of Table 44.31 to test the hypothesis that the mean is 30, and wish a two-tailed test with level of sig-
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nificance 0.05. Then we will reject H if U is outside the interval (!1.96, 1.96). If we find U " 3.15,
one way of reporting the result of the test is to state that H was rejected at level 0.05.

Another way of reporting is to find for which level of significance the acceptance interval would
be (!3.15, 3.15). From Table B in Appendix II we see that level is (2) (0.00082) " 0.00164. This is
called the significance probability of the test we have conducted. It is the smallest level of signifi-
cance at which we would reject H for the data we observed.

One advantage of the significance probability is that if we use it, then we can report the signifi-
cance probability as 0.00164 without choosing a level of significance. Anyone reading our report can
use the level of significance he or she believes is appropriate: If theirs is less than 0.00164, they do
not reject, while if theirs is equal to or greater than 0.00164, they do reject the hypothesis.

One disadvantage of the significance probability is that it can be very small (indicating, one
would think, a “very significant” result) even when the true mean is close to 30. For example, U "
3.15 when X! " 33.15 and #/"n! " 1.00; U " 3.15 also when X! " 30.0315 and #/"n! " 0.01. In
each case the significance probability is 0.00164 (i.e., 0.164 percent). In the first case, the confidence
interval on the mean at 95 percent confidence runs over (31.19, 35.11), while in the second, the inter-
val runs over (30.0119, 30.0511). In terms of practical significance, the latter is much more likely to
be a trivial difference to the practitioner than is the former. However, there is no way to tell these two
situations apart by using the significance probability. For this reason, it is recommended that instead
confidence intervals be computed and presented.

ADDITIONAL STATISTICAL TOOLS

Today, a large number of statistical tools are used in quality control. The statistical tool kit (see Table
44.1) stresses the statistical base of collection, analysis, and interpretation of data. Transformations,
discussed below, are a method often used to ensure that data will meet the assumptions of statistical
procedures, while Monte Carlo sampling methods and clustering and discrimination procedures are
powerful methods whose use in quality control is now growing. They allow analysis with minimal
assumptions and analysis of multivariate characteristics, respectively. Bootstrap methods are a rela-
tively recent attempt to simplify modeling and analysis; in their generalized bootstrap form they
achieve this with minimal drawbacks. Selection of the best is an alternative goal (versus hypothesis
testing or confidence intervals) that should be used when one’s experiment has a goal of selection.

Transformations of Data. Most of the statistical methodology presented in this section
assumes that the quality characteristic follows a known probability distribution. The analysis and
conclusions that result are, of course, strictly valid only to the extent that the distribution assumption
is correct. Under Tests of Hypotheses, a “goodness-of-fit” test was presented for quantitatively eval-
uating a set of data to judge the validity of a distributional assumption. Moderate deviations of a
sample of observations from a theoretical population assumption are to be expected because of sam-
pling variation. The goodness-of-fit test determines whether the deviation of the sample from a the-
oretical assumption is likely to have been due to sampling variation. If it turns out as unlikely, then
it is concluded that the assumption is wrong.

Sometimes a set of data does not fit one of the standard distributions such as the normal distrib-
ution. One approach uses “distribution-free” statistical methods for further analysis. Some of these
were listed under Tests of Hypotheses, and Natrella (1963) and Gibbons (1997) present further mate-
rial. However, these methods often require larger sample sizes than conventional methods for equiv-
alent statistical risks. Some other approaches to analysis are

1. Examine the data to see if there is a nonstatistical explanation for the unusual distributional
pattern. For example, the output of each of several supposedly identical machines may be normally
distributed. If the machines have different means or standard deviations, then the combined output
probably has an unusual distribution pattern such as the mixture distribution already discussed in this
section. In this case, separate analyses could be made for each machine.
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2. Analyze the data in terms of averages instead of individual values. As stated under Basic
Concepts, Types of Error, sample averages closely follow a normal probability distribution even if
the population of individual values from which the sample averages came is not normally distrib-
uted. If it is sufficient to draw a final conclusion on a characteristic in terms of the average value, the
normal distribution assumption can be applied. However, the conclusions apply only to the average
value and not to the individual values in the population. (Predicting the percentage of a population
falling outside engineering limits illustrates the situation where analysis in terms of the average
would not be sufficient because engineering limits refer to individual values rather than averages.)

3. Use the Weibull probability distribution. The Weibull distribution is really a group of many
continuous distributions with each distribution uniquely defined by numerical values of the parame-
ters of the Weibull probability function (e.g., a beta value of 1.0 indicates an exponential distribu-
tion). If a set of data yields an approximate straight-line plot on Weibull paper, the straight line then
directly provides estimates of the probabilities for the population. Whether the exact form of the
probability distribution is normal, or exponential, or another distribution becomes somewhat sec-
ondary because the straight-line plot provides the needed probability estimates.

4. Make a transformation of the original characteristic to a new characteristic that is normally
distributed. Figure 44.23 summarizes several of these mathematical transformations. These transfor-
mations are useful for (a) achieving normality of measured results, (b) satisfying the assumption of
equal population variances required in certain tests, and (c) satisfying the assumption of additivity
of effects required in certain tests. Natrella (1963) discusses transformations for all these uses.
Romeu and Ozturk (1996) provide graphic tests of normality (even in multivariate cases).

The most common transformations for achieving normality are

!
1
(X

1
) " !X"

1
#" a"

!
2
(X

1
) " X

1
1/3

!
3
(X

1
) " log

10
(X

1
)

!
4
(X

1
) " arcsin !X"

1
"

!
5
(X

1
) " sinh#1 !X"

1
"

If one of these, say, !(X
1
), is normally distributed, the mean and variance of Y

i
" !(X

i
) may be esti-

mated by

Y" " #
n

j " 1
S

Y
2 " #

n

j " 1

However, interest in many cases is not in the expected value E!(X
1
) and the variance Var !(X

1
) but in

the original problem units EX1 and Var(X
1
). Simply using the inverse transformation—for example, to

estimate EX
1
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1
—results in a biased estimate. Good estimators for the mean

of the X’s are given in Table 44.35. Good estimators of the variance of the X’s allow us to find approx-
imate 95 percent confidence intervals for the mean of the X’s; such estimates are given in Table 44.36.
For example, when using !X"
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Full references are given by Dudewicz (1983), who also covers procedures for dealing with cases
where variances are unequal and data are normal. It is standard to recommend that equality of vari-
ability should be investigated, even when data are normal. Procedures for dealing with variance
inequality when it is found had not been available until recent years. Recently, Dudewicz and Dalal
(1983) showed how to compare several new processes with a standard process in this setting; their
paper also includes consideration of nonnormality and a data set (their Section 5) with numerical
details and normal probability plots for an example arising with solvents.

