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soup vary slightly from can to can; the time required to assign a seat at an airline check-in 
counter varies from passenger to passenger. To disregard the existence of variation (or to 
rationalize falsely that it is small) can lead to incorrect decisions on major problems. Statis-
tics helps to analyze data properly and draw conclusions, taking into account the existence 
of variation. 

Statistical variation—variation due to random causes—is much greater than most peo-
ple think. Often, we decide what action to take based on the most recent data point, and we 
forget that the data point is part of a history of data. 

In order to make decisions and improve processes, statistical variation must be taken 
into account. Variation can be visualized through the use of histograms, box plots, and simi-
lar tools. Frequently, such tools are sufficient to draw practical conclusions because differ-
ences in central tendency are large and variation is relatively small. However, statistical tools 
become necessary when the picture (quite literally) is less clear. 

Building on the foundation of descriptive statistics, we start with an overview of the 
probability distributions that underlie many statistical tools and are used to model data 
and allow estimation of probabilities. Terms are defined as they are encountered, includ-
ing further discussion of enumerative and analytical studies. Following an introduction 
to statistical inference and hypothesis testing, specific methods are discussed by way of 
example.

Probability Distributions
Before diving in, we should make a distinction between a sample and a population. A popu-
lation is the totality of the phenomenon under study. A sample is a limited number of items 
taken from that population. Measurements are made on the smaller subset of items, and we 
can calculate a sample statistic (e.g., the mean). A sample statistic is a quantity computed 
from a sample to estimate a population parameter. Samples for statistics must be random. 
Simple random samples require that every element of the population have the same equal 
probability of selection for the sample. More complex sampling, such as stratified sampling, 
requires still requires that each element have a known, but not necessarily equal, chance of 
selection. 

A probability distribution function is a mathematical formula that relates the values of 
the characteristic with their probability of occurrence in the population. The collection of 
these probabilities is called a probability distribution. The mean (µ) of a probability distribu-
tion often is called the expected value. Some distributions and their functions are summa-
rized in Figure 19.11. Distributions are of two types:

Continuous (for “Variable” Data). When the characteristic being measured can take 
on any value (subject to the fineness of the measuring process), its probability distribu-
tion is called a “continuous probability distribution.” For example, the probability distri-
bution of the resistance data in Table 19.2 is an example of a continuous probability 
distribution because the resistance could have any value, limited only by the fineness of 
the measuring instrument. Most continuous characteristics follow one of several common 
probability distributions: the normal distribution, the exponential distribution, or the 
Weibull distribution. 

Discrete (for “Attribute” Data). When the characteristic being measured can take on 
only certain specific values (e.g., integers 0, 1, 2, 3), its probability distribution is called a 
“discrete probability distribution.” For example, the distribution of the number of defects r 
in a sample of five items is a discrete probability distribution because r can be only 0, 1, 2, 3, 
4, or 5 (and not 1.25 or similar intermediate values). The common discrete distributions are 
the Poisson and binomial.
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Distribution

Normal

Exponential

Weibull

Poisson*

Binomial*

Form Probability function

µ

µ

β = 1/2

β = 1

α = 1

β = 3

X

p = .01

p = .1

p = .03

p = .3

p = .05

p = .5

r

r

y = αβ(X – γ)β–1e–α(X–γ)α

α = Scale parameter
β = Shape parameter
γ   = Location parameter

y =
1

σ 2π
2σ2
(x–µ)2

e–

µ = Mean
σ = Standard deviation

y =
1
µ

x

µe–

y = 
(np)re–np

r!

n = Number of trials
r = Number of occurrences

p  = Probability of
 occurrence

y = 
n!

r!(n – r)! prqn–r

n  = Number of trials
r = Number of occurrences

p  = Probability of
 occurrence

q = 1 – p

Applicable when there is a

concentration of observations

about the average and it is

equally likely that observations

will occur above and below the

average. Variation in

observations is usually the

result of many small causes.

Applicable when it is likely that

more observations will occur

below the average than above.

Applicable in describing a wide

variety of patterns in variation,

including departures from the

normal and exponential.

Same as binomial but

particularly applicable when

there are many opportunities

for occurrence of an event but

a low probability (less than .10)

on each trial.

Applicable in defining the

probability of r occurrences in n

trials of an event that has

constant probability of

occurrence on each independent

trial.

FIGURE 19.11 Summary of common probability distributions. (Quality Planning and Analysis, Copyright 
2007. Used by permission.)

@A@B 3.34 3.38 3.32 3.33 3.28 3.34 3.31 3.33 3.34

3.29 3.36 3.30 3.31 3.33 3.34 3.34 3.36 3.39 3.38

3.35 3.36 3.30 3.32 3.33 3.35 3.35 3.34 3.32 3.38

3.32 3.37 3.34 3.38 3.36 3.37 3.36 3.31 3.33 3.30

3.35 3.33 3.38 3.37 3.44 3.32 3.36 3.32 3.29 3.35

3.38 3.39 3.34 3.32 3.30 3.39 3.36 3.40 3.32 3.33

3.29 3.41 3.27 3.36 3.41 3.37 3.36 3.37 3.33 3.66

3.31 3.33 3.35 3.34 3.35 3.34 3.31 3.36 3.37 3.35

3.40 3.35 3.37 3.35 3.32 3.36 3.38 3.35 3.31 3.34

3.35 3.36 3.39 3.31 3.31 3.30 3.35 3.33 3.35 3.31

(Source: Quality Planning and Analysis, Copyright 2007. Used by permission.)

TABLE 19.2 Resistance of 100 Coils, Ω
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Statistical Inference
Statistical inference is the process of estimating, through sampling and application of statis-
tical methods, certain characteristics of a population. In the world of quality, these estimates 
and statistical conclusions are used to draw practical conclusions, typically providing the 
practitioner confidence in taking subsequent action (or inaction) to improve a process. 

Sampling Variation and Sampling Distributions
Suppose that a battery is to be evaluated to ensure that life requirements are met. A mean life 
of 30 hours is desired. Preliminary data indicate that the life follows a normal distribution 
and that the standard deviation is equal to 10 hours. A sample of four batteries is selected at 
random from the population and tested. If the mean of the four is close to 30 hours, it is 
concluded that the population of batteries meets the specification. Figure 19.12 plots the 
distribution of individual batteries from the population, assuming that the true mean of the 
population is exactly 30 hours. 

If a sample of four is life-tested, the following lifetimes might result: 34, 28, 38, and 24, 
giving a mean of 31.0 hours. However, this random sample is selected from the many batter-
ies made by the same process. Suppose that another sample of four is taken. The second 
sample of four is likely to be different from the first sample. Perhaps the results would be 40, 
32, 18, and 29, giving a mean of 29.8 hours. If the process of drawing many samples (with 
four in each sample) is repeated over and over, different results would be obtained in most 
samples. The fact that samples drawn from the same process can yield different sample 
results illustrates the concept of sampling variation. 

Returning to the problem of evaluating the battery, a dilemma exists. In the actual evalu-
ation, let’s assume only one sample of four can be drawn (e.g., because of time and cost 
limitations). Yet the experiment of drawing many samples indicates that samples vary. The 
question is, How reliable is the single sample of four that will be the basis of the decision? 
The final decision can be influenced by the “luck” of which sample is chosen. The key point 
is that the existence of sampling variation means that any one sample cannot always be 
relied upon to give an adequate decision. The statistical approach analyzes the results of the 
sample, taking into account the possible sampling variation that could occur. 

Sample means

Individual

measurements

µ = 30.0

FIGURE 19.12 Distributions of individual measurements and sample means. (Juran Institute, Inc., 1994.)
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ticular, the central limit theorem states that if x

1
, x

2
, . . .  x

n
 are outcomes of a sample of n indepen-

dent observations of a random variable x, then the mean of the samples of n will approximately 
follow a normal distribution, with mean µ and standard deviation σ σX n= . When n is large 
(n > 30), the normal approximation is very close. For smaller samples, a modified Student-T 
distribution applies. The central limit theorem is very helpful to much practical statistical work. 
First, the variation of means is smaller than the variation of the underlying population, which 
makes conclusions easier. Second, because means are approximately normally distributed, we can 
apply the wide variety of techniques that rely on the assumption of normality. 

Statistical Tools for Improvement
This concept of a sampling distribution is fundamental to the two major areas of statistical 
inference, estimation and tests of hypotheses, which are discussed next. 

Statistical Estimation: Point Estimation and Confidence Intervals
Estimation is the process of analyzing a sample result to predict the corresponding value of 
the population parameter. In other words, the process is to estimate a desired population 
parameter by an appropriate measure calculated from the sample values. For example, the 
sample of four batteries previously mentioned had a mean life of 31.0 hours. If this is a rep-
resentative sample from the process, what estimate can be made of the true average life of 
the entire population of batteries? The estimation statement has two parts: 

 1. The point estimate is a single value used to estimate the population parameter. For 
example, 31.0 hours is the point estimate of the average life of the population. 

 2. The confidence interval is a range of values that include (with a preassigned 
probability called a confidence level∗) the true value of a population parameter. 
Confidence limits are the upper and lower boundaries of the confidence interval. 
Confidence limits should not be confused with other limits (e.g., control limits, 
statistical tolerance limits). 

Table 19.3 summarizes confidence limit formulas for common parameters. The follow-
ing example illustrates one of these formulas. 

Problem Twenty-five specimens of brass have a mean hardness of 54.62 and an estimated standard 
deviation of 5.34. Determine the 95 percent confidence limits on the mean. The standard deviation of 
the population is unknown. 

Solution Note that when the standard deviation is unknown and is estimated from the sample, the t 
distribution in Table 19.4 must be used. The t value for 95 percent confidence is found by entering the 
table at 0.975 and 25 – 1, or 24, degrees of freedom† and reading a t value of 2.064. 

∗A confidence level is the probability that an assertion about the value of a population parameter is 
correct. Confidence levels of 90, 95, or 99 percent are usually used in practice.
†A mathematical derivation of degrees of freedom is beyond the scope of this book, but the underlying 
concept can be stated. Degrees of freedom (DF) is the parameter involved when, for example, a sample 
standard deviation is used to estimate the true standard deviation of a universe. DF equals the number 
of measurements in the sample minus some number of constraints estimated from the data to compute 
the standard deviation. In this example, it was necessary to estimate only one constant (the population 
mean) to compute the standard deviation. Therefore, DF = 25 – 1 = 24.
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äåæç èé æ çèêmal population 
(standard deviation known)

X Z
n

± α

σ
/2

 where X  = sample average

 Z = normal distribution coefficient

 σ = standard deviation of population

 n = sample size

Mean of a normal population 

(standard deviation unknown)
X t

s

n
± α/2

 where t = distribution coefficient (with n – 1 

                degrees of freedom)

 s = estimated σ (s is the sample 
               standard deviation)

Standard deviation of a normal 

population Upper confidence limit =
−

s
n

x

1

2
2
α/

Lower confidence limit =
−

−

s
n

x

1

1 2
2
α/

where x2 =  chi-square distribution coefficient with 

n – 1 degrees of freedom

     1 – α = confidence level

Population fraction defective See charts: Ninety-five percent confidence belts for 

population proportion and Binomial Distribution at 

the end of this chapter, pages 670-672.

Difference between the means of 

two normal populations (standard 

deviations σ
1
 and σ

2
 known)

ë ì
/

X X Z
n n1 2 2

1
2

1

2
2

2

− ± +α

σ σ

Difference between the means of 

two normal populations 

(σ
1
 = σ

2
 but unknown)

( )
/

X X t
n n1 2 2
1 2

1 1
− ± +α

           

×
− + −

+ −

Σ Σ( ) ( )X X X X

n n
1
2

2
2

1 2
2

Mean time between failures based 

on an exponential population of time 

between failures

Upper confidence limit =
2

2
2

rm

xα/

Lower confidence limit =
−

2

1 2
2

rm

x α/

where r = number of occurrences in the sample 

                  (i.e., number of failures)

 m = sample mean time between failures

 DF = 2r

(Source: Quality Planning and Analysis, Copyright 2007. Used by permission.) 

TABLE 19.3 Summary of Confidence Limit Formulas (1 – α) (Confidence Level
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)����������� � t

Value of t corresponding to certain selected probabilities (i.e., tail areas under the curve). To 

illustrate: the probability is .975 that a sample with 20 degrees of freedom would have t = +2.086 

or smaller.

tp0

P

)! t
.60

t
.70

t
.80

t
.90

t
.95

t
.975

t
.99

t
.995

1 0.325 0.727 1.376 3.078 6.314 12.706 31.821 63.657

2 0.289 0.617 1.061 1.886 2.920 4.303 6.965 9.925

3 0.277 0.584 0.978 1.638 2.353 3.182 4.541 5.841

4 0.271 0.569 0.941 1.533 2.132 2.776 3.747 4.604

5 0.267 0.559 0.920 1.476 2.015 2.571 3.365 4.032

6 0.265 0.553 0.906 1.440 1.943 2.447 3.143 3.707

7 0.263 0.549 0.896 1.415 1.895 2.365 2.998 3.499

8 0.262 0.546 0.889 1.397 1.860 2.306 2.896 3.355

9 0.261 0.543 0.883 1.383 1.833 2.262 2.821 3.250

10 0.260 0.542 0.879 1.372 1.812 2.228 2.764 3.169

11 0.260 0.540 0.876 1.363 1.796 2.201 2.718 3.106

12 0.259 0.539 0.873 1.356 1.782 2.179 2.681 3.055

13 0.259 0.538 0.870 1.350 1.771 2.160 2.650 3.012

14 0.258 0.537 0.868 1.345 1.761 2.145 2.624 2.977

15 0.258 0.536 0.866 1.341 1.753 2.131 2.602 2.947

16 0.258 0.535 0.865 1.337 1.746 2.120 2.583 2.921

17 0.257 0.534 0.863 1.333 1.740 2.110 2.567 2.898

18 0.257 0.534 0.862 1.330 1.734 2.101 2.552 2.878

19 0.257 0.533 0.861 1.328 1.729 2.093 2.539 2.861

20 0.257 0.533 0.860 1.325 1.725 2.086 2.528 2.845

21 0.257 0.532 0.859 1.323 1.721 2.080 2.518 2.831

22 0.256 0.532 0.858 1.321 1.717 2.074 2.508 2.819

TABLE 19.4 Distribution of t 
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 Confi dence limits = X t
s

n
= ±

 = 54 62 2 064
5 34

25
. ( . )

.
±

 = 52.42 and 56.82

There is 95 percent confidence that the true mean hardness of the brass is between 52.42 and 
56.82. 

Determination of Sample Size
The only way to obtain the true value of a population parameter such as the mean is to 
measure (with a perfect measurement system) each and every individual within the popu-
lation. This is not realistic (and is unnecessary when statistics are properly applied), so 
samples are taken instead. But how large a sample should be taken? The answer depends 
on (1) the sampling risks desired (alpha and beta risk, discussed further below and defined 
in Table 19.5), (2) the size of the smallest true difference that is desired to be detected, and 
(3) the variation in the characteristic being measured. 

For example, suppose it was important to detect that the mean life of the battery cited 
previously was 35.0 hours (recall that the intended value is 30.0 hours). Specifically, we want 
to be 80 percent certain of detecting this difference (this is the “power” of the test, and has a 
corresponding risk of β = 0.2; this means we are willing to take a 20 percent chance of failing 
to detect the five-hour difference when, in fact, it exists). Further, if the true mean was 

f@ gAfhi gAh@f gAjhj kA@kl kABkm fAgil fAhgg fAjgB

24 0.256 0.531 0.857 1.318 1.711 2.064 2.492 2.797

25 0.256 0.531 0.856 1.316 1.708 2.060 2.485 2.787

26 0.256 0.531 0.856 1.315 1.706 2.056 2.479 2.779

27 0.256 0.531 0.855 1.314 1.703 2.052 2.473 2.771

28 0.256 0.530 0.855 1.313 1.701 2.048 2.467 2.763

29 0.256 0.530 0.854 1.311 1.699 2.045 2.462 2.756

30 0.256 0.530 0.854 1.310 1.697 2.042 2.457 2.750

40 0.255 0.529 0.851 1.303 1.684 2.021 2.423 2.704

60 0.254 0.527 0.848 1.296 1.671 2.000 2.390 2.660

120 0.254 0.526 0.845 1.289 1.658 1.980 2.358 2.617

∞ 0.253 0.524 0.842 1.282 1.645 1.960 2.326 2.576

(Source: Introduction to Statistical Analysis, Copyright 1969, Used by permission.) 

TABLE 19.4 (Continued)
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30.0 hours, we want to have only a 5 percent risk of wrongly concluding it is not 30.0 hours 
(a risk of α = 0.05). Then, using the following formula:

n
Z Z

=
+

−













( )/α β σ

µ µ
2

2

o

we plug in our values to obtain

n =
+
−






=

( . . )
.

1 96 0 84 10

35 30
31 4

2

The required sample size is 32 (Gryna et al., 2007, p. 605). 
Note that sample size sometimes is constrained by cost or time limitations; in addi-

tion, rules of thumb exist to estimate sample size. However, these potentially lead to 

Null hypothesis (H
0
): Statement of no change or no difference. This statement is assumed 

true until sufficient evidence is presented to reject it.

Alternative hypothesis (H
a
): Statement of change or difference. This statement is considered 

true if H
0
 is rejected.

Type I error: The error in rejecting H
0
 when it is true or in saying there is a difference when 

there is no difference.

Alpha risk: The maximum risk or maximum probability of making a type I error. This probability 

is preset, based on how much risk the researcher is willing to take in committing a type I 

error (rejecting H
0
 wrongly), and it is usually established at 5% (or .05). If the p-value is less 

than alpha, reject H
0
.

Significance level: The risk of committing a type I error.

Type II error: The error in failing to reject H
0
 when it is false or in saying there is no difference 

when there really is a difference.

Beta risk: The risk or probability of making a type II error or overlooking an effective 

treatment or solution to the problem.

Significant difference: The term used to describe the results of a statistical hypothesis test 

where a difference is too large to be reasonably attributed to chance.

p-value: The probability of obtaining different samples when there is really no difference in 

the population(s)—that is, the actual probability of committing a type I error. The p-value 

is the actual probability of incorrectly rejecting the null hypothesis (H
0
) (i.e., the chance of 

rejecting the null when it is true). When the p-value is less than alpha, reject H
0
. If the p-value 

is greater than alpha, fail to reject H
0
.

Power: The ability of a statistical test to detect a real difference when there really is one, or 

the probability of being correct in rejecting H
0
. Commonly used to determine if sample sizes 

are sufficient to detect a difference in treatments if one exists. Power = (1 – β), or 1 minus 
the probability of making a type II error.

(Source: Quality Planning and Analysis, Copyright 2007. Used by permission.)

TABLE 19.5 Hypothesis Testing Definitions 
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gross under- or oversampling, with wasted time and effort. The recommended approach 
is to use power and sample size calculators (available online and in statistical software; 
these readily apply formulas appropriate for different sampling situations) in order to 
enter data collection and hypothesis testing with full knowledge of the statistically 
appropriate sample size.

Hypothesis Testing
A hypothesis, as used here, is an assertion about a population. Typically, the hypothesis is 
stated as a pair of hypotheses as follows: the null hypothesis (H

0
) and an alternative hypoth-

esis, H
a
. The null hypothesis, H

0
, is a statement of no change or no difference—hence, the 

term “null.” The alternative hypothesis is the statement of change or difference—that is, if 
we reject the null hypothesis, the alternative is true by default. 

For example, to test the hypothesis that the mean life of a population of batteries equals 
30 hours, we state: 

H
0
: µ = 30.0 hours 

H
a
: µ ≠ 30.0 hours 

A hypothesis test is a test of the validity of the assertion, and is carried out by analyzing a 
sample of data. Sample results must be carefully evaluated for two reasons. First, there are 
many other samples that, by chance alone, could be drawn from the population. Second, the 
numerical results in the sample actually selected can easily be compatible with several dif-
ferent hypotheses. These points are handled by recognizing the two types of sampling errors, 
already alluded to above. 

The Two Types of Sampling Errors. In evaluating a hypothesis, two errors can be 
made

• Reject the null hypothesis when it is true. This is called a type I error, or the level of 
significance. The maximum probability of a type I error is denoted by α. 

• Fail to reject the null hypothesis when it is false. This is called type II error, and the 
probability is denoted by β. 

These errors are defined in terms of probability numbers and can be controlled to desired 
values. The results possible in testing a hypothesis are summarized in Table 19.6. Definitions 
are found in Table 19.5. For additional detail on sampling errors in the context of quality, see 
Gryna at al (2007). 

É�ÊÊ��Ë )ËÌ����� � Í�ÎÏÐ��� Ñ�

Suppose the H
0
 Is

True False

Fail to reject H
0

Correct decision p = 1  – α Wrong decision p = β

Reject H
0

Wrong decision p = α Correct decision p = 1 – β

(Source: Quality Planning and Analysis, Copyright 2007. Used by permission.)

TABLE 19.6 Type I (α) Error and Type II (β) Error
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Steps to Hypothesis Testing. As emphasized earlier, it is important to plan for data col-
lection and analysis; an investigator ideally should arrive at the point of actual hypothesis 
testing with elements such as sample size already defined. Hypothesis testing often is an 
iterative process, however, and as mentioned above in the opening discussion of data collec-
tion, further data may be needed after initial collection, for example, to bolster sample sizes 
to obtain the desired power so that both type I and type II errors are defined in advance. 

Generally, then, the steps to test a hypothesis are as follows:

 1. State the practical problem. 

 2. State the null hypothesis and alternative hypothesis. 

 3. Choose a value for α (alpha). Common values are 0.01, 0.05, and 0.10. 

 4. Choose the test statistic for testing the hypothesis. 

 5. Determine the rejection region for the test (i.e., the range of values of the test statistic 
that results in a decision to reject the null hypothesis). 

 6. Obtain a sample of observations, compute the test statistic, and compare the value 
to the rejection region to decide whether to reject or fail to reject the hypothesis.

 7. Draw the practical conclusion. 

Common Tests of Hypotheses. No single means of organizing hypothesis tests can con-
vey all the information that may be of interest to an investigator. Table 19.7 summarizes 
some common tests of hypotheses in terms of the formulas. Table 19.8 categorizes tests 
according to the question being asked and type of data. Figure 19.13 provides similar infor-
mation but in the form of a roadmap to assist in deciding what hypothesis test(s) are appro-
priate. Readers may find that the combination of these presentations will provide the best 
understanding of what is a multifaceted topic. 

The hypothesis testing procedure is illustrated through the following example. 

 1. State the practical problem. To investigate a problem with warping wood panels, it 
was proposed that warping was caused by differing moisture content in the layers 
of the laminated product before drying. The sample data shown in Table 19.9 were 
taken between layers 1-2 and 2-3. Is there a significant difference in the moisture 
content?

 2. State the null hypothesis and alternative hypothesis: 

H
o
: µ1-2 = µ2-3

H
a
: µ1-2 ≠ µ2-3

 3. Choose a value for α. In this example, a type I error (α) of 0.05 will be assumed. 

 4. Choose the test statistic for testing the hypothesis. 

Because we have two samples and desire to test for a difference in the means, 
a two-sample t-test is appropriate. (Note: A probability plot or test for normality will con-
firm the assumption of normality in the data. Also, an equal variance test concludes vari-
ances are approximately equal.)

 1. Determine the rejection region for the test.
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CÐÊ��*Ë��� Test Statistic and Distribution

H
o
: µ = µ

0
 (the mean of a normal 

population is equal to a specified value 

µ
0
; σ is known)

Z
X

=
− µ

0

σ / n

Standard normal distribution

H
o
: µ = µ

0
 (the mean of a normal 

population is equal to a specified value 

µ
0
; σ is estimated by s)

t
X

s n
=

− µ
0

/  

t distribution with n – 1 degrees of freedom (DF)

H
o
: µ

1
 = µ

2
 (the mean of population 1 

is equal to the mean of population 2; 

assume that σ
1
 = σ

2
 and that both 

populations are normal)

t
X X

n n n s n s

=
−

+ − −  +

1 2

1 2 1 1
2

2 2
2

1
1 1 1 1/ / ( ) ( ) / (n nn

2
2− )

t distribution with DF = n
1
 + n

2
 – 2

H
o
: σ = σ

0
 (the standard deviation of a 

normal population is equal to a specified 

value σ
0
)

X
n s2

2

0
2

1
=

−( )

σ

Chi-square distribution with DF = n – 1

H
o
: σ

1
 = σ

2
 (the standard deviation of 

population 1 is equal to the standard 

deviation of population 2; assume that 

both populations are normal)

F
s

s
= 1

2

2
2

F distribution with DF
1
 = n

1
 – 1 and DF

2
 = n

2
 – 1

H
o
: p̂ p=

0
 (the fraction defective in a 

population is equal to a specified value 

p
0
; assume that np p

0
5≥ )ˆ  = sample 

proportion

Z
p p

p p n
=

−

−

ˆ

( )

0

0 0
1 /

Standard normal distribution

H
o
: p

1
 = p

2
 (the fraction defective in 

population 1 is equal to the fraction 

defective in population 2; assume that 

n
1
p
1
 and n

2
p
2
 are each ≥5)

Z
X n X n

p p n n
=

−

− +
1 1 2 2

1 2
1 1 1

/ /

/ /ˆ( ˆ)( )
 

p̂
X X

n n
=

+

+
1 2

1 2

Standard normal distribution

To test for independence in a J × K 
contingency table that cross-classifies 

the variable A and B

H
o
: A is independent of B

H
a
: A is dependent on B

X
f e

e
jk jk

jkk

K

j

J
2

2

11

=
−

==

∑∑
( )

Chi-square distribution with DF = (J – 1) (K – 1) 

where f
jk
  =  the observed frequency of data for category 

 j of variable A and to category k of variable B

e
jk
= the expected frequency = f

j 0
f
0k

/f
00

f
j0 
= frequency total for category j for variable A

f
0k
= frequency total for category k of variable B

f
00
 = frequency total for J × K table

(Source: Quality Planning and Analysis, Copyright 2007. Used by permission.)

TABLE 19.7 Summary of Formulas on Tests of Hypotheses 
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The critical value defining the rejection region is approximately 2.0 (see Table 19.4); if the 
absolute value of the calculated t is larger than the critical value, then we reject the null 
hypothesis.

 1. Obtain a sample of observations, compute the test statistic, and compare the value 
to the rejection region to decide whether to reject or fail to reject the hypothesis.

A box plot (remember to plot the data!) suggests that the moisture content in Layer 1-2 
tends to be higher than in Layer 2-3. Minitab output (see Figure 19.14) shows that the calcu-
lated t is 4.18, which is in the rejection region. 

Because the calculated t is larger than the critical value, the associated p-value is < α, and 
we reject the null hypothesis, H

0
.

Y ZËÎ� É�)Ë[ É\ ZËÎ�

Layer 1-2 25 5.350 0.613 0.12 

Layer 2-3 25 4.689 0.499 0.10

Difference = µ (Layer 1-2) – µ (Layer 2-3)

Estimate for difference: 0.660901

95 percent CI for difference: (0.343158, 0.978644)

T-test of difference = 0 (vs. not =): t-value = 4.18 p-value = 0.000 DF = 48

Both use pooled StDev = 0.5587

 1. Draw the practical conclusion. We conclude that the moisture content in Layer 1-2 
is higher than the moisture content of Layer 2-3.

Tests of hypotheses organized by the question being asked. All tests assume a categorical X in the 

Y= f (X) format. For example, X might be manufacturing plant, and there could be 1, 2 or more than 

two plants of interest in terms of output, Y. A continuous Y might be mean or standard deviation of 

daily units produced, a categorical Y might be proportion defective units produced in a single day.

]�Ë�����^ Is There 

a Difference in 

the Parameter

Number

of Sample 

Groups

Continuous Y (Normal) Categorical Y

Parameter

of Interest Test

Parameter

of Interest Test

Compared to a 

target?

1 µ

σ
1-sample t

Chi- square

Proportion 1-proportion test

between two 

groups?

2 µ

σ
2-sample t

F-test

Proportion 2-proportion test

among all groups? ≥2 µ

σ
ANOVA∗ 

Bartlett’s

Proportion Chi-square test of 

Independence

∗ANOVA assumes both equal variances and normality.
(Source: Juran Institute, Inc., Used by permission.)