Monte Carlo Sampling Methods. Monte Carlo sampling methods are finding increasing
and important uses in quality control. For example, Gutt and Gruska (1977) use them to predict qual-
ity problems that may result from variation in manufacturing and assembly operations. This method
is based on fitting distributions to data (such as the GLD distribution discussed above under
Continuous Probability Distributions) and sampling from them using random numbers (also dis-
cussed previously), employing the resulting data to assess the performance of the simulated system
(which allows optimization of the system before it is built or modified). Other uses occur in opti-
mization (Golden et al. 1984), location modeling (Golden and Eiselt 1992), vehicle routing (Golden
1993), and inventory management (Dudewicz 1997). For example, a recent optimization method
called ARSTI that uses random intervals (Edissonov 1994) compares very well with previous meth-
ods. Since one can choose to apply more than one method and then take the better result, one can
only gain by incorporating such new methods into one’s work [which is facilitated by the fact that a
FORTRAN computer program for ARSTI is given by Edissonov (1994)].

Bootstrap Methods. In many quality control problems, full solutions have been developed
under the assumption that one knows the underlying probability distribution. Since often one does
not have this knowledge in practice, one needs to estimate the probability distribution (see Selecting
a Discrete Distribution and Selecting a Continuous Distribution earlier in this section). In the boot-
strap method, one does not estimate the probability distribution from a set of data like the tensile
strengths of five batches of rubber made with recipe 1 used in the illustration of testing average
strength: 3067, 2730, 2840, 2913, and 2789. That is, one does not test (for example) normality of the
data and (if the test fails to reject) use procedures that assume a normal probability distribution.
Instead, the bootstrap method takes samples at random with replacement from the data we have and
uses them to try to answer the question of interest. If one is interested, for example, in a 90 percent

44.84 SECTION FORTY-FOUR

TABLE 44.35 Transformations and Estimators
of E(X

1
)†

TABLE 44.36 Estimators of Variances of Estimators of E(X
1
)†



confidence interval for the mean tensile strength with recipe 1, then one proceeds as follows: Draw
samples of size n ! 5 repeatedly from the basic data points until one has N such samples (with N ! 500
being a popular choice—see note 1 below); for each sample, calculate the sample mean, thus obtain-
ing N ! 500 sample means, say, X!1

, X!2
,…, X!500

; delete the smallest 25 (5 percent) and largest 25 (5
percent) of these 500 sample means [since (.10)(500)/2 ! 25]; and state that the mean tensile
strength is between the smallest and largest of the remaining 450 sample means.

The bootstrap method is simple and attractive; it seems to yield (without any complicated statis-
tics or mathematics) solutions to difficult problems, i.e., to give us “something for nothing.” Since
there is no free lunch, we should be suspicious. In fact, the method can behave badly if the sample
is not large (and most of the theory is developed as the sample size becomes infinite). For example,
suppose that one desires to study the maximum rainfall over 100 years and has data on 5 years. In
resampling those 5 years, one will never observe a higher rainfall than the largest of the 5 measure-
ments with the bootstrap method. Clearly, the study will be greatly misled by this (e.g., we may rec-
ommend an inadequately sized dam or levee). Thus while the bootstrap method can be useful in
some settings, it is fraught with danger. A more robust version (which yields about the same results
when the sample sizes are large but is not so fragile when the sample sizes are small) is the gener-
alized bootstrap method discussed below.

The bootstrap type of method was used as early as 1967 but did not gain wide acceptance until it
was given the name bootstrap method by B. Efron in 1979, after which it experienced an explosion
of interest. It in some ways generalizes the method given by Quenouille in 1949, which gained wide
acceptance when christened the jackknife method by J. Tukey in 1958. History, references, and exam-
ples of its flaws (and how to remedy them) are given by Dudewicz (1992) [also see Section 15.6 of
Dudewicz and Mishra (1988)].

The Generalized Bootstrap. The generalized bootstrap was introduced by Dudewicz (1992)
as a generalization of the bootstrap method with superior properties in the small-sample (few obser-
vations) case. [For a textbook discussion, see Section 6.6 of Karian and Dudewicz (1991).] Basically,
with the generalized bootstrap, one takes the observations and fits an appropriate probability distri-
bution from a broad class such as the extended generalized lambda distribution discussed earlier in
this section. One’s random samples are then taken from the fitted distribution. Thus, in the context
of the five rubber batches discussed under Bootstrap Methods earlier, one fits an EGLD to the n ! 5
data points. Then N ! 500 random samples of size 5 are drawn from the fitted EGLD (not from the
basic 5 data points), and analysis proceeds as in the bootstrap method. This method has been shown
to do better when one has few data points (but to do as well when one has many) in recent studies
[e.g., Sun and Dietland-Müller (1996) have an excellent exposition with real-data examples].

Bootstrap methods, especially in the form of the generalized bootstrap, would suggest that one fit
a model to the data (e.g., a Poisson or other model) and then (assuming the fit passes testing; see Test
of Model Validity above) use that model in one’s analysis, which can proceed by bootstrapping. (The
generalized bootstrap method allows for there being a possibility one could observe three or more
blemishes sometime in the future, while the bootstrap method—which is not recommended—
always assumes the probability of three or more is zero just because we did not observe three or more
in any of the set of data we have.)

Note 1: The statistical literature recommends the use of at least N ! 200 replications.
Recent work by Sun and Müller-Schwarze (1996, pp. 482–483) suggests that considerable
gains in accuracy can be had by requiring at least N ! 500 replications. The number of
replications made with one’s data set should not be confused with one’s actual data set’s
size (see Note 2).

Note 2: Bootstrap methods are widely used for sample sizes that are quite small [such as
9 in Sun and Müller-Schwarze (1996)] due to the need to draw reliable conclusions from
small data sets (often gathered over a considerable period at considerable effort, such as
10 years for the Sun and Müller-Schwarze data). I would strongly recommend the gener-
alized bootstrap for cases with fewer than 100 data points.
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Clustering and Discrimination. Clustering and discrimination methods are a part of the
area of statistics called multivariate analysis (Siotani et al. 1985). A typical type of problem where
these methods are used in quality control is when several different kinds of malfunctions within a
production facility cause product to fall outside engineering limits. It is often difficult to determine
the causes of the malfunction in any one case. Then clustering a number of cases may reveal causal
links via common factors over the clusters. (That is, this method allows one to ask, “What do the
cases with malfunctions of each type have in common?”)