TABLE 19.8 Hypothesis Testing Table
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Output (Y)
Continuous Categorical

Continuous

CategoricalIn
p
u
t 
(X
)

Data is not normal

1 Sample1 Sample
2 or more
samples

2 or more
samples

2 or more
samples

Compare variances

Compare 2 medians

Compare more

than 2 medians

Levene’s test

Ho: σ21 = σ22 = σ23...
HA: σ2i ? σ2i for i to j

(or at least one is different)

Stat > ANOVA>

Test for equal variances

Chi2 test

Ho: σ1 = σ target
HA: σ1 ? σ target

Stat > Basic stat > graphical

summary

(if target std dev. falls within

95% CI, then fail to reject Ho:

otherwise, reject)

Bartlett’s test (> 2) or F-Test (2)

Ho: σ21 = σ22 = σ23 ...
HA: σ2i ? σ2j for i to j

(or at least one is different)

Stat > ANOVA > test for equal variance

Paired t Test

Ho: µd = µo
HA: µd ?, <, or > µo

Stat > Basic Stat > paired t

2-Sample t Test

Ho: µ1 = µ2
HA: µ1 ?, <, or > µ2

Stat > Basic Stat > 2-sample t

uncheck: Assume = variances

1-Sample t Test

Ho: µ1 = µtarget
HA: µ1 ?, <, or > µtarget

Stat > basic stat >1-sample t

1-Proportion Test

Ho: p1 = Ptarget
HA: p1 ?, <, or > Ptarget
Stat > Basic Stat >

1-proportion

2-Proportion Test

Ho: p1 = P2
HA: p1 ?, <, or > P2
Stat > Basic Stat >

2-proportion

Chi Square Test

Ho: FA independent FB
HA: FA dependent FB
Stat > Tables > Chi2 Test

Chi2 Test

Ho: σ1 = σtarget
HA: σ1 ? σtarget

Stat > Basic stat >graphical

summary

(if target std dev. falls within

95% CI for std dev. then fail to

reject Ho: reject otherwise)

1-Way ANOVA

(assumes equality of variances)

Ho: µ1 = µ2 = µ3...
HA: µi ? µj for i to j

(or at least one is different)

(Stat > ANOVA > 1-way)

(select stacked or unstacked data)

2-Sample t Test

Ho: µ1 = µ2
HA: µ1 ? <, or > µ2

Stat > Basic Stat >2-sampel t

Check: Assume = Variances

(uses pooled std dev)

*Note: If X is continuous and Y is continuous,

proceed with regression and correlation analysis.

1-Sample Wilcoxon

Ho: η1 = ηtarget
HA: η1 ? , <, or > ηtarget
Stat > Nonparametrics >

1-Sample Wilcoxon

Mann-Whitney test

Ho: η1 = η2
HA: η1 ?, <, or > η2

Stat > Nonparametrics>

Mann-Whitney

Kruskal-Wallis Test

(assumes no outliers:

otherwise, use moods

median test)

Ho: η1 = η2 = η3...
HA: ηj ? ηj for i to j

(or at least one is different)

Stat > Nonparametrics >

Kruskal-Wallis

Hypothesis testing of categorical

inputs (Xs)*

Continuous “Y” data Categorical “Y” data

Compare variance

to target

Data is normal

Compare median
to target

Normality test
Ho: Data is normal

HA: Data is not normal

Stat > Basic stat > normality test or

Stat > Basic stat > graphical summary

Compare mean

differences

Compare more than

2 means

Compare 2 means

Compare variances

Compare 2 means

Compare variance

to target

Compare mean

to target

2 samples

1 sample

1 Sample

2

Samples

Test for

indepen-

dence

If p-value = alpha, then reject Ho
If p-value > alpha, then fail to reject Ho

Alpha is usually pre-set at 0.05. Use

other values as appropriate.

If p-value > alpha, ensure sufficient

power and correct sample size if

necessary.

Equal variances

� IGURE 19.13 Hypothesis testing.
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Nonparametric Hypothesis Tests, Data Transformation, and Bootstrapping
The preceding discussion has focused on “parametric” hypothesis tests (so-called because 
they rely on parameter estimation). Often, it is the case that one or more of the assumptions 
underlying the parametric tests are violated. In particular, practitioners frequently face 
skewed or otherwise nonnormal data, and application of parametric tests that assume 

FIGURE 19.14 Box plot of Layer 1-2, Layer 2-3. (Quality Planning and Analysis, Copyright 2007. Used 
by permission.)

6.5

6.0

5.5

5.0

4.5

4.0

3.5

D
at
a

Box plot of Layer 1-2, Layer 2-3

*

Layer 1-2 Layer 2-3

¸¹º»¼ ½¾¿ Layer 2-3

4.43 4.40 3.74 5.14

6.01 5.99 4.30 5.19

5.87 5.72 5.27 4.16

4.64 5.25 4.94 5.18

3.50 5.83 4.89 4.78

5.24 5.44 4.34 5.42

5.34 6.15 5.30 4.05

5.99 5.14 4.55 3.92

5.75 5.72 5.17 4.07

5.48 5.00 5.09 4.54

5.64 5.01 4.74 4.23

5.15 5.42 4.96 5.07

5.64 4.21

(Source: Quality Planning and Analysis, Copyright 2007. 
Used by permission.)

TABLE 19.9 Moisture Content 
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bell-shaped data distribution may lead to erroneous conclusions and inappropriate action. 
Fortunately, options are available; these include nonparametric tests, data transformation, 
and bootstrapping.

Nonparametric hypothesis tests avoid violating key assumptions by virtue of being 
“distribution-free”; that is, they are not strictly dependent on particular distributions (such 
as a normal distribution); however, nonparametric tests have their own set of assumptions 
of which investigators should be aware). In effect, these methods typically transform the 
original data into ranks, and hypothesis tests then are carried out on the ranked data. 
Although nonparametric methods are not nearly as well developed and frequently are 
statistically less powerful compared to parametric tests, they are available for basic one-, 
two-, and two or more sample tests (see the bottom of Table 19.7 and the left side of the road-
map in Figure 19.13). See Sprent and Smeeton (2001) for more on traditional nonparametric 
methods. New methods continue to emerge, for example, wavelets and nonparametric 
Bayesian techniques; see Kvam and Vidakovic (2007). 

Data transformation allows one to take data that violate some assumption of a para-
metric test and change them so that the assumption no longer is violated. For example, 
nonnormal data, or sample data with unequal variances can be changed to new numbers 
that are normal or have equal variances. Three common methods are

Power Functions. Traditionally, standard functions such as taking the square (x2), square 
root (x1/2), log (log10(x)), natural log (ln(x)), or inverse (x–1) were used because they could easily 
be done with a calculator. Trial and error often is needed to find a function that appropriately 
transforms the data to meet the test assumptions. 

Box-Cox Transformation. This method provides simultaneous testing of power func-
tions to find an optimum value λ that minimizes the variance. Typically, one selects a power 
(value of λ) that is understandable and within a 95 percent confidence interval of the esti-
mated λ (e.g., square: λ = 2; square root: λ = 0.5; natural log: λ = 0; inverse: λ = –1). The Box-
Cox transformation does not work with negative numbers.

Johnson Transformation. This method selects an optimal function among three families 
of distributions (bounded, unbounded, lognormal). While effective in situations where Box-
Cox does not work, the resulting transformation is not intuitive.

These methods are easy to apply (with software), and allow use of the more power-
ful parametric tests. However, the transformed data do not necessarily have intuitive 
meaning.

Bootstrapping is one of a broader class of computation-intensive resampling meth-
ods. Rather than assuming any particular distribution of a test statistic (such as normal), 
the distribution is determined empirically. More specifically, a statistic of interest (such as 
the mean) is repeatedly calculated from different samples drawn themselves, with 
replacements, from a sample. The distribution of these calculated statistics then is used as 
the basis for determining the probability of obtaining any particular value by chance. 
Itself a nonparametric approach, bootstrapping is a flexible method that gradually is 
gaining acceptance. For more information on the method and applications, see Davison 
and Hinkley (2006). 

Correlation and Regression Analysis
Correlation and regression analysis help us understand relationships. More specifically, 
regression analysis is the modeling of the relationships between independent and dependent 
variables, while correlation analysis is a study of the strength of the linear relationships 
among variables. From a practical perspective, simple linear regression examines the distri-
bution of one variable (the response, or dependent variable) as a function of one or more 
independent variables (the predictor, or independent variable) held at each of several levels. 
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Note that the cause-and-effect relationship is stated explicitly, and it is this relationship that 
is tested to determine its statistical significance. In addition, regression analysis is used in 
forecasting and prediction based on the important independent variables, and in locating 
optimum operating conditions. In contrast, correlation typically looks at the joint variation 
of two variables that have not been manipulated by the experimenter, and there is no explicit 
cause-and-effect hypothesis. 

For example, suppose that the life of a tool varies with the cutting speed of the tool and we 
want to predict life based on cutting speed. Thus, life is the dependent variable (Y) and cutting 
speed is the independent variable (X). Data are collected at four cutting speeds (Table 19.10). 

Remembering to always plot the data, we note that a scatter plot (Figure 19.15) suggests 
that life varies with cutting speed (specifically, life decreases with an increase in speed) and 
also varies in a linear manner (i.e., increases in speed result in a certain decrease in life that 
is the same over the range of the data). Note that the relationship is not perfect—the points 
scatter about the line. 

Often, it is valuable to obtain a regression equation. In this case, we have a linear rela-
tionship in the general form provided by

Y = β
0
 + β

1
 X + ε

X / X / X / X /

90 41 100 22 105 21 110 15

90 43 100 35 105 13 110 11

90 35 100 29 105 18 110 6

90 32 100 18 105 20 110 10

(X, in feet per minute versus tool life; Y, in minutes) 
(Source: Quality Planning and Analysis, Copyright 2007. Used by permission.)

TABLE 19.10 Cutting Speed 
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FIGURE 19.15 Tool life (Y) versus cutting speed (X). (Quality Planning and Analysis, Copyright 2007. 

Used by permission.)
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where β
0
 and β

1
 are the unknown population intercept and slope, and ε is a random-error 

term that may be due to measurement errors and/or the effects of other independent 
variables. This model is estimated from sample data by the form 

Ŷ = b
0
 + b

1
X

where Ŷ  is the predicted value of Y for a given value of X and b0 and b1 are the sample esti-
mates of β

0
 and β

1
. Estimates usually are found by least-squares methods; formulas can be 

found in statistics books such as Kutner et al. (2004). 
For this example, the resulting prediction equation is 

Tool life = 106.90 – 1.3614 (cutting speed)

This equation can be used to predict tool life by plugging in values of cutting speed. 
Extreme caution should be used in making predictions outside the actual sample space 
(e.g., for cutting speeds above or below the tested maximum or minimum), however, as 
these are tenuous without confirmation by observation.

Although a prediction equation can be found mathematically, it should not be used 
without knowing how “good” it is. A number of criteria exist for judging the adequacy of the 
prediction equation. One common measure is R

2
, the proportion of variation explained by 

the prediction equation. R
2
, or the coefficient of determination, is the ratio of the variation 

due to the regression to the total variation. The higher R
2
, the greater the probable utility of 

the prediction equation in estimating Y based on X.
Another measure of the degree of association between two variables is the simple 

linear correlation coefficient, r. This is the square root of the coefficient of determination, 
so that the values of r range from −1 to +1. A positive r is consistent with a positive rela-
tionship (an increase in one variable is associated with an increase in the other), whereas 
the opposite is true of a negative r (an increase in one variable is associated with a decrease 
in the other). Scatter plots are strongly recommended when interpreting correlations, 
especially as very different patterns can result in identical values of r. The significance 
level of r varies with sample size; statistical software is recommended to obtain exact 
significance levels.

The above discussion introduces simple linear correlation and regression—the direction 
and strength of a relationship between two variables, or prediction of a dependent variable, 
Y, from a single predictor variable, X. A natural extension of this is multiple regression that 
allows for two or more independent variables. For a discussion of how to estimate and 
examine a multiple regression prediction equation, see Kutner et al. (2004). 

Analysis of Variance 
Analysis of Variance (ANOVA) is an approach related to linear regression, falling into the 
class of what are called general linear models. However, unlike regression, the X is discrete 
rather than continuous (noting that general linear models actually can blend characteristics 
of both regression and ANOVA). In ANOVA, the total variation of all measurements around 
the overall mean is divided into sources of variation that are then analyzed for statistical 
significance. It is used in situations where the investigator is interested in comparing the 
means among two or more discrete groups. For example, an investigator may be interested 
in comparing performance among three different machine configurations. The ANOVA 
analysis detects a difference somewhere among the means (i.e., at least one mean is different 
from the others), and confidence intervals or follow-up tests such as pairwise comparisons 
can be applied to determine which mean (or means) is different. ANOVA is the basis for 
design of experiments, discussed next.
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Design of Experiments
With origins in the pioneering work in agriculture of Sir Ronald A. Fisher, designed experi-
ments have taken on an increasingly significant role in quality improvement in the business 
world. This section will first compare the classical and designed approaches to experimenta-
tion, thereby providing the reader with an understanding as to the limitations of traditional 
methods and the power of contemporary methods. Next, basic concepts and terminology 
will be introduced in the context of an example improvement problem, followed by an over-
view of different types of designs and the typical progression through a series of designed 
experiments. The section finishes with the related topic of Taguchi designs. 

Contrast between the Classical and Contemporary Methods of Experimentation. The 
classical method of experimentation is to vary one factor at a time (sometimes called OFAT), 
holding everything else constant. By way of example, and to illustrate the need for designed 
experiments, consider the case of a certain fellow who decided he wanted to investigate the 
causes of intoxication. As the story goes, he drank some whiskey and water on Monday and 
became highly inebriated. The next day, he repeated the experiment holding all variables 
constant except one… he decided to replace the whiskey with vodka. As you may guess, the 
result was drunkenness. On the third day, he repeated the experiment for the last time. On 
this trial, he used bourbon in lieu of the whiskey and vodka. This time it took him two days 
just to be able to gather enough of his faculties to analyze the experimental results. After 
recovering, he concluded that water causes intoxication. Why? Because it was the common 
variable! 

The contrast between this traditional method and the designed approach is striking. 
In particular, a designed approach permits the greatest information to be gained from the 
fewest data points (efficient experimentation), and allows the estimation of interaction 
effects among factors. Table 19.11 compares these two approaches in more detail for an 
experiment in which there are two factors (or variables) whose effects on a characteristic 
are being investigated (the same conclusions hold for an experiment with more than two 
factors). 

Concepts and Terminology—An Example Designed Experiment. Suppose that three 
detergents (A, B, C) are to be compared for their ability to clean clothes in an automatic 
washing machine. The “whiteness” readings obtained by a special measuring procedure are 
the dependent, or response, variable. The independent variable under investigation (deter-
gent) is a factor, and each variation of the factor is called a level; in this case, there are three 
levels. A treatment is a single level assigned to a single factor, detergent A. A treatment com-
bination is the set of levels for all factors in a given experimental run. A factor may be quali-
tative (different detergents) or quantitative (water temperature). Finally, some experiments 
have a fixed-effects model (i.e., the levels investigated represent all levels of concern to the 
investigator—for example, three specific washing machines or brands). Other experiments 
have a random effects model, that is, the levels chosen are just a sample from a larger popu-
lation (e.g., three operators of washing machines). A mixed-effects model has both fixed and 
random factors.

Figure 19.16 outlines six possible designs of experiments, starting with the classi-
cal design in Figure 19.16a. Here, all factors except detergent are held constant. Thus, 
nine tests are run, three with each detergent with the washing time, make of machine, 
water temperature, and all other factors held constant. One drawback of this design is 
that the conclusions about detergent brands apply only to the specific conditions of the 
experiment. 

Figure 19.16b recognizes a second factor at three levels (i.e., washing machines brands 
I, II, and III). However, in this design, it would not be known whether an observed difference 
was due to detergents or washing machine (they are said to be confounded).
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Basic procedure Hold everything constant except the 

factor under investigation. Vary that 

factor and note the effect on the 

characteristic of concern. To investigate 

a second factor, conduct a separate 

experiment in the same manner.