As an example of the power of the “discrimination” method, Fisher (1936) gave the data excerpted
in Table 44.37. [A convenient source of the full data set is Dixon (1983, p. 520).]This consists of two
length and two width measurements on each of three distinct varieties that might be found in the same
location. We wish to know: How well can the varieties (which can be classified by a more involved
analysis without error) be classified by just use of the two length and two width measurements? After
these data are entered into a computer, program 7M of the BMDP set of programs (Dixon 1983) may
be used to answer this question. The program code is given in Figure 44.24. From the resulting output,
of key interest are the so-called canonical variables, which are the linear combinations of L1, L2, W1,
and W2 that best discriminate among the three groups. In this example, these turn out to be

V
1
! 2.10510 " 0.82938L

1
" 1.53447W

1
# 2.20121L

2
# 2.81046W

2

V
2
! #6.66147 " 0.02410L

1
" 2.16452W

1
# 0.93192L

2
" 2.83919W

2

A plot of the (V1, V2) values for the 150 data points is given in Figure 44.25, with T ! 1, 2, 3 cases
labeled A, B, C, respectively, and shows the excellent results obtained. These results are deemed
excellent because they allow us to classify a future observation into the correct group with high prob-
ability of being correct. For example, if we find V1 ! 7.20 and V2 ! 1.00, we are virtually certain
that group A is involved. (This plot is produced by program 7M.)

Heteroscedastic Discrimination. Traditional discrimination methods have assumed that one
knows that the variances are equal and have not been able to specify that the misclassification proba-
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bility will be estimated within .01 (say). However, owing to development of the heteroscedastic method
[see Dudewicz (1995) for a review], this is now possible in some cases and expected to become more
available in the next few years. In other cases, the goal may be to estimate the overlap (rather than
directly discriminate the populations); for some methods here, see Mulekar and Mishra (1997).

Selection of the Best versus Testing Hypotheses. In hypothesis testing, one may
(e.g., in the setting of Test 2 in Table 44.31) assess whether one can reject the assertion that the
means of two populations are equal. While this is an appropriate question in some settings, there are
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FIGURE 44.25 Plot showing groups (A, B, C) discriminated by “canonical variables” V
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and V
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other settings where one knows a priori that one must select one or the other of the two populations
and wants to select the one with the larger mean (called the “best” population). Procedures for this
setting were first published in 1954 by R. E. Bechhofer, and since that time, over 500 publications
and several books have been devoted to the problem. [For a categorized list and reviews, see
Dudewicz and Koo (1982).]

Example of Selection of the Best: Suppose we are considering two recipes for rubber
and want to select the one with the larger tensile strength. We make n

0
! 5 batches with

each recipe and test for tensile strength with the following results:

Recipe 1 Recipe 2
3067 3200
2730 2777
2840 2623
2913 3044
2789 2834

We desire to be at least 95 percent sure that the one we select has a true mean tensile
strength no further than "* ! 120 units from the best one. We then calculate the s

1
2 !

16,923.7 and s
2
2 ! 51,713.3 in the first samples and take more observations (since we do

not know the variances in advance of the first samples, we are not in a position to know
how many total samples we will need). The total sample sizes are to be

n
1
! max[n

0
# 1,(s

1
h/"*)2] ! max{5 # 1,[(130.09)(3.11)/120]2}

! max(6,11.4) ! 12

n
2
! max[n

0
# 1,(s

2
h/"*)2] ! max{5 # 1,[(227.41)(3.11)/120]2}

! max(6,34.7) ! 35

where h ! hn0
(k, P*) ! h

5
(2,0.95) comes from Table 44.30 (with k ! 2 because we are

seeking the best of two populations, P* ! 0.95 because we desire 95 percent certainty, and
n

0
! 5 because the first samples were of five observations). We then take n

1
$ 5 ! 12 $

5 ! 7 more observations from recipe 1 and n2 $ 5 ! 35 $ 5 ! 30 more observations from
recipe 2. We then compute the sample mean X!1

of all 12 observations from recipe 1 and
the sample mean X!2 of all 35 observations from recipe 2, selecting the recipe that produces
the larger of X!1 and X!2, asserting that that recipe has the larger mean (or a mean no further
than 120 units of tensile strength from the best recipe). For example, if we find X!1

! 3067
and X!2

! 2895, we will select recipe 1. We will state that we are at least 95 percent sure
that recipe 1 is either the best recipe or (in any case) has a mean tensile strength no further
than 120 strength units from the best (if it is not the best).

Procedures are also available for selection of the best of more than two populations [see
Section 6.3 of Karian and Dudewicz (1991)]; one can essentially use the same procedure
with the appropriate k being used when h is looked up in Table 44.30.

REGRESSION AND CORRELATION ANALYSIS

Many quality control problems require estimation of the relationship between two or more variables.
Often interest centers on finding an equation relating one particular variable to a set of one or more
variables. For example, how does the life of a tool vary with cutting speed? Or how does the octane
number of a gasoline vary with its percentage purity?
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Regression analysis is a statistical technique for estimating the parameters of an equation relat-
ing a particular variable to a set of variables. (Some authors refer to this as least squares or curve fit-
ting.) The resulting equation is called a regression equation.

Some experimental data for the tool life example are given in Table 44.38 [from Johnson and
Leone (1964, p. 380)] and plotted in Figure 44.26. Tool life is the response variable (also called the
dependent variable or the predictand), and cutting speed is the independent variable (also called
the predictor variable). In this case, the independent variable is controllable; i.e., it is fixed by the
experimenter or the operator of the machine. In the second example, both the octane number and
the percentage purity are random. The data for this example (from Volk 1956) are given in Table
44.39 and plotted in Figure 44.27. Since the goal is to predict the octane number, it is regarded as
the dependent variable, and the percentage purity is considered as the independent variable. (In
many problems there are a number of independent variables, and in some cases this set of inde-
pendent variables includes both random and controllable variables.)

The computations for two-variable regression problems can be done quite easily on a calculator,
but when there are many variables, the number of computations becomes overwhelming. (Even in
the two-variable case, many of the computer programs available fail to provide numerically accurate
calculations. It is strongly recommended that one not write one’s own regression program and that
only major tested software packages such as SAS, BMDP, and the like be utilized.) With modern dig-
ital computer multiple regression programs, the number of variables is not a restriction. To under-
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TABLE 44.38 Tool Life (Y in Minutes) versus
Cutting Speed (X in Feet per Minute)

FIGURE 44.26 Tool life Y versus cutting speed X.



stand and interpret the results of multidimensional problems, a thorough knowledge of the two- and
three-variable cases is necessary.

There are many reasons for constructing regression equations. Although the motives do not affect
the calculations, they do affect the interpretation of the results. In some cases, regression analysis is
used to describe the nature of a relationship in a quantitative manner. Often the goals are more spe-
cific. In the first example, where the cutting speed is controllable, the objective might be to find the
particular value of cutting speed which minimizes tool wear or some cost function based on tool
wear. Least squares regression also can be used to determine the important independent variables in
a process, e.g., whether process variables such as moisture, pressure, or temperature affect a quality
characteristic of the product such as strength.