Plan the experiment to evaluate 

both factors in one main 

experiment. Include in the design 

measurements to evaluate the 

effect of varying both factors 

simultaneously.

Experimental 

conditions

Care should be taken to have 

material, workers, and machine 

constant throughout the entire 

experiment.

Realizes difficulty of holding 

conditions reasonably constant 

throughout an entire experiment. 

Instead, experiment is divided 

into several groups or blocks of 

measurements. Within each block, 

conditions must be reasonably 

constant (except for deliberate 

variation to investigate a factor).

Experimental error Recognized but not stated in 

quantitative terms.

Stated in quantitative terms.

Basis of evaluation Effect due to a factor is evaluated 

with only a vague knowledge of the 

amount of experimental error.

Effect due to a factor is evaluated 

by comparing variation due to 

that factor with the quantitative 

measure of an experimental error.

Possible bias due 

to sequence of 

measurements

Often assumed that sequence has no 

effect.

Guarded against by randomization.

Effect of varying 

both factors 

simultaneously 

(“interaction”)

Not adequately planned into 

experiment. Frequently assumed that 

the effect of varying factor 1 (when 

factor 2 is held constant at some 

value) would be the same for any 

value of factor 2.

Experiment can be planned 

to include an investigation for 

interaction between factors.

Validity of results Misleading and erroneous if 

interaction exists and is not realized.

Even if interaction exists, a valid 

evaluation of the main factors can 

be made.

Number of 

measurements

For a given amount of useful and valid 

information, more measurements are 

needed than in the modern approach.

Fewer measurements needed for 

useful and valid information.

Definition of 

problem

Objective of experiment frequently not 

defined as necessary.

Designing the experiment requires 

defining the objective in detail 

(how large an effect do we want to 

determine, what numerical risks 

can be taken, etc.).

Application of 

conclusions

Sometimes disputed as applicable 

only to the controlled conditions 

under which the experiment was 

conducted.

Broad conditions can be planned 

in the experiment, thereby making 

conclusions applicable to a wider 

range of actual conditions.

(Source: Quality Planning and Analysis, Copyright 2007. Used by permission.) 

TABLE 19.11 Comparison of Classical and Modern Methods of Experimentation
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In Figure 19.16c, the nine tests are assigned completely at random, thus the name “com-
pletely randomized design.” However, detergent A is not used with machine brand III, and 
detergent B is not used with machine brand I, thus complicating the conclusions. 

Figure 19.16d shows a randomized block design. Here each block is a machine brand, and 
the detergents are run in random order within each block. This design guards against any 
possible bias due to the order in which the detergents are used and has advantages in the 
subsequent data analysis and conclusions. First, a test of hypothesis can be run to compare 
detergents and a separate test of hypothesis run to compare machines; all nine observations 
are used in both tests. Second, the conclusions concerning detergents apply for the three 
machines and vice versa, thus providing conclusions over a wider range of conditions. 

Now suppose that another factor such as water temperature is also to be studied, using 
the Latin square design shown in Figure 19.16e. Note that this design requires using each 

FIGURE 19.16 Some experimental designs. (Quality Planning and Analysis, Copyright 2007. Used by 
permission.)
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detergent only once with each machine and only once with each temperature. Thus, three 
factors can be evaluated (by three separate tests of hypothesis) with only nine observations. 
However, there is a danger. This design assumes no interaction among the factors. No inter-
action between detergent and machine means that the effect of changing from detergent A to 
B to C does not depend on which machine is used, and similarly for the other combinations 
of factors. The concept of interaction is shown in Figure 19.17. There is no interaction among 
the detergents and the machines. But the detergents do interact with temperature. At high 
temperatures, C is the best performer. At low temperatures, A performs best.

Finally, the main factors and possible interactions could be investigated by the factorial 
design in Figure 19.16f. Factorial means that at least one test is run for every combination of 
main factors, in this case 3 × 3 × 3 or 27 combinations. Separate tests of hypothesis can be run 
to evaluate the main factors and also possible interactions. Again, all the observations con-
tribute to each comparison. When there are many factors, a portion of the complete factorial 
(i.e., a “fractional factorial”) is useful when experimental resources are limited (see its appli-
cation in a sequential testing approach, below).

Most problems can be handled with one of the standard experimental designs or a series 
of these. Designs can be classified by the number of factors to be investigated, the structure 
of the experimental design, and the kind of information the experiment is intended to pro-
vide (Table 19.12). For a description of both the design and analysis of various design struc-
tures, see Box et al. (2005). Another excellent general reference is Myers et al. (2009) for a 
detailed look at response surface designs.

A sequential approach to experimentation often can be helpful. Briefly, a typical sequence 
of designed experiments will allow an experimenter to quickly and efficiently narrow down 
a large number of possible factors (or X’s in the Y = f(X) terminology of Lean Six Sigma) to 
find out which are most important, and then refine the relationships to find optimal settings 
for each of the vital few factors. The steps might be as follows:

1. Screening experiment. In this stage, a fractional factorial design may be applied that 
does not allow interactions to be detected, but can ferret out which of many factors 
have the greatest main effect.

2. Fractional factorial design. The smaller number of factors identified in the screening 
experiment are tested to allow detection of interaction effects.
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FIGURE 19.17 Interaction. (Quality Planning and Analysis, Copyright 2007. Used by permission.)
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3. Full factorial design. A small number of factors (usually no more than five) are tested 
to allow all main effects and higher-order (e.g., three-way, four-way) interactions to 
be detected and accounted for. Such designs also can detect curvature that indicates 
a potential optimum.

4. Response surface design. By adding data points in particular ways (e.g., a composite 
design), an experimenter can build on earlier experiments to fully characterize 
nonlinear relationships and pinpoint optimal settings.

5. EVOP. Once an improved process is in production mode, evolutionary operation 
techniques can be used to conduct many small experiments on production units 
over time. Although individual changes are small, the cumulative effect over time 
can be quite large, and exemplifies the power of continuous improvement. See Box 
and Draper (1969) for a classic text on this subject. 

For a series of four papers on sequential experimentation, see Carter (1996). Emanuel 
and Palanisamy (2000) discuss sequential experimentation at two levels and a maximum of 
seven factors.

F»»¸GÀ Type of Application

Completely randomized Appropriate when only one experimental factor is being investigated

Factorial Appropriate when several factors are being investigated at two or 

more levels and interaction of factors may be significant

Blocked factorial Appropriate when number of runs required for factorial is too large 

to be carried out under homogeneous conditions

Fractional factorial Appropriate when many factors and levels exist and running all 

combinations is impractical

Randomized block Appropriate when one factor is being investigated and 

experimental material or environment can be divided into blocks 

or homogeneous groups

Balanced incomplete 

block

Appropriate when all the treatments cannot be accommodated in 

a block

Partially balanced 

incomplete block

Appropriate if a balanced incomplete block requires a larger 

number of blocks than is practical

Latin square Appropriate when one primary factor is under investigation and 

results may be affected by two other experimental variables or by two 

sources of nonhomogeneity. It is assumed that no interactions exist.

Youden square Same as Latin square, but number of rows, columns, and 

treatments need not be the same

Nested Appropriate when objective is to study relative variability instead of 

mean effect of sources of variation (e.g., variance of tests on the 

same sample and variance of different samples)

Response surface Objective is to provide empirical maps (contour diagrams) illustrating 

how factors under the experimenter’s control influence the response

Mixture designs Use when constraints are inherent (e.g., the sum of components 

in a paint must add to 100%)

(Source: Adapted from JQH5, Table 47.3.)

TABLE 19.12 Classification of Designs
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Taguchi Approach to Experimental Design
Professor Genichi Taguchi uses an approach to experimental design that has three purposes: 

• Design products and processes that perform consistently on target and are relatively 
insensitive (“robust”) to factors that are difficult to control. 

• Design products that are relatively insensitive (robust) to component variation. 

• Minimize variation around a target value. 

Thus, although cited in this “improvement tools” section because of its association with 
DOE, the approach is meant to provide valuable information for product design and devel-
opment (see “Statistical Tools for Designing for Quality” in this chapter). Taguchi divides 
quality control into online control (e.g., diagnosing and adjusting a process during produc-
tion) and offline control that encompasses the engineering design process and its three 
phases: systems design, parameter design, and tolerance design. For an extensive bibliogra-
phy and a summary of some controversial aspects of the Taguchi approach, see Box and 
Draper (1969, pp. 47.58 and 47.59). 

Many books are available that cover DOE for engineering and manufacturing applica-
tions. For readers in nonmanufacturing environments, Ledolter and Swersey (2007) may be 
of interest. A recent text readers may find useful for not only classical but more contempo-
rary techniques (e.g., Bayesian inference, kriging) is del Castillo (2007).

Discrete Event and Monte Carlo Simulation
Advances in user-friendly software make computer simulations increasingly accessible to 
quality practitioners that do not have a strong background in mathematics, programming, 
or modeling. Numerous types of simulation models exist, but two that may be of most inter-
est to readers are discrete event and Monte Carlo simulations. These can be powerful meth-
ods for making process improvements; in particular, modeling provides a means of asking 
“what if?” questions and rapidly testing the effects of process changes and potential solu-
tions in a safe, low-risk environment. 

Discrete Event Simulation. Discrete event simulation (DES) attempts to mimic situations in 
which there are distinct, recognizable events and transactions. In a hospital, for example, arrival 
of patients at an emergency department and subsequent steps in patient care represent specific 
events that combine into a flow of transactions: arrival, registration, triage, nursing assessment, 
physician assessment, etc., through inpatient admission, discharge, or transfer. Discrete event 
simulation enables system components to be changed and tracks the resulting process flow over 
time to help understand the relationships among inputs, outputs, and process variables.

Typically, a process flow diagram (or process “map”) that graphically displays the 
sequence and flow of activities forms the basis for a discrete event simulation. A discrete 
event simulation takes this basic flow diagram and adds inputs and process variables that 
govern the flow of transactions. Following on the hospital example, these include inputs 
(such as patient arrivals), human resources (e.g., number of nurses, physician schedules, 
overtime availability, skill levels, pay rates, etc.), equipment resources (e.g., types and number 
of beds, imaging equipment, etc.), rules for flow (the required sequence of steps, batching of 
inputs or outputs, priority rules, exceptions, decisions), resource acquisition (what resources 
are needed to complete an activity (e.g., one RN or one physician’s assistant; two RNs; one 
RN and one physician, etc.), activity cycle times (work time, wait time), and similar details. 

Once these details are built into the model, it “runs” by tracing the path of units (patients, 
in the hospital example) from arrival through to exit from the process. Patients are processed 
in accordance with the activities, rules, and constraints, and any relevant attributes (patient-
specific characteristics) that may be assigned to them (e.g., acuity level, age, gender). The 

t
uv
wxuyz{z
|}
~���}
�w��{����}
u��uw�
�
uw�
���������������y�~�����������u�}������
�
���yv
��
�xx�
xu|yx�z��y��uw
�uxz�w���

L
L

C
. N

o
t to

 b
e red

istrib
u
ted

 o
r m

o
d
ified

 in
 an

y
 w

ay
 w

ith
o
u
t p

erm
issio

n
.



,-  M e t h o d s  a n d  T o o l s :  W h a t  t o  U s e  t o  A t t a i n  P e r f o r m a n c e  E x c e l l e n c e

output consists of a multitude of descriptive statistics and measures that portray the collec-
tive behavior of the process as the various players interact and move through time. 

Although every model is different and details vary, there are basic steps that should be 
a part of every simulation study. These steps and related questions are (adapted from Law 
and Kelton 2000): 

 1. State the problem and question(s) being asked. What is the business need for the 
simulation? What problem is to be fixed? What answers are being sought?

 2. Prepare a plan for the simulation study. Who needs to be involved? What data are 
needed and how will data be collected? What alternative scenarios are to be tested? 
What are the milestones and timeline for completion?

 3. Collect data. What is my current state? What are the data for alternative scenarios? 
Are there gaps in the data, and how will they be handled?

 4. Build and validate a conceptual model. Given available data, what is the general 
structure of the model? What will be the inputs, process variables, and outputs? 
What statistical accumulators are needed, and where? If the model is built, will it 
provide the answers to the questions?

 5. Build and validate an operational model. Are the model components necessary and 
sufficient? Does the model produce results consistent with the current state?

 6. Design scenarios or experiments needed to answer the questions. What model parameters 
will be changed? Which are fixed? What combinations of factors need to be tested?

 7. Run the scenarios or experiments to obtain the needed outputs. Are the results 
reproducible? Are additional scenarios or experiments suggested? 

 8. Analyze and interpret the data. What are the statistical results? Do the descriptive 
statistics and/or statistical tests indicate meaningful effects? What are the answers 
to the original questions? Are additional questions raised?

As emphasized at the beginning of this chapter, formulation of the question(s) being asked is a 
critical first step to the successful application of simulation modeling. Failure to have a clear under-
standing of what the model is being asked to do leads to poorly constructed models, models with 
insufficient inputs or process detail, or overly complicated models that take unnecessary time and 
effort to build and run. In addition, a clearly communicated business need will garner the stake-
holder support needed to collect data, evaluate the model, and implement suggested changes. 

Monte Carlo. Named after the famed gambling destination, this method seeks to account 
for uncertainty (variability) in inputs and carry this forward into probability distributions of 
outcomes. Essentially, instead of using single, fixed values in equations [such as Y = f(X)], 
distributions are used for the inputs (X’s), and samples repeatedly are drawn from the 
distributions, yielding a distribution of outputs (Y values) instead of a single value. For 
example, while the forecasted net return on a new product could simply be stated as an 
expected $10 million, it would be useful to know the probability of achieving this, or that the 
uncertainty in the forecast is such that there is a high probability of a negative return. 

By way of illustration, assume we have three components, A, B, and C that are assembled 
end-to-end to create a final product. If the mean lengths are 5, 10, and 15 mm, then we can 
simply add these together to arrive at an expected mean combined total length of 5 mm + 
10 mm + 15 mm = 30 mm. However, we know from the concept of statistical variation that there 
will be variation in the components. Assuming we sample populations of each component 
and find the respective distributions for each of A, B, and C, what can we expect the overall 
distribution of assembled product length to look like? By repeatedly taking a random sample 
from each distribution and adding the lengths, Monte Carlo simulation generates a distribu-
tion of the total length Figure 19.18 shows the relative frequency distribution of the combined 

¡
¢£
¤¥¢¦§¨§
©ª
«¬®ª
¯¤°¨±²®ª
¢³´¢¤µ
¶
¢¤µ
·¸¸¹º·¸¹»·¹·¼½¾¦®«¿ÀÁº¿Á·Â¾¹¬¢Ãª±µÄ®Å
Æ
ÇÈ±¦£
É´
¥¥È
¥¢©¦¥Ê§ËÇ¦®¢¤
´¢¥§¤µ²Ì

L
L

C
. N

o
t to

 b
e red

istrib
u
ted

 o
r m

o
d
ified

 in
 an

y
 w

ay
 w

ith
o
u
t p

erm
issio

n
.



ì í í î ï ð ñ ò ð ó ô õ ò ö ÷ ð ø ö ò ù ò ð ú î ï ò û ò ó ñ ü ý ú ñ ò û ú ð ó ô ì ô þ ð ó í ò ô ÿ   ö ú 629

lengths of the three components from a Monte Carlo simulation with each of the three com-
ponents having a standard deviation of of 0.1 mm. The mean expected combined total length 
is almost exactly 30 mm, but the simulation shows the variation around this, with only 45% 
of assembled components expected to be within +/− 0.1 mm of the total mean value. This 
approach provides substantially more information than the single estimate of 30 mm.

Simulated DOE. As tools evolve, they are being combined in new ways. One example is 
the combination of Monte Carlo, discrete event simulation, and DOE. Briefly, this approach 
involves a discrete event simulation (DES) that uses probability distributions for the input 
and/or process variables (Monte Carlo), and the investigator changes these variables (as fac-
tors) following a structured, designed approach (DOE). While any results and conclusions 
should be treated as preliminary until verified by actual experimentation, this can be particu-
larly useful in environments where real-life changes may be difficult or dangerous to make.

Additional Advanced Analysis Tools
For practitioners faced with more complex scenarios such as multiple variables (more than one 
y and/or x), nonlinear data, or categorical outputs, extensions of the general linear models and 
other alternatives are available. In particular are methods for multivariate analysis; this refers to 
statistical techniques that simultaneously analyze multiple measurements on subjects. Many 
techniques are extensions of the univariate (single-variable distributions) and bivariate (correla-
tion, regression) methods dealt with above. Beyond the scope of this chapter, these include:

• Multiple regression. Applies when the investigator has a single, continuous 
dependent variable and multiple, continuous independent variables (X’s) of interest.

• Nonlinear regression. Useful when data cannot easily be treated by standard linear 
methods (note that curvilinear data do not necessarily require nonlinear methods).

• Nonparametric linear regression. Applies when the usual assumptions of regression 
are violated.

Relative frequency distribution

29,900 30,100

28.0% 27.0%45.0%
0.12

0.10

0.08

0.06

0.04

0.02

0.00
29.4 29.5 29.6 29.7 29.8 29.9 30.0 30.1 30.2 30.3 30.4

Distribution

Minimum 29.4967

Maximum 30.3848

Mean 29.9999

Std Dev 0.1679

Values 100

FIGURE 19.18 Result of Monte Carlo simulation showing a relative frequency distribution of combined 
total length of three components A, B and C that individually have normal distributions of 5, 10 and 
15 mm, respectively, each with a standard deviation of 0.1 mm. The mean expected combined total 
length is approximately 30 mm, but the simulation shows the variation around this, e.g., that only 45% 
of assembled components are expected to be within +/− 0.1 mm of this mean value.

Í
ÎÏ
ÐÑÎÒÓÔÓ
ÕÖ
×ØÙÚÖ
ÛÐÙÜÔÝÞÙÚÖ
ÎßàÎÐá
â
ÎÐá
ãääåæãäåçãåãèéêÒÚ×ëìíæëíãîêåØÎïÖÝÙáðÚñ
ò
óôÝÒÏ
õà
ÙÑÑô
ÑÎÕÒÑöÓ÷óÒÚÙÎÐ
àÎÑÓÙÐáÞø

L
L

C
. N

o
t to

 b
e red

istrib
u
ted

 o
r m

o
d
ified

 in
 an

y
 w

ay
 w

ith
o
u
t p

erm
issio

n
.



,ù. M e t h o d s  a n d  T o o l s :  W h a t  t o  U s e  t o  A t t a i n  P e r f o r m a n c e  E x c e l l e n c e

• Multiple discriminant analysis. Used in situations with a single, categorical (dichotomous 
or multichotomous) dependent variable (Y) and continuous independent variables 
(X’s). 

• Logistic regression. Also known as logit analysis, this is a combination of multiple 
regression and multiple discriminant analysis in which one or more categorical or 
continuous independent variables (X’s) are used to predict a single, categorical 
dependent variable (Y). Odds ratios often are computed with this method.

• Multivariate analysis of variance and covariance (MANOVA, MANCOVA). Dependence 
techniques that extend ANOVA to allow more than one continuous, dependent 
variable (Y) and several categorical independent variables (X’s). 

• Principal component analysis (PCA) and common factor analysis. These methods analyze 
interrelationships among a large number of variables and seek to condense the 
information into a smaller set of factors without loss of information.

• Cluster analysis. An interdependence technique that allows mutually exclusive 
subgroups to be identified based on similarities among the individuals. Unlike 
discriminant analysis, the groups are not predefined.

• Canonical correlation analysis. An extension of multiple regression that correlates 
simultaneously several continuous dependent variables (Y’s) and several continuous 
independent variables (X’s). 

• Conjoint analysis. Often used in marketing analyses, this method helps assess the 
relative importance of both attributes and levels of complex entities (e.g., products). 
It is useful when trade-offs exist when making comparisons.

• Multidimensional scaling. An interdependence method (also called perceptual 
mapping), this seeks to transform preferences or judgments of similarity into a 
representation by distance in multidimensional space. 

• Correspondence analysis. Another interdependence technique; this accommodates the 
perceptual mapping of objects (such as products) onto a set of categorical attributes. 
This method allows both categorical data and nonlinear relationships.

Readers are encouraged to research any techniques that appear to fit their need; although 
complex, these are powerful means of getting useful information from data. Some useful 
references include
Multivariate techniques: 

Hair, J. F., Jr., Black, W. C., Babin, B. J., Anderson, R. E., and Tatham, R. L. (2006). 
Multivariate Data Analysis. Pearson Prentice-Hall, Upper Saddle River, NJ.

Affifi, A., Clark, V. A., and May, S. (2004). Computer-Aided Multivariate Analysis (4th ed.). 
Chapman and Hall/CRC Press, Boca Raton, FL. 

Coleman, S, Greenfield, T., Stewardson, D., and Montgomery, D. C. (2008). Statistical
Practice in Business and Industry. John Wiley & Sons, Hoboken, NJ. (see Chapter 13).

 Hypothesis testing and DOE:

Box, G. E. P., Hunter, J. S., and Hunter, W. G. (2005). Statistics for Experimenters: Design, 
Innovation and Discovery (2nd ed.). Wiley-Interscience, Hoboken, NJ.

 Logistic regression, Poisson regression, odds ratios:

Agresti, A. (1996). An Introduction to Categorical Data Analysis. John Wiley & Sons, New York.

 Nonparametric:

Sprent, P., and Smeeton, N. C. (2001). Applied Nonparametric Statistical Methods (3rd ed.). 
Chapman and Hall/CRC Press, Boca Raton, FL. 
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Statistical tools for quality in the design and development process include techniques such as 
graphical summaries, probability distributions, confidence limits, tests of hypotheses, design of 
experiments, regression, and correlation analysis. These topics are covered in earlier sections of 
this chapter. To supplement these techniques, this section explains some statistical tools for reli-
ability and availability, and tools for setting specification limits on product characteristics. 

Failure Patterns for Complex Products
Methodology for quantifying reliability was first developed for complex products. Suppose 
that a piece of equipment is placed on test, is run until it fails, and the failure time is recorded. 
The equipment is repaired and again placed on test, and the time of the next failure is 
recorded. The procedure is repeated to accumulate the data shown in Table 19.13. The failure 
rate is calculated, for equal time intervals, as the number of failures per unit of time. When 
the failure rate is plotted against time, the result (Figure 19.19) often follows a familiar pat-
tern of failure known as the bathtub curve. Three periods are apparent that differ in the fre-
quency of failure and in the failure causation pattern: 

• The infant mortality period. This period is characterized by high failure rates that 
show up early in use (see the lower half of Figure 19.18). Commonly, these failures 

6¸7» ¾8 9¹¸º:¼»;
Infant Mortality Period

Time of Failure,

Constant Failure Rate Period

Time of Failure,

 Wear-Out Period

1.0  7.2 28.1 60.2 100.8 125.8

1.2  7.9 28.2 63.7 102.6 126.6

1.3  8.3 29.0 64.6 103.2 127.7

2.0  8.7 29.9 65.3 104.0 128.4

2.4  9.2 30.6 66.2 104.3 129.2

2.9  9.8 32.4 70.1 105.0 129.5

3.0 10.2 33.0 71.0 105.8 129.9

3.1 10.4 35.3 75.1 106.5

3.3 11.9 36.1 75.6 110.7

3.5 13.8 40.1 78.4 112.6

3.8 14.4 42.8 79.2 113.5

4.3 15.6 43.7 84.1 114.8

4.6 16.2 44.5 86.0 115.1

4.7 17.0 50.4 87.9 117.4

4.8 17.5 51.2 88.4 118.3

5.2 19.2 52.0 89.9 119.7

5.4 53.3 90.8 120.6

5.9 54.2 91.1 121.0

6.4 55.6 91.5 122.9

6.8 56.4 92.1 123.3

6.9 58.3 97.9 124.5

(Source: Quality Planning and Analysis, Copyright 2007. Used by permission.)

TABLE 19.13 Failure History for a Unit
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are the result of blunders in design or manufacture, misuse, or misapplication. Once 
corrected, these failures usually do not occur again (e.g., an oil hole that is not 
drilled). Sometimes it is possible to “debug” the product by a simulated use test or 
by overstressing (in electronics this is known as burn-in). The weak units still fail, 
but the failure takes place in the test rig rather than in service. O’Connor (1995) 
explains the use of burn-in tests and environmental screening tests. 

• The constant-failure-rate period. Here the failures result from the limitations inherent in 
the design, changes in the environment, and accidents caused by use or maintenance. 

FIGURE 19.19 Failure rate vs. time. (Quality Planning and Analysis, Copyright 2007. Used by permission.)
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The accidents can be held down by good control of operating and maintenance 
procedures. However, a reduction in the failure rate requires basic redesign. 

• The wear-out period. These failures are due to old age (e.g., a metal becomes embrittled 
or insulation dries out). A reduction in failure rates requires preventive replacement 
of these dying components before they result in catastrophic failure. 

The top portion of Figure 19.19 shows the corresponding Weibull plot when α = 2.6 was 
applied to the original data (Table 19.14). The values of the shape parameter, β, were approxi-
mately 0.5, 1.0, and 6.0, respectively. A shape parameter less than 1.0 indicates a decreasing failure 
rate, a value of 1.0 a constant failure rate, and a value greater than 1.0 an increasing failure rate. 

The Distribution of Time Between Failures. Users desire low failure rates during the 
infant mortality period, and after this are concerned with the length of time that a product 
will perform without failure. Thus, for repairable products, the time between failures (TBF) 
is a critical characteristic. The variation in time between failures can be studied statistically. 
The corresponding characteristic for nonrepairable products is usually called the time to 
failure. 

When the failure rate is constant, the distribution of time between failures is distributed 
exponentially. Consider the 42 failure times in the constant failure rate portion of Table 19.13. 
The time between failures for successive failures can be tallied, and the 41 resulting TBFs can 
be formed into the frequency distribution shown in Figure 19.20a. The distribution is roughly 
exponential in shape, indicating that when the failure rate is constant, the distribution of 
time between failures (not mean time between failures) is exponential. This distribution is 
the basis of the exponential formula for reliability. 

The Exponential Formula for Reliability
The distribution of TBF indicates the chance of failure-free operation for the specified time 
period. The chance of obtaining failure-free operation for a specified time period or longer 
can be shown by changing the TBF distribution to a distribution showing the number of 
intervals equal to or greater than a specified time length (Figure 19.20b). If the frequencies 
are expressed as relative frequencies, they become estimates of the probability of survival. 
When the failure rate is constant, the probability of survival (or reliability) is 

P
s
 = R = e−t/µ = e−tλ

 where P
s
 =  R = probability of failure-free operation for a time period equal to or greater than t

 e = 2.718
 t = specified period of failure-free operation
 µ = mean time between failures (the mean of TBF distribution)
 λ  = failure rate (the reciprocal of µ)

Note that this formula is simply the exponential probability distribution rewritten in 
terms of reliability. 

Problem A washing machine requires 30 minutes to clean a load of clothes. The mean time between 
failures of the machine is 100 hours. Assuming a constant failure rate, what is the chance of the machine 
completing a cycle without failure? 

Solution Applying the exponential formula, we obtain

R = e–t/µ = e–0.5/100 = 0.995

There is a 99.5 percent chance of completing a washing cycle. 
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ÂSource: Quality Planning and Analysis, Copyright 2007. Used by permission.)

TABLE 19.14 Weibull Paper 
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How about the assumption of a constant failure rate? In practice, sufficient data usually 
are not available to evaluate the assumption. However, experience suggests that this assump-
tion often is true, particularly when (1) infant mortality types of failures have been elimi-
nated before delivery of the product to the user, and (2) the user replaces the product or 
specific components before the wear-out phase begins. 

0 0.995 1.995 2.995

Time between failures (TBF)

3.995 4.995 5.995

45

40

35

30

25

20

15

10

5

0

C
u
m
u
la
ti
v
e 
fr
eq
u
en
cy
, 
n
u
m
b
er
 o
f 
in
te
rv
al
s 
eq
u
al

to
 o
r 
g
re
at
er
 t
h
an
 i
n
d
ic
at
ed
 T
B
F

41

18

10

7
3

2

FIGURE 19.20b Cumulative histogram of TBF. (Quality Planning and Analysis, Copyright 2007. Used by 
permission.)

FIGURE 19.20a Histogram of TBF. (Quality Planning and Analysis, Copyright 2007. Used by permission.)
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The Meaning of Mean Time Between Failures. Confusion surrounds the meaning of 
mean time between failures (MTBF). Further explanation is warranted: 

• The MTBF is the mean (or average) time between successive failures of a product. 
This definition assumes that the product in question can be repaired and placed 
back into operation after each failure. For nonrepairable products, the term “mean 
time to failure” (MTTF) is used. 

• If the failure rate is constant, the probability that a product will operate without 
failure for a time equal to or greater than its MTBF is only 37 percent. This outcome 
is based on the exponential distribution (R is equal to 0.37 when t is equal to the 
MTBF). This result is contrary to the intuitive feeling that there is a 50-50 chance of 
exceeding an MTBF. 

• MTBF is not the same as “operating life,” “service life,” or other indexes, which 
generally connote overhaul or replacement time. 

• An increase in an MTBF does not result in a proportional increase in reliability (the 
probability of survival). If t = 1 hour, the following table shows the MTBF required 
to obtain various reliabilities.