In other problems, where the independent variable is not controllable, the goal may be to predict
the value of the dependent or response variable. This might be done because the independent vari-
able is easier to measure than the dependent variable. Or the independent variable may be available
before the dependent variable, and hence it would be desirable to forecast the value of the dependent
variable before it occurs. In still other cases it might allow a destructive test to be replaced by a non-
destructive test.
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The following list includes a number of uses of regression equations:

1. Forecasting and prediction
2. Quantitatively describing the relationship between a particular variable and another set of variables
3. Interpolating between values of a function
4. Determining the important independent variables
5. Locating the optimum operating conditions
6. Discriminating between alternative models
7. Estimating particular regression coefficients

For any of these goals stated, the basic steps in a regression study are those of the checklist for
planned experimentation given at the beginning of this section. A summary, specifically relating the
steps to regression, is

1. Obtain a clear statement of the objectives of the study. Determine which variable is to be the
response variable and which variables can be included as independent variables. In addition,
obtain some measure of the precision of the results required—not necessarily in statistical termi-
nology. (It is important to have a thorough understanding of what use will be made of the regres-
sion equation, since this may preclude the use of certain variables in the equation and will also
help to give an understanding as to how much effort and money should be devoted to the project.)

2, 3. Specify collection procedures for the data. Collect the data. (The end results can only be as
good as the data on which they are based. Careful planning at this stage is of considerable
importance and can also simplify the analysis of the data.)

4. Prepare crossplots (plots of one variable versus another) of the data to obtain information about
the relationships between the variables; screen the data; calculate the regression equation; and
evaluate how well it fits the data (including looking at transformations of variables for a better fit,
or the removal of variables from an equation if they do not improve the prediction). Give mea-
sures of the precision of the equation and any procedure for using the equation. Also specify pro-
cedures for updating the equation and checks to determine whether it is still applicable, including
control charts for the residuals (observed value-predicted value). (Section 24, Statistical Process
Control, discusses control charts.)

5, 6, 7. As in the checklist for planned experimentation.

A number of texts have been written on regression, including Daniel and Wood (1971) and Draper
and Smith (1981). These include computer programs and output. Dudewicz and Karian (1985) also dis-
cuss design questions in detail. In addition to regression, other techniques have been devised for the
analysis of multivariate data; see Kramer and Jensen (1969, 1970) and Siotani et al. (1985) for details.
(One of these techniques is discriminant and cluster analysis, already discussed in this section.)

Our discussion of regression begins with a single predictor problem and then proceeds to prob-
lems with more than one predictor variable and a discussion of computer programs and outputs,
with their interpretation. While many texts emphasize advanced mathematical aspects of regres-
sion, this is not needed for a practical understanding now that high-quality software is available;
hence we find no need for such mathematics. This makes this important subject accessible to most
quality practitioners.

Simple Linear Regression. Many problems involve only a single predictor variable X. (The
dependent variable Y is often related to other predictor variables, which have either been held con-
stant during the experiment or their effects judged to be much smaller than that of X.) These prob-
lems are often referred to as ones of simple linear regression.

Graphing the Data. A first step in any study of relationships between variables is to plot a graph
of the data (often called a scatter diagram). The convention is to plot the response variable on the
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vertical axis and the independent variable on the horizontal axis. A graph can provide a great deal of
information concerning the relationship between variables and often suggests possible models for
the data. The data plotted in Figure 44.26 suggest that Y is linearly related to X over the range of this
experiment. (If this were not the case, various transformations of the data as well as curvilinear rela-
tionships could also be considered. Often the relationship can be “linearized” by taking the logarithm
of one or both of the variables.)

A graph also can indicate whether any of the observations are outliers, i.e., observations that devi-
ate substantially from the rest of the data. (Outliers may be due to measurement errors or recording
errors, in which case they should be corrected or deleted. They may be due to process changes or
other causes, and the investigation of these changes or causes may provide more information than
the analysis of the rest of the data.) No outliers are apparent in Figure 44.26.

A closer inspection of the graph can give an indication of the variability of Y for fixed X. In addi-
tion, it may show that this variability remains constant over all X or that it changes with X. In the lat-
ter case the method of weighted least squares (see Draper and Smith 1981) may be preferred to the
standard least squares technique discussed here.

The Model. After graphing the data, we want to obtain an equation relating Y to X. To do this, a
model for the data must be postulated. (I emphasize that the proposed model may be modified dur-
ing the course of the study and is just a starting point.)

A possible model for the data in Figure 44.26 is

Y ! "
0
# "

1
X # $

where "
0

and "
1

are the unknown intercept and slope, respectively, of the regression line. The model
assumes that Y is a linear function of X plus a random error term, denoted by $. This random error
may be due to errors in the measurement of Y and/or to the effects of variables not included in the
model, which is called equation error. The X’s are assumed to be measured with negligible error. For
the data in Figure 44.26, the X’s are fixed; however, the same model can be used when the X’s are
random as in Figure 44.27.

Estimating the Prediction Equation. The objective is to find estimates (b
0
, b

1
) of the unknown

parameters ("
0
,"

1
) and thus obtain a prediction equation

Ŷ ! b
0
# b

1
X

where Ŷ is the predicted value of Y for a given value of X.
Least squares provides a method for finding estimates of these parameters from a set of N obser-

vations (Y1,X1),…, (YN,XN). The estimates are called least squares estimates because they minimize
the sum of the squared deviations between the observed and predicted values of the response vari-
able ∑(Ym % Ŷm)2 ! ∑(Ym% b0 %b1Xm)2. These ideas are illustrated in Figure 44.28. (For a mathe-
matical derivation of the estimates, see any of the texts mentioned in the introduction.)

If (1) the observations are independent, (2) the variance of the errors is constant over these obser-
vations, and (3) the linear model postulated is correct, the least squares estimates are the “best lin-
ear unbiased estimates”: In the class of linear unbiased estimates of the parameters, the least squares
estimates have the smallest variance. (Even if these conditions are not satisfied, the least squares
technique can be used, although modifications or other methods may provide better estimates.) Note
that no assumption has been made concerning the distribution of the random error, and in particular
a normal distribution is not assumed. No assumption on this error term will be required until confi-
dence intervals and tests of hypotheses are constructed.

The least squares estimates for the parameters of the linear model Y ! "
0
# "

1
X # $ are

b1 !

b
0
! Y! % b

1
X!

∑(X
m

% X!)(Y
m

% Y!)
&&&∑(X

m
% X!)2
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where X! ! ∑Xm /N and Y! ! ∑Ym /N are sample averages. All these summations range from m ! 1 to
m ! N. (Except where needed, the additional notation will be omitted for typographic simplicity.)