J123 R

  5 0.82

 10 0.90

 20 0.95

100 0.99

A fivefold increase in MTBF from 20 to 100 hours is necessary to increase the reliability 
by 4 percentage points compared with a doubling of the MTBF from 5 to 10 hours to get an 
8 percentage point increase in reliability. 

MTBF is a useful measure of reliability, but it is not correct for all applications. Other 
reliability indexes are listed in Chapter 28, Research & Development: More Innovation, 
Scarce Resources. 

The Relationship Between Part and System Reliability
It often is assumed that system reliability (i.e., the probability of survival, P

s
) is the product 

of the individual reliabilities of the n parts within the system: 

P
s
 = P

1
P

2
 . . . P

n

For example, if a communications system has four subsystems with reliabilities of 0.970, 
0.989, 0.995, and 0.996, the system reliability is the product, or 0.951. The formula assumes 
that (1) the failure of any part causes failure of the system and (2) the reliabilities of the parts 
are independent of one another (i.e., the reliability of one part does not depend on the func-
tioning of another part). 

These assumptions are not always true, but in practice, the formula serves two pur-
poses. First, it shows the effect of increased complexity of equipment on overall reliability. 
As the number of parts in a system increases, the system reliability decreases dramatically 
(see Figure 19.21). Second, the formula often is a convenient approximation that can be 
refined as information on the interrelationships of the parts becomes available. 

When it can be assumed that (1) the failure of any part causes system failure, (2) the parts 
are independent, and (3) each part follows an exponential distribution, then 

P
s
 = e−t1λ1e−−t2λ2 . . . e−tnλn
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Further, if t is the same for each part, 

P
s
 = e−1∑λ

Thus, when the failure rate is constant (and therefore the exponential distribution can be 
applied), the reliability of a system can be predicted based on the addition of the part failure 
rates (see the section “Predicting Reliability during Design,” next). 

Sometimes designs are planned with redundancy so that the failure of one part will 
not cause system failure. Redundancy is an old (but still useful) design technique invented 
long before the advent of reliability prediction techniques. However, the designer can now 
predict the effect of redundancy on system reliability in quantitative terms. 

Redundancy is the existence of more than one element for accomplishing a given task, 
where all elements must fail before there is an overall failure of the system. In parallel redun-
dancy (one of several types of redundancy), two or more elements operate at the same time 
to accomplish the task, and any single element is capable of handling the job itself in case of 
failure of the other elements. When parallel redundancy is used, the overall reliability is 
calculated as follows: 

P
s
 = 1 – (1 – P1)n

FIGURE 19.21 Relationship between part and system reliability. (Quality Planning and Analysis, 

Copyright 2007. Used by permission.)
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where P
s
 = reliability of the system

 P1 = reliability of the individual elements in the redundancy
 n = number of identical redundant elements

Problem Suppose that a unit has a reliability of 99.0 percent for a specified mission time. If two 
identical units are used in parallel redundancy, what overall reliability will be expected? 

Solution Applying the formula above, we obtain

R = 1 – (1 – 0.99)(1 – 0.99) = 0.9999, or 99.99 percent

Predicting Reliability during Design
Reliability prediction methods continue to evolve, but include such standards as failure mode and 
effects analysis (FMEA) and testing. Ireson et al. (1996) provide an extensive discussion of reli-
ability prediction, and should be consulted beyond the methods discussed in this handbook. 

The following steps make up a reliability prediction method: 

 1. Define the product and its functional operation. The system, subsystems, and units 
must be precisely defined in terms of their functional configurations and boundaries. 
This precise definition is aided by preparation of a functional block diagram that 
shows the subsystems and lower-level products, their interrelationships, and the 
interfaces with other systems. Given a functional block diagram and a well-defined 
statement of the functional requirements of the product, the conditions that 
constitute failure or unsatisfactory performance can be defined. 

 2. Prepare a reliability block diagram. For systems in which there are redundancies or 
other special interrelationships among parts, a reliability block diagram is useful. 
This diagram is similar to a functional block diagram, but the reliability block 
diagram shows exactly what must function for successful operation of the system. 
The diagram shows redundancies and alternative modes of operation. The reliability 
block diagram is the foundation for developing the probability model for reliability. 
O’Connor (1995) provides further discussion. 

 3. Develop the probability model for predicting reliability. A simple model may add only 
failure rates; a complex model can account for redundancies and other conditions. 

 4. Collect information relevant to parts reliability. The data include information such 
as parts function, parts ratings, stresses, internal and external environments, and 
operating time. Many sources of failure-rate information state failure rates as a func-
tion of operating parameters. For example, failure rates for fixed ceramic capacitors 
are stated as a function of (1) expected operating temperature and (2) the ratio of the 
operating voltage to the rated voltage. Such data show the effect of derating (assign-
ing a part to operate below its rated voltage) on reducing the failure rate. 

 5. Select parts reliability data. The required parts data consist of information on 
catastrophic failures and on tolerance variations with respect to time under known 
operating and environmental conditions. Acquiring these data is a major problem 
for the designer because there is no single reliability data bank comparable to 
handbooks such as those for physical properties of materials. Instead, the designer 
must build a data bank by securing reliability data from a variety of sources: 

Field performance studies conducted under controlled conditions: 

• Specified life tests 

• Data from parts manufacturers or industry associations 
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• Customers’ parts qualification and inspection tests 

• Government agency data banks such as the Government Industry Data Exchange 
Program (GIDEP) and the Reliability Information Analysis Center (RIAC) 

Combine all of the above to obtain the numerical reliability prediction. 
Ireson et al. (1996) and O’Connor (1995) are excellent references for reliability prediction. 

Included are the basic methods of prediction, repairable versus nonrepairable systems, elec-
tronic and mechanical reliability, reliability testing, and software reliability. Box and Draper 
(1969) provides extensive discussion of reliability data analysis, including topics such as cen-
sored life data (not all test units have failed during the test) and accelerated-life test data analy-
sis. Dodson (1999) explains how the use of computer spreadsheets can simplify reliability 
modeling using various statistical distributions. 

Reliability prediction techniques based on component failure data to estimate system failure 
rates have generated controversy. Jones and Hayes (1999) present a comparison of predicted and 
observed performance for five prediction techniques using parts count analyses. The predictions 
differed greatly from observed field behavior and from each other. The standard ANSI/IEC/ASQC 
D60300-3-1-1997 (Dependability Management—Part 3: Application Guide—Section 1—Analysis 
Techniques for Dependability) compares five analysis techniques: FMEA/FMECA, fault tree anal-
ysis, reliability block diagram, Markov analysis, and parts count reliability prediction. 

The reliability of a system evolves during design, development, testing, production, and 
field use. The concept of reliability growth assumes that the causes of product failures are 
discovered and action is taken to remove the causes, thus resulting in improved reliability of 
future units (“test, analyze, and fix”). Reliability growth models provide predictions of 
reliability due to such improvements. For elaboration, see O’Connor (1995). Also, ANSI/
IEC/ASQC D601164-1997 (Reliability Growth—Statistical Test and Estimation Methods) 
and the related IEC 61164 Ed. 2.0 (2004) (Reliability growth—Statistical test and estimation 
methods) describe methods of estimating reliability growth.

Predicting Reliability Based on the Exponential Distribution
When the failure rate is constant and when study of a functional block diagram reveals that 
all parts must function for system success, then reliability is predicted to be the simple total 
of failure rates. An example of a subsystem prediction is shown in Table 19.15. The predic-
tion for the subsystem is made by adding the failure rates of the parts; the MTBF is then 
calculated as the reciprocal of the failure rate. 

For further discussion of reliability prediction, including an example for an electronic 
system, see Gryna et al. (2007). 

Predicting Reliability Based on the Weibull Distribution
Prediction of overall reliability based on the simple addition of component failure rates is 
valid only if the failure rate is constant. When this assumption cannot be made, an alterna-
tive approach based on the Weibull distribution can be used.

 1. Graphically, use the Weibull distribution to predict the reliability R for the time 
period specified. R = 100 – % failure. Do this for each component (Table 19.14). 

 2. Combine the component reliabilities using the product rule and/or redundancy 
formulas to predict system reliability. 

Predictions of reliability using the exponential distribution or the Weibull distribution 
are based on reliability as a function of time. Next we consider reliability as a function of 
stress and strength. 
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Reliability as a Function of Applied Stress and Strength
Failures are not always a function of time. In some cases, a part will function indefinitely if its 
strength is greater than the stress applied to it. The terms “strength” and “stress” here are used in 
the broad sense of inherent capability and operating conditions applied to a part, respectively. 

For example, operating temperature is a critical parameter, and the maximum expected 
temperature is 145°F (63°C). Further, capability is indicated by a strength distribution 
having a mean of 172°F (78°C) and a standard deviation of 13°F (7°C) (Figure 19.22). With 
knowledge of only the maximum temperatures, the safety margin is

172 145

13
2 08

−
= .

êëìt Description Quantity

Generic Failure Rate 

per Million Hours

Total Failure Rates 

per Million Hours

Heavy-duty ball bearing 6 14.4 86.4

Brake assembly 4 16.8 67.2

Cam 2 0.016 0.032

Pneumatic hose 1 29.28 29.28

Fixed displacement pump 1 1.464 1.464

Manifold 1 8.80 65.0

Guide pin 5 13.0 65.0

Control valve 1 15.20 15.20

Total assembly failure rate 273.376

MTBF = 1/0.000273376 = 3.657.9 hours
(Source: Adapted from Ireson et al., p. 19.9. Quality Planning and Analysis, Copyright 2007. Used by 

permission.)

TABLE 19.15 Example of Mechanical Parts and Subsystem Failure Rates

145 172

FIGURE 19.22 Distribution of strength.
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TABLE A

Normal distribution

0 Z

F��������� �� ���� ��!�" #�$!� �%! &#�'! ���( −∞
−

to =Z
X µ
σ

, To illustrate when Z = 2, the probability 

is .9773 of obtaining a value equal to or less then X.

Z 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00

–3.0   .00100 .00104 .00107 .00111    .00114 .00118 .00122 .00126 .00131 .00135

–2.9 .0014 .0014 .0015 .0015 .0016 .0016 .0017 .0017 .0018 .0019

–2.8 .0019 .0020 .0021 .0021 .0022 .0023 .0023 .0024 .0025 .0026

–2.7 .0026 .0027 .0028 .0029 .0030 .0031 .0032 .0033 .0034 .0035

–2.6 .0036 .0037 .0038 .0039 .0040 .0041 .0043 .0044 .0045 .0047

–2.5 .0048 .0049 .0051 .0052 .0054 .0055 .0057 .0059 .0060 .0062

–2.4 .0064 .0066 .0068 .0069 .0071 .0073 .0075 .0078 .0080 .0082

–2.3 .0084 .0087 .0089 .0091 .0094 .0096 .0099 .0102 .0104 .0107

–2.2 .0110 .0113 .0116 .0119 .0122 .0125 .0129 .0132 .0136 .0139

–2.1 .0143 .0146 .0150 .0154 .0158 .0162 .0166 .0170 .0174 .0179

–2.0 .0183 .0188 .0192 .0197 .0202 .0207 .0212 .0217 .0222 .0228

–1.9 .0233 .0239 .0244 .0250 .0256 .0262 .0268 .0274 .0281 .0287

–1.8 .0294 .0301 .0307 .0314 .0322 .0329 .0336 .0344 .0351 .0359

–1.7 .0367 .0375 .0384 .0392 .0401 .0409 .0418 .0427 .0436 .0446

–1.6 .0455 .0465 .0475 .0485 .0495 .0505 .0516 .0526 .0537 .0548

–1.5 .0559 .0571 .0582 .0594 .0606 .0618 .0630 .0643 .0655 .0668

–1.4 .0681 .0694 .0708 .0721 .0735 .0749 .0764 .0778 .0793 .0808

–1.3 .0823 .0838 .0853 .0869 .0885 .0901 .0918 .0934 .0951 .0968

–1.2 .0985 .1003 .1020 .1038 .1057 .1075 .1093 .1112 .1131 .1151

–1.1 .1170 .1190 .1210 .1230 .1251 .1271 .1292 .1314 .1335 .1357

(Source: Quality Planning and Analysis, Copyright 2007. Used by permission.) 

TABLE 19.16 Normal Distribution

The safety margin says that the average strength is 2.08 standard deviations above the 
maximum expected temperature of 145°F (63°C). Table 19.16 can be used to calculate a reli-
ability of 0.981 [the area beyond 145°F (63°C)]. 

This calculation illustrates the importance of variation in addition to the average value 
during design. Designers have always recognized the existence of variation by using a safety 
factor in design. However, the safety factor is often defined as the ratio of average strength 
to the worst stress expected. 
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Note that in Figure 19.23, all designs have the same safety factor. Also note that the reli-
ability (probability of a part having a strength greater than the stress) varies considerably. 
Thus, the uncertainty often associated with this definition of safety factor is, in part, due to 
its failure to reflect the variation in both strength and stress. Such variation is partially 
reflected in a safety margin, defined as 

Average strength – worst stress

Standard deviiation of strength
 

This recognizes the variation in strength but is conservative because it does not recognize a 
variation in stress. 

Availability
Availability has been defined as the probability that a product, when used under given con-
ditions, will perform satisfactorily when called upon. Availability considers the operating 
time of the product and the time required for repairs. Idle time, during which the product is 
not needed, is excluded. 

Availability is calculated as the ratio of operating time to operating time plus downtime. 
However, downtime can be viewed in two ways: 

• Total downtime. This period includes active repair (diagnosis and repair time), 
preventive maintenance time, and logistics time (time spent waiting for personnel, 
spare parts, etc.). When total downtime is used, the resulting ratio is called 
operational availability (A

0
). 

• Active repair time. The resulting ratio is called intrinsic availability (A
i
). Under certain 

conditions, availability can be calculated as: 

A Ai0 = =
MTBF

MTBF+MDT
and

MTBF

MTBF+MTTR

where MTBF = mean time between failures
 MDT = mean downtime
 MTTR = mean time to repair

FIGURE 19.23 Variation and safety factor. (Quality Planning and Analysis, Copyright 2007. Used by 
permission.)
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This is known as the steady-state formula for availability. The steady-state formula for 
availability has the virtue of simplicity. However, the formula is based on several assump-
tions that are not always met in the real world. The assumptions are

• The product is operating in the constant failure rate period of the overall life. Thus, 
the failure-time distribution is exponential. 

• The downtime or repair-time distribution is exponential. 

• Attempts to locate system failures do not change the overall system failure rate. 

• No reliability growth occurs (such growth might be due to design improvements or 
through debugging of bad parts). 

• Preventive maintenance is scheduled outside the time frame included in the 
availability calculation. 

More precise formulas for calculating availability depend on operational conditions and 
statistical assumptions. These formulas are discussed by Ireson et al. (1996).

Setting Specification Limits
A major step in the development of physical products is the conversion of product features 
into dimensional, chemical, electrical, and other characteristics of the product. Thus, a heat-
ing system for an automobile will have many characteristics for the heater, air ducts, blower 
assembly, engine coolant, etc. 

For each characteristic, the designer must specify (1) the desired average (or “nominal 
value”) and (2) the specification limits (or “tolerance limits”) above and below the nominal 
value that individual units of product must meet. These two elements relate to parameter 
design and tolerance design, as discussed in Gryna et al. (2007).

The specification limits should reflect the functional needs of the product, manufacturing 
variability, and economic consequences. These three aspects are addressed in the next three sec-
tions. For greater depth in the statistical treatment of specification limits, see Anand (1996).

Specification Limits and Functional Needs
Sometimes data can be developed to relate product performance to measurements of a criti-
cal component. For example, a thermostat may be required to turn on and shut off a power 
source at specified low and high temperature values, respectively. A number of thermostat 
elements are built and tested. The prime recorded data are (1) turn-on temperature, (2) shut-
off temperature, and (3) physical characteristics of the thermostat elements. We can then 
prepare scatter diagrams (Figure 19.24) and regression equations to help establish critical 
component tolerances on a scientific basis within the confidence limits for the numbers 
involved. Ideally, the sample size is sufficient, and the data come from a statistically con-
trolled process—two conditions that are both rarely achieved. O’Connor (1995) explains 
how this approach can be related to the Taguchi approach to develop a more robust design. 

Specification Limits and Manufacturing Variability 
Generally, designers will not be provided with information on process capability. Their 
problem will be to obtain a sample of data from the process, calculate the limits that the 
process can meet, and compare these to the limits they were going to spec ify. If they do not 
have any limits in mind, the capability limits calculated from process data provide a set of 
limits that are realistic from the viewpoint of producibility. These limits must then be evalu-
ated against the functional needs of the product. 
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Statistically, the problem is to predict the limits of variation of individual items in the 
total population based on a sample of data. For example, suppose that a product character-
istic is normally distributed with a population average of 5.000 in (12.7 cm) and a population 
standard deviation of 0.001 in (0.00254 cm). Limits can then be cal culated to include any 
given percentage of the population. Figure 19.25 shows the loca tion of the 99 percent limits. 
Table 19.16 indicates that 2.575 standard deviations will include 99 percent of the popula-
tion. Thus, in this example, a realistic set of tolerance limits would be

5 000 2 575 0 001
5 003

4 997
. . ( . )

.

.
± =

FIGURE 19.25 Distribution with 99 percent limits. (Quality Planning and Analysis, Copyright 2007. Used 

by permission.)

0.0050.005
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FIGURE 19.24 Approach to functional tolerancing. (Quality Planning and Analysis, Copyright 2007. 
Used by permission.)
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Ninety-nine percent of the individual pieces in the population will have values between 
4.997 and 5.003. 

In practice, the average and standard deviation of the population are not known but 
must be estimated from a sample of product from the process. As a first approximation, 
tolerance limits are sometimes set at

X s± 3

Here, the average X  and standard deviation s of the sample are used directly as estimates 
of the population values. If the true average and standard deviation of the population hap-
pen to be equal to those of the sample, and if the characteristic is normally distributed, then 
99.73 percent of the pieces in the population will fall within the limits calculated. These lim-
its are frequently called natural tolerance limits (limits that recognize the actual variation of 
the process and therefore are realistic). This approximation ignores the possible error in both 
the average and standard deviation as estimated from the sample. 

Methodology has been developed for setting tolerance limits in a more precise manner. 
For example, formulas and tables are available for determining tolerance limits based on a 
normally distributed population. Table 19.17 provides factors for calculating tolerance limits 
that recognize the uncertainty in the sample mean and sample standard deviation. The toler-
ance limits are determined as

X Ks±

The factor K is a function of the confidence level desired, the percentage of the popu-
lation to be included within the tolerance limits, and the number of data values in the 
sample. 

For example, suppose that a sample of 10 resistors from a process yielded an aver age 
and standard deviation of 5.04 and 0.016, respectively. The tolerance limits are to include 
99 percent of the population, and the tolerance statement is to have a confidence level of 
95 percent. Referring to Table 19.17, the value of K is 4.433, and tolerance limits are then 
calculated as

5 04 4 433 0 016
5 11

4 97
. . ( . )

.

.
± =

We are 95 percent confident that at least 99 percent of the resistors in the population will 
have resistance between 4.97 and 5.11 Ω. Tolerance limits calculated in this manner are often 
called statistical tolerance limits. This approach is more rigorous than the 3s natural toler-
ance limits, but the two percentages in the statement are a mystery to those without a statis-
tical background. 

For products in some industries (e.g., electronics), the number of units outside of speci-
fication limits is stated in terms of parts per million (ppm). Thus, if limits are set at three 
standard deviations, 2700 ppm (100 to 99.73 percent) will fall outside the limits. For many 
applications (e.g., a personal computer with many logic gates), such a level is totally unac-
ceptable. Table 19.18 shows the ppm for several standard deviations. These levels of ppm 
assume that the process average is constant at the nominal specification. A deviation from 
the nominal value will result in a higher ppm value. To allow for modest shifts in the process 
average, some manufacturers follow a guideline for setting specification limits at ±6σ. 

Designers often must set tolerance limits with only a few measurements from the 
process (or more likely from the development tests conducted under laboratory conditions). 
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    P

   N

f = 0.75 f = 0.90

0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

2 4.498 6.301 7.414 9.531 11.920 11.407 15.978 18.800 24.167 30.227

3 2.501 3.538 4.187 5.431 6.844 4.132 5.847 6.919 8.974 11.309

4 2.035 2.892 3.431 4.471 5.657 2.932 4.166 4.943 6.440 8.149

5 1.825 2.599 3.088 4.033 5.117 2.454 3.494 4.152 5.423 6.879

6 1.704 2.429 2.889 3.779 4.802 2.196 3.131 3.723 4.870 6.188

7 1.624 2.318 2.757 3.611 4.593 2.034 2.902 3.452 4.521 5.750

8 1.568 2.238 2.663 3.491 4.444 1.921 2.743 3.264 4.278 5.446

9 1.525 2.178 2.593 3.400 4.330 1.839 2.626 3.125 4.098 5.220

10 1.492 2.131 2.537 3.328 4.241 1.775 2.535 3.018 3.959 5.046

11 1.465 2.093 2.493 3.271 4.169 1.724 2.463 2.933 3.849 4.906

12 1.443 2.062 2.456 3.223 4.110 1.683 2.404 2.863 3.758 4.792

13 1.425 2.036 2.424 3.183 4.059 1.648 2.355 2.805 3.682 4.697

14 1.409 2.013 2.398 3.148 4.016 1.619 2.314 2.756 3.618 4.615

15 1.395 1.994 2.375 3.118 3.979 1.594 2.278 2.713 3.562 4.545

16 1.383 1.977 2.355 3.092 3.946 1.572 2.246 2.676 3.514 4.484

17 1.372 1.962 2.337 3.069 3.917 1.552 2.219 2.643 3.471 4.430

18 1.363 1.948 2.321 3.048 3.891 1.535 2.194 2.614 3.433 4.382

19 1.355 1.936 2.307 3.030 3.867 1.520 2.172 2.588 3.399 4.339

20 1.347 1.925 2.294 3.013 3.846 1.506 2.152 2.564 3.368 4.300

21 1.340 1.915 2.282 2.998 3.827 1.493 2.135 2.543 3.340 4.264

22 1.334 1.906 2.271 2.984 3.809 1.482 2.118 2.524 3.315 4.232

23 1.328 1.898 2.261 2.971 3.793 1.471 2.103 2.506 3.292 4.203

24 1.322 1.891 2.252 2.950 3.778 1.462 2.089 2.480 3.270 4.176

25 1.317 1.883 2.244 2.948 3.764 1.453 2.077 2.474 3.251 4.151

26 1.313 1.877 2.236 2.938 3.751 1.444 2.065 2.460 3.232 4.127

27 1.309 1.871 2.229 2.929 3.740 1.437 2.054 2.447 3.215 4.106

30 1.297 1.855 2.210 2.904 3.708 1.417 2.025 2.413 3.170 4.049

35 1.283 1.834 2.185 2.871 3.667 1.390 1.988 2.368 3.112 3.974

40 1.271 1.818 2.166 2.846 3.635 1.370 1.959 2.334 3.066 3.917

100 1.218 1.742 2.075 2.727 3.484 1.275 1.822 1.172 2.854 3.646

500 1.177 1.683 2.006 2.636 3.368 1.201 1.717 2.046 2.689 3.434

1000 1.169 1.671 1.992 2.617 3.344 1.185 1.695 2.019 2.654 3.390

    ∞ 1.150 1.645 1.960 2.576 3.291 1.150 1.645 1.960 2.576 3.291

TABLE 19.17 Tolerance Factors for Normal Distributions 
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G = 0.95 f = 0.99

0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

22.858 32.019 37.674 48.430 60.573 114.363 160.363 188.491 242.300 303.054

5.922 8.380 9.916 12.861 16.208 13.378 18.930 22.401 29.055 36.616

3.779 5.369 6.370 8.299 10.502 6.614 9.398 11.150 14.527 18.383

3.002 4.275 5.079 6.634 8.415 4.643 6.612 7.855 10.260 13.015

2.604 3.712 4.414 5.775 7.337 3.743 5.337 6.345 8.301 10.548

2.361 3.369 4.007 5.248 6.676 3.233 4.613 5.488 7.187 9.142

2.197 3.136 3.732 4.891 6.226 2.905 4.147 4.936 6.468 8.234

2.078 2.967 3.532 4.631 5.899 2.677 3.822 4.550 5.966 7.600

1.987 2.839 3.379 4.433 5.649 2.508 3.582 4.265 5.594 7.129

1.916 2.737 3.259 4.277 5.452 2.378 3.397 4.045 5.308 6.766

1.858 2.655 3.162 4.150 5.291 2.274 3.250 3.870 5.079 6.477

1.810 2.587 3.081 4.044 5.158 2.190 3.130 3.727 4.893 6.240

1.770 2.529 3.012 3.955 5.045 2.120 3.029 3.608 4.737 6.043

1.735 2.480 2.954 3.878 4.949 2.060 2.945 3.507 4.605 5.876

1.705 2.437 2.903 3.812 4.865 2.009 2.872 3.421 4.492 5.732

1.679 2.400 2.858 3.754 4.791 1.965 2.808 3.345 4.393 5.607

1.655 2.366 2.819 3.702 4.725 1.926 2.753 3.279 4.307 5.497

1.635 2.337 2.784 3.656 4.667 1.891 2.703 3.221 4.230 5.399

1.616 2.310 2.752 3.615 4.614 1.860 2.659 3.168 4.161 5.312

1.599 2.286 2.723 3.577 4.567 1.833 2.620 3.121 4.100 5.234

1.584 2.264 2.697 3.543 4.523 1.808 2.584 3.078 4.044 5.163

1.570 2.244 2.673 3.512 4.484 1.795 2.551 3.040 3.993 5.098

1.557 2.225 2.651 3.483 4.447 1.764 2.522 3.004 3.947 5.039

1.545 2.208 2.631 3.457 4.413 1.745 2.494 2.972 3.904 4.985

1.534 2.193 2.612 3.432 4.382 1.727 2.460 2.941 3.865 4.935

1.523 2.178 2.595 3.409 4.353 1.711 2.446 2.914 3.828 4.888

1.497 2.140 2.549 3.350 4.278 1.668 2.385 2.841 3.733 4.768

1.462 2.090 2.490 3.272 4.179 1.613 2.306 2.748 3.611 4.611

1.435 2.052 2.445 3.213 4.104 1.571 2.247 2.677 3.518 4.493

1.311 1.874 2.233 2.934 3.748 1.383 1.977 2.355 3.096 3.954

1.215 1.737 2.070 2.721 3.475 1.243 1.777 2.117 2.783 3.555

1.195 1.709 2.036 2.676 3.418 1.214 1.736 2.068 2.718 3.472

1.150 1.645 1.960 2.576 3.291 1.150 1.645 1.960 2.576 3.291

∗Table H—Tolerance factors for normal distributions” from Selected Techniques of Statistical Analysis—OSRD by 
C. Eisenhart, M. W. Hastay, and W. A. Wallis, Copyright 1947 by The McGraw-Hill Companies, Inc. Reprinted by 
permission of The McGraw-Hill Companies, Inc.

  γ = confidence level
 P = percentage of population within tolerance limits
N = number of values in sample

(Source: Quality Planning and Analysis, Copyright 2007. Used by permission.)

TABLE 19.17 (Continued)
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In developing a paint formulation, for example, the following values of gloss were obtained: 
76.5, 75.2, 77.5, 78.9, 76.1, 78.3, and 77.7. A group of chemists was asked where they would 
set a minimum specification limit. Their answer was 75.0—a reasonable answer for those 
without statistical knowledge. Figure 19.26 shows a plot of the data on normal probability 
paper. If the line is extrapolated to 75.0, the plot predicts that about 11 percent of the popula-
tion will fall below 75.0, even though all of the sample data exceed 75.0. Of course, a larger 

�����ì # ��ë	�ëìd Deviations Part per Million (ppm)

±3σ 2700

±4σ 63

±5σ 0.57

±6σ 0.002

∗If the process is not centered and the mean shifts by up to 1.5σ, then ±6σ 
will be 3.4 ppm.
(Source: Quality Planning and Analysis, Copyright 2007. Used by 

permission.)

TABLE 19.18 Standard Deviations and PPM (centered process)∗ 
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FIGURE 19.26 Probability plot of development data. (Quality Planning and Analysis, Copyright 2007. 
Used by permission.)
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sample size is preferred and further statistical analyses could be made, but the plot provides 
a simple tool for evaluating a small sample of data. 

All methods of setting tolerance limits based on process data assume that the sample of 
data represents a process that is sufficiently stable to be predictable. In practice, the assump-
tion is often accepted without any formal evaluation. If sufficient data are available, the 
assumption should be checked with a control chart. 

Statistical tolerance limits are sometimes confused with other limits used in engineering 
and statistics. Table 19.19 summarizes the distinctions among five types of limits (see also 
Box, pp. 44.47–44.58). 

Specifications Limits and Economic Consequences
In setting traditional specification limits around a nominal value, we assume that there is no 
monetary loss for product falling within specification limits. For product falling outside the 
specification limits, the loss is the cost of replacing the product. 

Another viewpoint holds that any deviation from the nominal value causes a loss. Thus, 
there is an ideal (nominal) value that customers desire, and any deviation from this ideal results 
in customer dissatisfaction. This loss can be described by a loss function (Figure 19.27). 