As can be seen, b
1

is related to the sample correlation coefficient

r ! 

by b
1
! r "#

However, the concept of correlation is meaningful only when both the variables are random, where-
as b

1
, the least squares estimate of the rate of change of Y per unit change in X, has meaning for both

the case of random X and controllable or fixed X.
The sums, sums of squares, and sum of crossproducts for the data (N ! 16) given in Table 44.38

are

∑X
m

! 90 " 90 " . . . " 110 ! 1620

∑Y
m

! 41 " 43 " . . . " 10 ! 369

∑X
m
2 ! 8100 " 8100 " . . . " 12,000 ! 164,900

∑Y
m
2 ! 1681 " 1849 " . . . " 100 ! 10,469

∑X
m
Y

m
! 3690 " 3870 " . . . " 1100 ! 36,170

(Note that calculations for regression are very susceptible to both human and numerical error
because of their complexity. Hence good software should be used. The numerical examples in this
section can be used both to test one’s understanding of that software and to test its accuracy.)

The summary statistics are computed using the following computational formulas:

X! ! ∑X
m
/N ! 101.25 Y! ! ∑Y

m
/N ! 23.06

∑(Ym # Y!)2

$$
∑(X

m
# X!)2

∑(Xm # X!)(Ym # Y!)
$$$
$∑!(X!

m
#! X!!)2∑!(Y!

m
#! Y!!)2!
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∑(X
m

! X!)2 " ∑X
m
2 ! " 164,900 ! " 875.00

∑(Y
m

! Y!)2 " ∑Y
m
2 ! " 10,469 ! " 1958.94

∑(X
m

! X!)(Y
m

! Y!) " ∑X
m
Y

m
! 

" 36,170 ! 

" !1191.25

From these results the least squares estimates can be calculated as

b
1
" " !1.3614

b
0
" 23.06 ! (!1.3614)(101.25) " 160.9018

and hence the prediction equation is

Ŷ " 160.90 ! 1.3614X

The prediction equation is sometimes written in terms of deviations from averages, i.e., Ŷ " Y! # 
b

1
(X ! X!), which for this example becomes

Ŷ " 23.06 ! 1.3614(X ! 101.25)

Examining the Prediction Equation. After estimating the coefficients of the prediction equation,
the equation should be plotted over the data to check for gross calculation errors. Roughly half the
data points should be above the line and half below it. In addition, the equation should pass exactly
through the point (X!, Y!).

A number of criteria exist for judging the adequacy of the prediction equation. One common
measure of the adequacy of the prediction equation is the proportion of variation R2 explained. To
compute R2, the sum of the squared deviations of the Ym about Y! is partitioned into two parts, the sum
of squares due to regression and the residual sum of squares:

∑(Y
m

! Y!)2 " SS(REG)#SS(RES)

" ∑(Ŷ
m

! Y!)2#∑(Y
m

! Ŷ
m
)2

" b
1
∑(X

m
! X!)(Y

m
! Y!)#∑(Y

m
! Ŷ

m
)2

From this, the proportion of the variation ∑(Y
m

! Y!)2 explained by the regression is computed as

R2 " 

" 

" " 0.828
(!1.3614)(!1191.25)
$$$

1958.94

b1∑(Xm ! X!)(Ym ! Y!)
$$$

∑(Y
m

! Y!)2

SS(REG)
$$
∑(Y

m
! Y!)2

!1191.25
$$

875

(1620)(369)
$$

16

∑X
m
∑Y

m$
N

(369)2

$
16

(∑Ym)2

$
N

(1,620)2

$
16

(∑Xm)2

$
N
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Thus in this example the prediction equation explains 82.8 percent of the variation of the tool life.
Another interpretation of R2 (when both the independent and the dependent variables are random)

is as the square of the sample multiple correlation coefficient. When there is only one independent
variable, this reduces to the square of the sample correlation coefficient r defined earlier.

Although R2 is a useful measure of the adequacy of the prediction equation, an estimate of the
variability of the Y’s about the regression equation is usually more important. Either the sample vari-
ance se

2 or its square root se, called the standard error of the estimate, can be used. The latter is often
preferred because it is measured in the same units as Y. Both of these, as well as other results, can
be obtained from the analysis of variance (ANOVA) given in Table 44.40.

The corrected total sum of squares and the regression sum of squares are calculated from the sum-
mary statistics and the estimate of the regression coefficient [some authors include the total sum of
squares, uncorrected, in the ANOVA table, partitioning it into two parts—the corrected sum of
squares and the sum of squares due to Y! (or b

0
) (see Draper and Smith 1981)]. Although the resid-

ual sum of squares can be calculated directly, it is more easily obtained as the difference between the
corrected total sum of squares and the sum of squares due to regression. Each of these sums of
squares has an associated degrees of freedom (see Testing a Hypothesis When the Sample Size Is
Fixed in Advance). The corrected total sum of squares has N ! 1 degrees of freedom, since one
degree of freedom is used in estimating the mean. For this one-variable model, there is one degree
of freedom associated with the regression sum of squares, leaving (N ! 1) ! 1 " N ! 2 degrees of
freedom associated with the residual sum of squares. The mean squares (MS) are calculated by divid-
ing the sum of squares by their associated degrees of freedom. The estimate of the variance of Y
about the regression line is se

2 " MS(RES); hence the standard error of the estimate is se "
"M!S!(R!E!S!)!.

From the mean squares an F statistic can be calculated as

F
CALC

" 

If (1) the #’s in the original model are normally distributed with a common variance, (2) the obser-
vations are independent, and (3) the postulated linear model is correct, then the regression can be
tested for significance, i.e., the statistical hypothesis

H
0
: $

1
" 0

can be tested against the alternative hypothesis

H
1
: $

1
≠ 0

by comparing FCALC with the tabulated FTAB at an appropriate level of significance %. If FCALC & FTAB,
we conclude that the regression is significant and that the prediction equation is a better predictor of
Y than Y!. Although it is difficult to check the assumptions stated above, the test is not extremely sen-

MS(REG)
''
MS(RES)
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sitive to departures in the distribution of ! from normality if the number of observations is relatively
large. If the X’s are random, this test must be interpreted in a conditional sense, i.e., given the values
of the X’s.

For the example, the analysis of variance (ANOVA) table is given in Table 44.41. (See Section
26, under Completely Randomized Design: One Factor, k Levels.) The regression is significant at an
" # 0.01 level (FTAB # 8.86) and se # !2"4".0"8" # 4.91.

It is important to note that even when the regression is significant, the unexplained variability can
still be large, and the prediction equation may not be of any value.

Residuals, Outliers, Confidence and Prediction Bands, Extrapolation; Lack of
Fit—Replicated Observations. If it is feasible to replicate, i.e., take more than one obser-
vation of Y at one or more values of X, the adequacy of the model also can be tested. (An estimate
of the pure error sometimes may be available from sources outside the immediate experiment.) In
this case, the SS(RES) can be partitioned into two parts—that due to pure error, SS(PE), and that due
to lack of fit, SS(LF).

Suppose that there are Nm readings Ym1, Ym2,…, YmNm
at xm, where m # 1, 2,…, k. The contribu-

tion to the sum of squares due to pure error for X
m

is

#
Nm

j # 1
(Ŷ

mj
$ Y"m

)2 # #
Nm

j # 1
Y

mj
2 $

and the associated degrees of freedom is N
m

$1. The SS(PE) is just the sum of these k contribu-
tions, and the associated degrees of freedom (DF) is

#
k

m # 1
(N

m
$ 1) # #

k

m # 1
N

m
$ k

For the example given in Table 44.38,

Xm SS(PE) DF

90 412 % 432 % 352 % 322 $ (151)2/4# 78.75 3
100 222 % 352 % 292 % 182 $ (104)2/4# 170.00 3
105 212 % 132 % 182 % 202 $ (72)2/4# 38.00 3
110 152 % 162 % 62 % 102 $ (42)2/4# 41.00 3

Total 327.75 12

The SS(LF) is found by subtraction as

SS(LF) # SS(RES) $ SS(PE) # 337.14 $ 327.75 # 9.39

$ #
Nm

j # 1

Y
mj%

2

&&
N

m
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and the lack of fit degrees of freedom is obtained in a similar manner as 14 ! 12 " 2. The mean
squares are then found by dividing the sum of squares by the appropriate degrees of freedom and

F
CALC

" 

If the FCALC is greater than the tabled F, the lack of fit is “significant,” and a better or more complete
model is needed (e.g., Y " #0 $ #1X $ #2X

2). Plots of the residuals (Ym ! Y^

m) versus Xm are partic-
ularly helpful in suggesting alternative models. Some examples are given in Figure 44.29. [Daniel
and Wood (1971, pp. 19–24) present graphs of a number of nonlinear functions and give transfor-
mations that “linearize” them.] In each case the model Y " #

0
$ #

1
X was postulated and the plots

are of the resulting residuals.
If FCALC is less than the tabled F, the model is accepted. This does not mean that other variables

should not be considered in the model, but only that the form of X in the model is adequate.
The calculations for our example are summarized in Table 44.42. The lack of fit is judged not sig-

nificant at an % level of 0.05 (FTAB " 3.89). Hence the postulated model is accepted, and the resid-
ual mean square is used as the estimate of the variance.

If replication is not possible, e.g., X is random rather than controllable, the Y values correspond-
ing to X values that are close together can be used to obtain an estimate of the variability and hence
judge the lack of fit. [See pp. 123–125 of Daniel and Wood (1971).]

Confidence Intervals. Both R2 and s
e
2 provide measures of the reliability or adequacy of a

prediction equation. Confidence intervals provide another measure of the reliability of the various

MS(LF)
&
MS(PE)
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estimates. All these confidence intervals are based on the square root of the residual mean square. A
(1 ! ") two-sided confidence interval for the slope #

1
is given by

b1 ±

where the value t is obtained from Appendix II, Table G, with N!2 degrees of freedom. The term in
the denominator plays the role that n1/2 plays in confidence intervals on population means. For the
example, the 0.95 confidence interval on #

1
is

!1.36 ± $ !1.36 ± 0.356

The term se/!∑"(X"
m

!" X"")2" is often called the standard error of the regression coefficient.
In addition to the confidence interval on #

1
, more importantly, confidence intervals also can be

constructed for the mean of Y at a given value of X. The (1 ! ") confidence interval on the mean of
Y at X (or equivalently on #

0
% #

1
X) is

b
0
% b

1
X ± tse #$ %$$$

where X is the value at which the confidence interval is being constructed and t again has N ! 2
degrees of freedom. (By letting X$0, a confidence level for #

0
is obtained.)

In addition to the assumptions previously stated, these confidence intervals also require (1) that
the independent variable is fixed rather than random and (2) that the errors are normally distributed.
However, if the X’s are random, confidence intervals can still be calculated, but they must be inter-
preted in a conditional sense. Confidence intervals are not sensitive to departures from normality if
the sample size is reasonably large. This is not the case for the following interval, which is very sen-
sitive to the normality assumption. Least absolute value (LAV) and Chebyshey estimation are two
possible alternatives to least squares estimation, which are less sensitive to model departures than is
least squares. For sources of efficient computer algorithms, with a detailed numerical example, see
Dielman and Pfaffenberger (1984).

In addition to a confidence interval on the expected value of Y at a given X, there may be a need
for an interval estimate for a future individual observation on Y at X. [A more complete discussion
of confidence intervals is given in Draper and Smith (1981). See Daniel and Wood (1971) for a con-
fidence interval that simultaneously includes the whole line. See Dudewicz (1976, p. 427) for a plot
of the interval for all X, called a prediction band, and its uses.] In this case the interval also must take
into account the variability of Y about #

0
%#

1
X, and the result is

b
0

% b
1
X ± ts

e #1$ %$$$ %$$$
where t has N ! 2 degrees of freedom. Computations of these intervals for various values of X are
given in Table 44.43.

Multiple Regression. Although there are many problems involving single predictor variables,
more often there are many predictor variables. A generalization of the least squares technique, pre-
viously discussed, can be used to estimate the coefficients of the multivariable prediction equation.
This problem is called multiple regression.

The General Model. For a problem with k predictor variables, the model can be written as

Y $ #
0
% #

1
X

1
% . . . % #

k
X

k
% &

(X ! X")2

''
∑(X

m
! X")2

1
'
N

(X ! X")2

''
∑(Xm ! X")2

1
'
N

(2.145)(4.91)
''

!8"7"5"

tse''
!∑"(X"m"!" X"")2"
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where the !’s are unknown parameters and " is the random error. These variables may be transfor-
mations of the original data. For example, in predicting gasoline yields from data on the specific
gravity and vapor pressure of crude oil, Y may be the log of the gasoline yield, X

1
the crude oil spe-

cific gravity, X
2

the crude oil vapor pressure, and X
3

the product of the crude oil specific gravity with
its vapor pressure.

The general model includes polynomial models in one or more variables such as

Y # !
0

$ !
1
X

1
$ !

2
X

2
$ !

3
X

1
2 $ !

4
X

2
2 $ !