Many formulas can predict loss as a function of deviation from the target. Taguchi pro-
poses the use of a simple quadratic loss function: 

L = k(X – T )2 

where L = loss in monetary terms 
 k = cost coefficient 
 X = value of quality characteristic 
 T = target value 

Ross (1996) provides an example to illustrate how the loss function can help to deter-
mine specification limits. In automatic transmissions for trucks, shift points are designed to 

�ë�� # µ���� Meaning

Tolerance Set by the engineering design function to define the minimum 

and maximum values allowable for the product to work properly

Statistical tolerance Calculated from process data to define the amount of variation 

that the process exhibits; these limits will contain a specified 

proportion of the total population

Prediction Calculated from process data to define the limits which will 

contain all of k future observations

Confidence Calculated from data to define an interval within which a 

population parameter lies

Control Calculated from process data to define the limits of chance 

(random) variation around some central value

(Source: Quality Planning and Analysis, Copyright 2007. Used by permission.) 

TABLE 19.19 Distinctions Among Limits
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occur at a certain speed and throttle position. Suppose it costs the producer $100 to adjust a 
valve body under warranty when a customer complains of the shift point. Research indi-
cates that the average customer would request an adjustment if the shift point is off from the 
nominal by 40 rpm transmission output speed on the first-to-second gear shift. The loss 
function is then

Loss = k(X – T )2 

100 = k(40)2 

k = $0.0625 

This adjustment can be made at the factory at a lower cost, about $10. The loss function 
is now used to calculate the specification limits: 

$10 = 0.0625(X – T )2 

(X – T ) = ±12.65 or ±13 rpm 

The specification limits should be set at 13 rpm around the desired nominal value. If the 
transmission shift point is further than 13 rpm from the nominal, adjustment at the factory 
is less expensive than waiting for a customer complaint and making the adjustment under 
warranty in the field. Ross (1996) discusses how the loss function can be applied to set one-
sided specification limits (e.g., a minimum value or a maximum value). 

Specification Limits for Interacting Dimensions
Interacting dimensions mate or merge with other dimensions to create a final result. 
Consider the simple mechanical assembly shown in Figure 19.28. The lengths of compo-
nents A, B, and C are interacting dimensions because they determine the overall assem-
bly length. 

Suppose the components were manufactured to the specifications indicated in Figure 19.28. 
A logical specification for the assembly length would be 3.500 ± 0.0035, giving limits of 

L
o
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åIGURE 19.27 Loss function. (Quality Planning and Analysis, Copyright 2007. Used by permission.)
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3.5035 and 3.4965. This logic may be verified from the two extreme assemblies shown in the 
following table. 

 Maximum  Minimum

 1.001 0.999

 0.5005 0.4995

 2.002 1.998

 3.5035 3.4965

The approach of adding component tolerances is mathematically correct, but is often too 
conservative. Suppose that about 1 percent of the pieces of component A are expected to 
be below the lower tolerance limit for component A and suppose the same for components 
B and C. If a component A is selected at random, there is, on average, 1 chance in 100 that it 
will be on the low side, and similarly for components B and C. The key point is this: If assem-
blies are made at random and if the components are manufactured independently, then the 
chance that an assembly will have all three components simultaneously below the lower 
tolerance limit is

1

100

1

100

1

100

1

1 000 000
× × =

, ,

There is only about one chance in a million that all three components will be too small, 
resulting in a small assembly. Thus, setting component and assembly tolerances based on 
the simple addition formula is conservative in that it fails to recognize the extremely low 
probability of an assembly containing all low (or all high) components. 

The statistical approach is based on the relationship between the variances of a 
number of independent causes and the variance of the dependent or overall result. This 
may be written as

σ σ σ σresult causeA causeB causeC= + + +2 2 2 ...

In terms of the assembly example, the formula is:

σ σ σ σassembly = + +A B C
2 2 2

A B C

1.000

± 0.001

0.500

± 0.0005

2.000

± 0.002

åIGURE 19.28 Mechanical assembly. (Quality Planning and Analysis, Copyright 2007. Used by permission.)
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Now suppose that for each component, the tolerance range is equal to three standard devia-
tions (or any constant multiple of the standard deviation). Because σ is equal to T divided by 
3, the variance relationship may be rewritten as

T T T T
A B C

3 3 3 3

2 2 2

=






+






+







or

T T T TA B Cassembly = + +2 2 2

Thus, the squares of tolerances are added to determine the square of the tolerance for the 
overall result. This formula compares to the simple addition of tolerances commonly used. 

The effect of the statistical approach is dramatic. Listed below are two possible sets of 
component tolerances that will yield an assembly tolerance equal to 0.0035 when used with 
the previous formula. 

P>?@>ABAC EFCBGAHCIJB K EFCBGAHCIJB L

A ±0.002 ±0.001

B ±0.002 ±0.001

C ±0.002 ±0.003

With alternative 1, the tolerance for component A has been doubled, the tolerance for 
component B has been quadrupled, and the tolerance for component C has been kept the 
same as the original component tolerance based on the simple addition approach. If alterna-
tive 2 is chosen, similar significant increases in the component tolerances may be achieved. 
This formula, then, may result in a larger component tolerance with no change in the manu-
facturing processes and no change in the assembly tolerance. 

The risk of this approach is that an assembly may fall outside the assembly tolerance. 
However, this probability can be calculated by expressing the component tolerances as stan-
dard deviations, calculating the standard deviation of the result, and finding the area under 
the normal curve outside the assembly tolerance limits. For example, if each component 
tolerance is equal to 3s, then 99.73 percent of the assemblies will be within the assembly 
tolerance, that is, 0.27 percent, or about 3 assemblies in 1000 taken at random would fail to 
meet the assembly tolerance. The risk can be eliminated by changing components for the few 
assemblies that do not meet the assembly tolerance. 

The tolerance formula is not restricted to outside dimensions of assemblies. Generalizing, 
the left side of the equation contains the dependent variable or physical result, and the right 
side of the equation contains the independent variables of physical causes. If the result is 
placed on the left and the causes on the right, the formula always has plus signs under the 
square root—even if the result is an internal dimension (such as the clearance between a shaft 
and hole). The causes of variation are additive wherever the physical result happens to fall. 

The formula has been applied to a variety of mechanical and electronic products. The 
concept may be applied to several interacting variables in an engineering relationship. The 
nature of the relationship need not be additive (assembly example) or subtractive (shaft-
and-hole example). The tolerance formula can be adapted to predict the variation of results 
that are the product and/or the division of several variables. 
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z{{|}~����{ �� ��� ���}|��� The formula is based on several assumptions: 

• The component dimensions are independent and each component to be assembled 
is chosen randomly. These assumptions are usually met in practice. 

• Each component dimension should be normally distributed. Some departure from 
this assumption is permissible. 

• The actual average for each component is equal to the nominal value stated in the 
specification. For the original assembly example, the actual averages for components 
A, B, and C must be 1.000, 0.500, and 2.000, respectively. Otherwise, the nominal 
value of 3.500 will not be achieved for the assembly and tolerance limits set at about 
3.500 will not be realistic. Thus it is important to control the average value for 
interacting dimensions. Consequently, process control techniques are needed using 
variables measurement. 

Use caution if any assumption is violated. Reasonable departures from the assumptions 
may still permit applying the concept of the formula. Notice that in the example, the formula 
resulted in the doubling of certain tolerances. This much of an increase may not even be 
necessary from the viewpoint of process capability. 

Bender (1975) has studied these assumptions for some complex assemblies and con-
cluded, based on a “combination of probability and experience,” that a factor of 1.5 should 
be included to account for the assumptions: 

T T T TA B Cresult = + + +1 5 2 2 2. ...

Graves (1997) suggests developing different factors for initial versus mature production, 
high versus low volume production, and mature versus developing technology and mea-
surement processes. 

Finally, variation simulation analysis is a technique that uses computer simulation to 
analyze tolerances. This technique can handle product characteristics with either normal or 
nonnormal distributions. Dodson (1999) describes the use of simulation in the tolerance 
design of circuits; Gomer (1998) demonstrates simulation to analyze tolerances in engine 
design. For an overall text on reliability, see Meeker and Escobar (1998). 

Statistical Tools for Control
In addition to the fundamental control charts introduced in Chapter 18, Core Tools to Design, 
Control, and Improve Performance, there are some special-purpose methods for control that 
are sometimes helpful.

PRE-Control 
PRE-Control is a statistical technique for detecting process conditions and changes that may 
cause defects (rather than changes that are statistically significant). PRE-Control focuses on 
controlling conformance to specifications, rather than statistical control. PRE-Control starts 
a process centered between specification limits and detects shifts that might result in making 
some of the parts outside a specification limit. It requires no plotting and no computations, 
and it needs only three measurements to give control information. The technique uses the 
normal distribution curve to determine significant changes in either the aim or the spread of 
a production process that could result in increased production of defective work. 
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The relative simplicity of PRE-Control versus statistical control charts can have impor-
tant advantages in many applications. The concept, however, has generated some contro-
versy. For a comparison of PRE-Control versus other approaches and the most appropriate 
applications of PRE-Control, see Ledolter and Swersey (1997) and Steiner (1997). For a com-
plete story, also see the references in both of these papers. 

Short-Run Control Charts
Some processes are carried out in such short runs that the usual procedure of collecting 20 to 
30 samples to establish a control chart is not feasible. Sometimes these short runs are caused 
by previously known assignable causes that take place at predetermined times (such as a 
frequent shift in production from one product to another, as may be the case in lean produc-
tion systems). Hough and Pond (1995) discuss four ways to construct control charts in these 
situations:

 1. Ignore the systematic variability, and plot on a single chart.

 2. Stratify the data, and plot them on a single chart.

 3. Use regression analysis to model the data, and plot the residuals on a chart.

 4. Standardize the data, and plot the standardized data on a chart.

The last option has received the most consideration. It involves transforming the data 
via the Z-transformation: 

Z
X= −µ
σ

to remove any systematic changes in level and variability (thereby normalizing the data to a 
common baseline). This standardization of Shewhart charts has been discussed by Nelson 
(1989), Wheeler (1991), and Griffith (1996). Pyzdek (1993) also provides a good discussion of 
short and small runs.

Cumulative Sum Control Chart 
The cumulative sum (CUMSUM or CUSUM) control chart is a chronological plot of the 
cumulative sum of deviations of a sample statistic (e.g., X , p, number of nonconformi-
ties) from a reference value (e.g., the nominal or target specification). By definition, the 
CUMSUM chart focuses on a target value rather than on the actual average of process 
data. Each point plotted contains information from all observations (i.e., a cumulative 
sum). CUMSUM charts are particularly useful in detecting small shifts in the process 
average (say, 0.5σ to 2.0σ). The chart shown in Figure 19.29 is one way of constructing 
CUMSUM charts. The method is as follows:

 1. Compute the control statistic (x-bar for the example in Figure 19.29).

 2. Determine the target value T (10 in Figure 19.29).

 3. Compute the standard deviation s (1.96 in Figure 19.29).

 4. Draw a reference line at zero and upper and lower control limits (UCL and LCL 
respectively) at ±4s.

 5. Compute the upper cumulative sum C
U
 for each sample point k as follows:

C x T sU k i
i

k

, , [ ( / )]= − +
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 6. Compute the upper cumulative sum C
L
 for each sample point k as follows:

C x T sL k i
i

k

, , [ ( / )]= − −










=
∑Minimum 0 2

1

 7. Plot C
U 

and C
L 
as two separate lines. 

 8. When C
U
 exceeds the UCL, then an upward shift has occurred. When C

L
 drops 

below LCL, then a downward shift has occurred.

Moving Average Control Charts 
Another special chart is the moving average chart. This chart is a chronological plot of the 
moving average, which is calculated as the average value updated by dropping the oldest 
individual measurement and adding the newest individual measurement. Thus, a new aver-
age is calculated with each individual measurement. A further refinement is the exponen-
tially weighted moving average (EWMA) chart. In the EWMA chart, the observations are 
weighted, and the highest weight is given to the most recent data. Moving average charts are 
effective in detecting small shifts, highlighting trends, and using data in processes in which 
it takes a long time to produce a single item. 

Box-Jenkins Manual Adjustment Chart 
Still another chart is the Box-Jenkins manual adjustment chart. The average and range, 
CUMSUM, and EWMA charts for variables focus on monitoring a process and reducing 
variability due to special causes of variation identified by the charts. Box-Jenkins charts have 
a different objective: to analyze process data to regulate the process after each observation 
and thereby minimize process variation. For elaboration on this advanced technique, see 
Box and Luceño (1997). 

Multivariate Control Charts
Finally, we consider the concept of multivariate control charts. When there are two or more 
quality characteristics on a unit of product, these could be monitored independently with 
separate control charts. Then the probability that a sample average on either control chart 

FIGURE 19.29 Cumulative sum control chart. (Juran Institute, Inc. Copyright 1994. Used by permission.)
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e��ee�� three sigma limits is 0.0027. But the joint probability that both variables exceed their 
control limits simultaneously when they are both in control is (0.0027)(0.0027) or 0.00000729, 
which is much smaller than 0.0027. The situation becomes more distorted as the number of 
characteristics increases. For this and other reasons, monitoring several characteristics inde-
pendently can be misleading. Multivariate control charts and statistics (e.g., Hotelling’s T2 
charts, multivariate EWMA) address this issue. See Montgomery (2000, Section 8.4) for a 
highly useful discussion. 

Process Capability
In planning the quality aspects of operations, nothing is more important than advance assur-
ance that the processes will meet the specifications. In recent decades, a concept of process 
capability has emerged to provide a quantified prediction of process adequacy. This ability 
to predict quantitatively has resulted in widespread adoption of the concept as a major ele-
ment of quality planning. Process capability is the measured, inherent variation of the prod-
uct turned out by a process. 

Basic definitions. Each key word in this definition must itself be clearly defined because 
the concept of capability has an enormous extent of application, and nonscientific terms are 
inadequate for communication within the industrial community. 

• Process refers to some unique combination of machine, tools, methods, materials, 
and people engaged in production. It is often feasible and illuminating to separate 
and quantify the effect of the variables entering this combination. 

• Capability refers to an ability, based on tested performance, to achieve measurable 
results. 

• Measured capability refers to the fact that process capability is quantified from data 
that, in turn, are the results of measurement of work performed by the process. 

• Inherent capability refers to the product uniformity resulting from a process that is 
in a state of statistical control (i.e., in the absence of time-to-time “drift” or other 
assignable causes of variation). “Instantaneous reproducibility” is a synonym for 
inherent capability. 

• The product is measured because product variation is the end result. 

Uses of process capability information. Process capability information serves 
multiple purposes: 

• Predicting the extent of variability that processes will exhibit. Such capability 
information, when provided to designers, provides important information in setting 
realistic specification limits. 

• Choosing from among competing processes that are most appropriate to meet the 
tolerances.

• Planning the interrelationship of sequential processes. For example, one process 
may distort the precision achieved by a predecessor process, as in hardening of gear 
teeth. Quantifying the respective process capabilities often points the way to a 
solution. 

• Providing a quantified basis for establishing a schedule of periodic process control 
checks and readjustments.

• Assigning machines to classes of work for which they are best suited.
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