5
X

1
X

2
$ "

[which is called the full quadratic model of Y on X
1

and X
2

and is of great use in designed experi-
ments (see Dudewicz and Karian 1985)]. This is still a linear model, since the term linear model
means that the model is linear in the !’s. [See Draper and Smith (1981) for a discussion of models
which are nonlinear.]

Estimating the Prediction Equation. The objective now is to find the least squares estimates (b
0
,

b
1
,…, b

k
) of the unknown parameters (!

0
, !

1
,…, !

k
) and obtain a prediction equation

Ŷ # b
0
$ b

1
X

1
$ … $ b

k
X

k

where Ŷ is the predicted value of Y for the given values of X
1
,…, X

k
. Letting x

i
# X

i
% X!i

and using
the fact that

b
0

# Y! % b
1
X!1

% … % b
k
X!k

this prediction equation can be expressed in the alternative form

Ŷ # Y!$ b
1
x

1
$ … $b

k
x

k

To simplify the formulas, the observations also can be expressed as deviations from their sample
averages; i.e., for the mth observation xim # Xim % X!i

and ym # Ym % Y!. Then the least squares esti-
mates of the k $ 1 parameters of the multivariable linear model Y # !0 $ !1X1 $ … $ !kXk can be
obtained by solving the set of k $ 1 linear equations:
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km
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0

# Y! % b
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X!1

% b
2
X!2

% … % b
k
X!k

(All the above summations are on m and range from 1 to N.)
Solving these “reduced normal” equations simultaneously can be tedious, is error prone, and

involves matrix algebra. Many reference works emphasize how to perform these calculations accu-
rately. To the user of modern accurate statistical software, these calculations are of no direct impor-
tance: That user can trust that they are being done accurately and concentrate on statistical aspects
of model adequacy, interpretation, and use.

Examining the Prediction Equation. After obtaining (b0, b1,…, bk ), an ANOVA table can be con-
structed and the adequacy of the prediction equation evaluated by a number of criteria. The ANOVA
table, which is a generalization of that derived for the single predictor variable, is given in Table
44.44. The third row in Table 44.44 is the same as in Table 44.40. Note that the expressions in the
first row reduce to those in the first row of Table 44.40 when k#1.

Since there are k variables in the model, the sum of squares due to regression has k degrees of free-
dom associated with it. In addition, since k coefficients and one intercept have been estimated, the
residual sum of squares has N % (k $ 1) # N % k % 1 degrees of freedom associated with it. The F
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statistic is calculated as before—i.e., F ! MS(REG)/MS(RES)—and s
e

! !S"S"(R"E"S")/"(N"""k"""1")". In
this case, the F statistic can be used to test the statistical hypothesis

H
0
: #

i
! 0 (i ! 1, 2,…, k)

against the alternative statistical hypothesis

H
1
: Some #

i
≠ 0 (i ! 1, 2,…, k)

The only change from simple linear regression is in the degrees of freedom used to look up the F
TAB

(k, n " k " 1 versus 1, n " 2).
The proportion of variation explained by the equation (R2) can be obtained from the ANOVA

table. Note that R2 does not depend on the number of variables in the equation, but se
2 does. In fact,

if a new variable is added to the model (and the least squares estimates and ANOVA table are recom-
puted), the value of R2 cannot decrease. However, s

e
2 can either increase or decrease, since it depends

on the residual degrees of freedom in addition to the residual sum of squares, which decreases by
one when a new variable is added.

Confidence Intervals. Confidence intervals for individual #’s can be developed as

b
i
± ts

e
!c

i
"

i
"

where t has (N " k " 1) degrees of freedom, and c
ii

is defined below. However, since the b
i
(i !

1,…, k) have a joint distribution and are in general not uncorrelated, care must be taken in the inter-
pretation of sets of these confidence intervals [see, for example, Draper and Smith (1981)].

More usefully, a confidence interval on the regression equation at a point x ! (x
1
,…, x

k
), where

x
i
! X

i
" X"i

is given by

Y" $ b
1
x

1
$ … $ b

k
x

k
± ts

e # $x'Cx$1/2

where t has N " k " 1 degrees of freedom, and x'Cx is a quadratic form that takes into account the
covariances and variances of the b’s. (Here C is as defined in the next paragraph.)

In a similar manner, an interval for a future Y at X is given by

Y" $ b
1
x

1
$ … $ b

k
x

k
± ts

e #1 $ $ x'Cx$1/2

where t has N " k " 1 degrees of freedom. (Here C ! S"1, where S is the k % k matrix whose entry
in row i and column j is ∑ximXjm. In practice, as we will see, these matrix calculations are done by

1
&
N

1
&
N
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the computer, and the user need not bother with them—or even understand the concept of a matrix
and its inverse.)

An example: The methods discussed can now be illustrated by an example furnished by
Mason E. Wescott (example 5 from Mimeo Notes, Mason E. Wescott, Rochester Institute
of Technology, Rochester, NY) with k ! 2 predictor variables. The problem is to relate the
green strength (flexural strength before baking) of electric circuit breaker arc chutes to the
hydraulic pressure used in forming them and the acid concentration. The data are given in
Table 44.45, with hydraulic pressure and green strength given in units of 10 lb/in2 and the
acid concentration given as a percentage of the nominal rate for 20 observations. Two-
variable plots of the data are given in Figures 44.30, 44.31, and 44.32. Summary statistics
including sums, sums of squares, and crossproducts, both raw and corrected, as well as the
sample means, are given in Table 44.46.

The estimates are

b
2

! 4.162940

b
1

! 1.571779

b
0

! Y! " b
1
X!1

" b
2
X!2

! 16.27475

The C matrix is

c
22

! 0.00048916

c
12

(!c
21

) ! "0.000058099

c
11

! 0.00029787
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and hence

C ! ! ! " 10#6

The prediction equations can be calculated as

Ŷ ! 16.277 $ 1.572X
1

$ 4.163X
2

Ŷ ! 641.600 $ 1.572(X
1

# 131.400) $ 4.163(X
2

# 100.600)

(The latter form will be used in the remaining computations.)
The ANOVA table (Table 44.47) for the example follows directly from the summary

statistics of Table 44.46 and from Table 44.44. The residual mean square error is 228.0,
and hence the standard deviation s

e
is 15.100.

The 95 percent confidence intervals on %
1

and %
2

are obtained as

1.572 ± 2.110 " 15.100 " "2#9#7#.8#6#9# " 10#3

! 1.572 ± 0.550 ! 1.02 and 2.12

#58.099
489.160

297.869
#58.099
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FIGURE 44.31 Green strength versus acid concentration
(deviations from averages).

FIGURE 44.32 Acid concentration versus hydraulic pressure
(deviations from averages). Rectangles indicate points at which
confidence intervals have been calculated.



and

4.163 ± 2.110 ! 15.0997 ! !4"8"9".1"6" !10"3

#4.163 ± 0.705 # 3.46 and 4.87

Confidence intervals for $
0

% $
1
X

1
% $

2
X

2
and for a future observation of Y, at five

combinations of X
1

and X
2
, are given in Table 44.48. (The five points at which the confi-

dence intervals are computed are also indicated in Figure 44.32.)

An additional excellent example is provided in Golden and Wasil (1992, pp. 227–245), where
37,000 observations gathered from 34 stations in the Chesapeake Bay are used to develop 10 regres-
sion models for salinity dynamics. Data quality, model building, model results, and model validation
are all discussed.

Computer Programs. Because of the widespread popularity of regression, almost every computer
facility has at least one and most have many regression programs. These programs may have been
locally written, or they may have been obtained from other sources. In the latter case, the program
usually has been modified in some manner so that it can be run on the local computer system and
satisfy the needs of the local users.

Studies by Longley (1967) and Wampler (1970) indicate that the user should strongly prefer
software such as that of SAS and BMDP. One should not presume that the program has been
checked just because a sample data problem is given in the program manual. Unfortunately, a num-
ber of the algorithms used in these programs are often taken directly from desk calculator instruc-
tions. These algorithms are often not good and can produce numerically inaccurate results, even in
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double precision. For example, Longley found that many of the programs computed the squared
deviations of a variable about its mean by the computational formula ∑Xm

2 ! (∑Xm)2/N, rather than
by ∑(Xm ! X!)2. Since these quantities are the base for most of the regression calculations, numer-
ical errors may be present in all the results.

Since the user may not be able (or simply does not want to invest the time) to check a program,
a few simple checks for this purpose are given below. These can be used to gain some idea of the
limitations of a program; however, I again strongly recommend against “rolling your own” when
SAS, BMDP, and (perhaps) other excellent software is available at reasonable prices and is kept up
to date with advances in statistics.

1. Add the residuals about the regression line. They should sum to zero, within rounding error.
2. If the residuals sum to zero, make additional runs of the problem after adding 10, 100, 1000,

10,000, etc. to each variable. The coefficients will begin to change at a point where round-off
error occurs.

3. As a check on the accuracy of the inversion routine, run a problem with two variables X1 and X2.
Then make another run with the same response variable but two new independent variables X1

* "
X1 # X2 and X2

* " X1 ! X2. The following results should hold: b1 " b1
* # b2

* and b2 " b1
* ! b2

*.

Longley (1967) gives some additional checks, and Wampler (1970) lists results on many regression
programs.

A write-up is usually available with regression programs; it should include a complete discussion
of the input required and an explanation of the output and options available, as well as a complete
statement of the calculation formulas and a sample problem. (Although documenting a program is a
difficult task, poorly written documentation is often a warning of a poorly or improperly written
computer program.)

While the input formats of regression programs vary, most programs have an option that allows
the user to specify a variety of transformations of the data, such as logs, powers, and crossproducts.
Typical regression outputs include ANOVA tables, residuals plots, and other statistics, in addition to
the estimates of the regression coefficients. Although often omitted, an echo-check, i.e., a printout of
the original and transformed data, is essential. Often “strange” regression results can be traced to a
misplaced decimal point in an observation, the wrong variables being read in, or incorrect use of the
transformation option. (If this is not available in a program, ask the computer center to modify the
program so that it is automatically printed out unless the user deletes it.)

R2 and C
p

Criteria for Model Choice. In many situations there are a large number of possible vari-
ables for a model, and the problem is to select the “vital few” from these “useful many,” instead of
obtaining the complete regression equation. There are many reasons for not using all the variables.
For example, a subset of variables can provide a better prediction equation than the full set, even
though the full set has a higher R, since the full set also will include more variability. In addition,
equations with fewer variables are easier to understand and hence more likely to gain acceptance and
be used.

Unless the data come from a properly designed experiment, there is no simple test for significant
variables. Since there are 2k ! 1 possible prediction equations to evaluate, for large k it is obvious
that a brute-force approach is not feasible (e.g., if k " 20, then 2k ! 1 " 1,048,575).

Stepwise regression is a heuristic technique for avoiding this computational problem. It begins by
selecting the single independent variable that is the “best” predictor in the sense that it maximizes
R2. Then it adds variables to the equation in a sequential manner, in order of importance. At each step
the variable added is the one that increases the regression sum of squares (and hence R2) or equiva-
lently reduces the residual sum of squares by the largest amount. This procedure not only selects
variables but deletes variables previously selected, if at some point they no longer appear important.

Stepwise regression does not guarantee that the “best” set of variables will be included in the final
equation. However, it does provide an efficient method for reducing the number of variables k to a man-
ageable size; e.g., if k " 100, then stepwise regression can be used to select the best 25 or fewer for more
exhaustive study. Stepwise regression programs are widely available; see Draper and Smith (1981).
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In addition to stepwise regression, numerous other techniques have been developed. One that
seems to have great potential was developed by Hocking and Leslie (1967) and improved by
LaMotte and Hocking (1970). Their algorithm finds the “best” subset of variables of size 1, 2,…, k,
where k is the total number of variables submitted. Although the computations require more time
than the stepwise procedure, this procedure guarantees the best subset in the R2 sense and in addi-
tion gives a number of the “contending” subsets. (Of course, if the number of variables is small, we
could compute all regressions.) These “best” regression algorithms are available in BMDP and can
handle k up to 20 or 25 without computer time problems.

The set of possible variables should be selected on the basis of preliminary investigations of the
factors that influence the response variables. The indiscriminate use of regression analysis to “find”
relationships, where no facts suggest the existence of a relationship, often leads to nonsensical
results. Unfortunately, this is usually discovered after the prediction equation fails miserably in pre-
dicting future observations.

If a large amount of data is available, one portion of it can be used for selecting variables and esti-
mating coefficients, saving the remainder of the data for testing the derived equations. In any case,
the equation should be periodically reviewed as new data become available.

A powerful tool in modern regression analysis is the Cp statistic [see, e.g., Dudewicz and Karian
(1985, pp. 236, 413)]. While R2 measures the goodness of the regression equation in predicting the
data points in the data set one is using to develop a model, Cp estimates the variance of future pre-
dictions made using the model. While adding a variable will increase the R2 (even if that variable is
totally unrelated to what we are trying to predict), Cp typically decreases as variables are added to
the model, then increases. Thus, searching for the minimal Cp statistic in all possible regressions is
a reasonable approach—though if a large gain in R2 can be obtained with a modest increase in Cp, it
should be taken.
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